Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: Non-communicable diseases are chronic systemic inflammation in humans that occurs because of enhanced inflammatory mediators of the arachidonic acid cas-cade. We aimed to explore whether the lead chalcone compounds could exhibit anti-inflam-matory activity via dual blockage of COX-2/5-LOX enzymes and their regulatory mechanism.
Methods: RAW 264.7 macrophages were collected from NCC, Pune, for in-vitro experiments. The IC50 values of chalcone compounds C45 and C64 were calculated. RAW 264.7 macro-phages were treated with C45 and C64 (10%, 5%, 2.5%, 0.125%, and 0.0625% concentration). The cell viability was carried out with an MTT assay. The COX-1, COX-2, 5-LOX, PGE2, and LTB4 levels were detected by ELISA-based kits. The in-vivo evaluation was carried out in Male Wistar rats (250-300 g, 7-8 weeks old) with acute and chronic anti-inflammatory models and histopathological studies on the stomach, liver, and kidney. Results: The present study described the in-vitro and in-vivo biological evaluation of dual COX-2/5-LOX inhibitors in chalcone derivatives (C45 and C64) compounds showed the most effective COX-2 and 5-LOX inhibition with IC50 values 0.092 and 0.136μM respectively. Simultaneously, compound C64 showed comparable selectivity towards COX-2 with a Selec-tivity Index (SI) of 68.43 compared to etoricoxib, with an SI of 89.32. In-vivo carrageenan-induced rat paw oedema activity, the compound C64 showed a significant reduction in oedema with 78.28% compared to indomethacin with 88.07% inhibition. Furthermore, cotton pellet-induced granuloma activity revealed that compound C64 significantly reduced 32.85% com-pared with standard 40.13% granuloma inhibition. Conclusion: The chalcone compound C64, (E)-1-(4-Amino-2-hydroxyphenyl)-3-(3,4,5-tri-methoxyphenyl)-prop-2-en-1-one was proved to be a potent and novel Dual COX-2/5-LOX inhibitor with improved gastric safety profiling.[1]
Hariharan, R.; Odjidja, E.N.; Scott, D.; Shivappa, N.; Hébert, J.R.; Hodge, A.; de Courten, B. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes. Rev., 2022, 23(1), e13349.
[http://dx.doi.org/10.1111/obr.13349] [PMID: 34708499]
[http://dx.doi.org/10.1111/obr.13349] [PMID: 34708499]
[2]
Roth, G. Global burden of disease study 2017 (GBD 2017) results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2018. Lancet, 2018, 392, 1736-1788.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7]
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7]
[3]
Phillips, C.M.; Chen, L.W.; Heude, B.; Bernard, J.Y.; Harvey, N.C.; Duijts, L.; Mensink-Bout, S.M.; Polanska, K.; Mancano, G.; Suderman, M.; Shivappa, N.; Hébert, J.R. Dietary inflammatory index and non-communicable disease risk: A narrative review. Nutrients, 2019, 11(8), 1873.
[http://dx.doi.org/10.3390/nu11081873] [PMID: 31408965]
[http://dx.doi.org/10.3390/nu11081873] [PMID: 31408965]
[4]
Harizi, H.; Corcuff, J.B.; Gualde, N. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol. Med., 2008, 14(10), 461-469.
[http://dx.doi.org/10.1016/j.molmed.2008.08.005] [PMID: 18774339]
[http://dx.doi.org/10.1016/j.molmed.2008.08.005] [PMID: 18774339]
[5]
de Gaetano, G.; Donati, M.B.; Cerletti, C. Prevention of thrombosis and vascular inflammation: Benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol. Sci., 2003, 24(5), 245-252.
[http://dx.doi.org/10.1016/S0165-6147(03)00077-4] [PMID: 12767724]
[http://dx.doi.org/10.1016/S0165-6147(03)00077-4] [PMID: 12767724]
[6]
Hawkey, C.J. COX-2 inhibitors. Lancet, 1999, 353(9149), 307-314.
[http://dx.doi.org/10.1016/S0140-6736(98)12154-2] [PMID: 9929039]
[http://dx.doi.org/10.1016/S0140-6736(98)12154-2] [PMID: 9929039]
[7]
Fiorucci, S.; Meli, R.; Bucci, M.; Cirino, G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? 1 1Abbreviations: NSAIDs, nonsteroidal anti-inflammatory drugs; COX, cyclooxygenase; LT, leukotriene; 5-LOX, 5-lipoxygenase; PG, prostaglandin; DFU, 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsuphonyl)-phenyl-2(5H)-furanone; and DFP, diisopropyl fluorophosphate. Biochem. Pharmacol., 2001, 62(11), 1433-1438.
[http://dx.doi.org/10.1016/S0006-2952(01)00747-X] [PMID: 11728379]
[http://dx.doi.org/10.1016/S0006-2952(01)00747-X] [PMID: 11728379]
[8]
Charlier, C.; Michaux, C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem., 2003, 38(7-8), 645-659.
[http://dx.doi.org/10.1016/S0223-5234(03)00115-6] [PMID: 12932896]
[http://dx.doi.org/10.1016/S0223-5234(03)00115-6] [PMID: 12932896]
[9]
Julémont, F.; Dogné, J.M.; Pirotte, B.; Leval, X. Recent development in the field of dual COX / 5-LOX inhibitors. Mini Rev. Med. Chem., 2004, 4(6), 633-638.
[http://dx.doi.org/10.2174/1389557043403747] [PMID: 15279597]
[http://dx.doi.org/10.2174/1389557043403747] [PMID: 15279597]
[10]
Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[11]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[12]
Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev., 2016, 15(1), 87-120.
[http://dx.doi.org/10.1007/s11101-014-9387-8]
[http://dx.doi.org/10.1007/s11101-014-9387-8]
[13]
Kostanecki, V.S.; Tambor, J. About the six isomeric monooxybenzalacetophenones (monooxychalcones). Ber. Dtsch. Chem. Ges., 1899, 32(2), 1921-1926.
[http://dx.doi.org/10.1002/cber.18990320293]
[http://dx.doi.org/10.1002/cber.18990320293]
[14]
Singhal, M.; Paul, A.; Singh, H. Synthesis and characterization of some novel chalcone derivatives: An intermediate for various heterocyclic compounds. Int. J. Pharm. Investig., 2011, 1(1), 1-7.
[PMID: 23071911]
[PMID: 23071911]
[15]
Díaz-Tielas, C.; Graña, E.; Reigosa, M.J.; Sánchez-Moreiras, A.M. Biological activities and novel applications of chalcones. Planta Daninha, 2016, 34(3), 607-616.
[http://dx.doi.org/10.1590/s0100-83582016340300022]
[http://dx.doi.org/10.1590/s0100-83582016340300022]
[16]
Prashar, H.; Chawla, A.; Sharma, A.K.; Kharb, R. Chalcone as a versatile moiety for diverse pharmacological activities. Int. J. Pharm. Sci. Res., 2012, 3(7), 1913.
[17]
Awaad, A.S.; El-Meligy, R.M.; Soliman, G.A. Natural products in treatment of ulcerative colitis and peptic ulcer. J. Saudi Chem. Soc., 2013, 17(1), 101-124.
[http://dx.doi.org/10.1016/j.jscs.2012.03.002]
[http://dx.doi.org/10.1016/j.jscs.2012.03.002]
[18]
ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[19]
Mittal, R.; Sharma, S.; Mittal, A.; Kumar, S.; Kushwah, A.S. Virtual screening, molecular docking, and physiochemical analysis of novel 1,3-diphenyl-2-propene-1-one as dual COX-2/5-LOX inhibitors. Lett. Drug Des. Discov., 2024, 21(2), 270-288.
[http://dx.doi.org/10.2174/1570180819666220523093435]
[http://dx.doi.org/10.2174/1570180819666220523093435]
[20]
Kang, S.R.; Han, D.Y.; Park, K.I.; Park, H.S. Suppressive effect on lipopolysaccharide-induced proinflammatory mediators by citrus aurantium L. in macrophage RAW 264.7 cells via NF-B signal pathway. Evid. Based Complement. Alternat. Med., 2011, 248592
[http://dx.doi.org/10.1155/2011/248592]
[http://dx.doi.org/10.1155/2011/248592]
[21]
Yoon, S.B.; Lee, Y.J.; Park, S.K.; Kim, H.C.; Bae, H.; Kim, H.M.; Ko, S.G.; Choi, H.Y.; Oh, M.S.; Park, W. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. J. Ethnopharmacol., 2009, 125(2), 286-290.
[http://dx.doi.org/10.1016/j.jep.2009.06.027] [PMID: 19577625]
[http://dx.doi.org/10.1016/j.jep.2009.06.027] [PMID: 19577625]
[22]
Karki, R.; Park, C.H.; Kim, D.W. Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). J. Integr. Med., 2013, 11(4), 246-252.
[http://dx.doi.org/10.3736/jintegrmed2013036] [PMID: 23867243]
[http://dx.doi.org/10.3736/jintegrmed2013036] [PMID: 23867243]
[23]
Lee, M.Y.; Park, B.Y.; Kwon, O.K.; Yuk, J.E.; Oh, S.R.; Kim, H.S.; Lee, H.K.; Ahn, K.S. Anti-inflammatory activity of (−)-aptosimon isolated from Daphne genkwa in RAW264.7 cells. Int. Immunopharmacol., 2009, 9(7-8), 878-885.
[http://dx.doi.org/10.1016/j.intimp.2009.03.012] [PMID: 19328870]
[http://dx.doi.org/10.1016/j.intimp.2009.03.012] [PMID: 19328870]
[24]
Wu, L.; Fan, N.; Lin, M.; Chu, I.; Huang, S.; Hu, C.Y.; Han, S. Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. J. Agric. Food Chem., 2008, 56(7), 2341-2349.
[http://dx.doi.org/10.1021/jf073057e] [PMID: 18321049]
[http://dx.doi.org/10.1021/jf073057e] [PMID: 18321049]
[25]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med., 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[26]
Abdelrahman, M.H.; Youssif, B.G.M.; abdelgawad, M.A.; Abdelazeem, A.H.; Ibrahim, H.M.; Moustafa, A.E.G.A.; Treamblu, L.; Bukhari, S.N.A. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem., 2017, 127, 972-985.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.006] [PMID: 27837994]
[http://dx.doi.org/10.1016/j.ejmech.2016.11.006] [PMID: 27837994]
[27]
George, L.; Ramasamy, T.; Manickam, V.; Iyer, S.K.; Radhakrishnan, V. Novel phenanthridine (PHE-4i) derivative inhibits carrageenan-induced rat hind paw oedema through suppression of hydrogen sulfide. Inflammopharmacology, 2016, 24(4), 173-180.
[http://dx.doi.org/10.1007/s10787-016-0273-4] [PMID: 27380491]
[http://dx.doi.org/10.1007/s10787-016-0273-4] [PMID: 27380491]
[28]
Xu, G.L.; Liu, F.; Ao, G.Z.; He, S.Y.; Ju, M.; Zhao, Y.; Xue, T. Anti-inflammatory effects and gastrointestinal safety of NNU-hdpa, a novel dual COX/5-LOX inhibitor. Eur. J. Pharmacol., 2009, 611(1-3), 100-106.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.062] [PMID: 19345206]
[http://dx.doi.org/10.1016/j.ejphar.2009.03.062] [PMID: 19345206]
[29]
Sabiu, S.; Garuba, T.; Sunmonu, T.; Ajani, E.; Sulyman, A.; Nurain, I.; Balogun, A. Indomethacin-induced gastric ulceration in rats: Protective roles of Spondias mombin a nd Ficus exasperata. Toxicol. Rep., 2015, 2, 261-267.
[http://dx.doi.org/10.1016/j.toxrep.2015.01.002] [PMID: 28962358]
[http://dx.doi.org/10.1016/j.toxrep.2015.01.002] [PMID: 28962358]
[30]
Lee, E.S.; Park, B.C.; Paek, S.H.; Lee, Y.S.; Basnet, A.; Jin, D.Q.; Choi, H.G.; Yong, C.S.; Kim, J.A. Potent analgesic and anti-inflammatory activities of 1-furan-2-yl-3-pyridin-2-yl-propenone with gastric ulcer sparing effect. Biol. Pharm. Bull., 2006, 29(2), 361-364.
[http://dx.doi.org/10.1248/bpb.29.361] [PMID: 16462046]
[http://dx.doi.org/10.1248/bpb.29.361] [PMID: 16462046]
[31]
Zhao, J.; Maitituersun, A.; Li, C.; Li, Q.; Xu, F.; Liu, T. Evaluation on analgesic and anti-inflammatory activities of total flavonoids from Juniperus sabina. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/7965306] [PMID: 30069226]
[http://dx.doi.org/10.1155/2018/7965306] [PMID: 30069226]
[32]
Chen, S.; Mukoyama, T.; Sato, N.; Yamagata, S.I.; Arai, Y.; Satoh, N.; Ueda, S. Induction of nephrotoxic serum nephritis in inbred mice and suppressive effect of colchicine on the development of this nephritis. Pharmacol. Res., 2002, 45(4), 319-324.
[http://dx.doi.org/10.1006/phrs.2002.0948] [PMID: 12030796]
[http://dx.doi.org/10.1006/phrs.2002.0948] [PMID: 12030796]
[33]
Naz, M.; Rehman, N.; Nazam Ansari, M.; Kamal, M.; Ganaie, M.A.; Awaad, A.S.; Alqasoumi, S.I. Comparative study of subchronic toxicities of mosquito repellents (coils, mats and liquids) on vital organs in Swiss albino mice. Saudi Pharm. J., 2019, 27(3), 348-353.
[http://dx.doi.org/10.1016/j.jsps.2018.12.002] [PMID: 30976177]
[http://dx.doi.org/10.1016/j.jsps.2018.12.002] [PMID: 30976177]
[34]
Shrivastava, S.K.; Srivastava, P.; Bandresh, R.; Tripathi, P.N.; Tripathi, A. Design, synthesis, and biological evaluation of some novel indolizine derivatives as dual cyclooxygenase and lipoxygenase inhibitor for anti-inflammatory activity. Bioorg. Med. Chem., 2017, 25(16), 4424-4432.
[http://dx.doi.org/10.1016/j.bmc.2017.06.027] [PMID: 28669741]
[http://dx.doi.org/10.1016/j.bmc.2017.06.027] [PMID: 28669741]
[35]
Ganguly, A.K. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Experientia, 1969, 25(11), 1224-1224.
[http://dx.doi.org/10.1007/BF01900290] [PMID: 5357845]
[http://dx.doi.org/10.1007/BF01900290] [PMID: 5357845]
[36]
Kamil, M.; Fatima, A.; Ullah, S.; Ali, G.; Khan, R.; Ismail, N.; Qayum, M.; Irimie, M.; Dinu, C.G.; Ahmedah, H.T.; Cocuz, M.E. Toxicological evaluation of novel cyclohexenone derivative in an animal model through histopathological and biochemical techniques. Toxics, 2021, 9(6), 119.
[http://dx.doi.org/10.3390/toxics9060119] [PMID: 34070633]
[http://dx.doi.org/10.3390/toxics9060119] [PMID: 34070633]
[37]
Tasneem, S.; Liu, B.; Li, B.; Choudhary, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res., 2019, 139, 126-140.
[http://dx.doi.org/10.1016/j.phrs.2018.11.001] [PMID: 30395947]
[http://dx.doi.org/10.1016/j.phrs.2018.11.001] [PMID: 30395947]
[38]
Ong, C.K.S.; Lirk, P.; Tan, C.H.; Seymour, R.A. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin. Med. Res., 2007, 5(1), 19-34.
[http://dx.doi.org/10.3121/cmr.2007.698] [PMID: 17456832]
[http://dx.doi.org/10.3121/cmr.2007.698] [PMID: 17456832]
[39]
Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol., 2010, 24(2), 121-132.
[http://dx.doi.org/10.1016/j.bpg.2009.11.005] [PMID: 20227026]
[http://dx.doi.org/10.1016/j.bpg.2009.11.005] [PMID: 20227026]
[40]
Xu, G.L.; Liu, F.; Zhao, Y.; Ao, G.Z.; Xi, L.; Ju, M.; Xue, T. Biological evaluation of 2-(4-amino-phenyl)-3-(3,5-dihydroxylphenyl) propenoic acid. Basic Clin. Pharmacol. Toxicol., 2009, 105(5), 350-356.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00463.x] [PMID: 19744157]
[http://dx.doi.org/10.1111/j.1742-7843.2009.00463.x] [PMID: 19744157]
[41]
Yang, J.; Li, S.; Xie, C.; Ye, H.; Tang, H.; Chen, L.; Peng, A. Anti-inflammatory activity of ethyl acetate fraction of the seeds of Brucea Javanica. J. Ethnopharmacol., 2013, 147(2), 442-446.
[http://dx.doi.org/10.1016/j.jep.2013.03.034] [PMID: 23538165]
[http://dx.doi.org/10.1016/j.jep.2013.03.034] [PMID: 23538165]
[42]
Karim, N.; Khan, I.; Khan, W.; Khan, I.; Khan, A.; Halim, S.A.; Khan, H.; Hussain, J.; Al-Harrasi, A. Anti-nociceptive and anti-inflammatory activities of asparacosin a involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: An in-vitro, in-vivo, and in-silico approach. Front. Immunol., 2019, 10, 581.
[http://dx.doi.org/10.3389/fimmu.2019.00581] [PMID: 30972073]
[http://dx.doi.org/10.3389/fimmu.2019.00581] [PMID: 30972073]
[43]
Negi, P.; Agarwal, S.; Garg, P.; Ali, A.; Kulshrestha, S. In vivo models of understanding inflammation (in vivo methods for inflammation) In: Recent Developments in Anti-Inflammatory Therapy; , 2023; pp. 315-330.
[http://dx.doi.org/10.1016/B978-0-323-99988-5.00017-6]
[http://dx.doi.org/10.1016/B978-0-323-99988-5.00017-6]
[44]
Sengar, N.; Joshi, A.; Prasad, S.K.; Hemalatha, S. Anti-inflammatory, analgesic and anti-pyretic activities of standardized root extract of Jasminum sambac. J. Ethnopharmacol., 2015, 160, 140-148.
[http://dx.doi.org/10.1016/j.jep.2014.11.039] [PMID: 25479154]
[http://dx.doi.org/10.1016/j.jep.2014.11.039] [PMID: 25479154]
[45]
Solanki, H.K.; Shah, D.A.; Maheriya, P.M.; Patel, C.A. Evaluation of anti-inflammatory activity of probiotic on carrageenan-induced paw edema in Wistar rats. Int. J. Biol. Macromol., 2015, 72, 1277-1282.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.059] [PMID: 25316426]
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.059] [PMID: 25316426]
[46]
Cong, H.H.; Khaziakhmetova, V.N.; Zigashina, L.E. Rat paw oedema modeling and NSAIDs: Timing of effects. Int. J. Risk Saf. Med., 2015, 27(s1)(Suppl. 1), S76-S77.
[http://dx.doi.org/10.3233/JRS-150697] [PMID: 26639722]
[http://dx.doi.org/10.3233/JRS-150697] [PMID: 26639722]
[47]
Spector, W.G. The granulomatous inflammatory exudate. Int. Rev. Exp. Pathol., 1969, 8, 1-55.
[PMID: 4904706]
[PMID: 4904706]
[48]
Swingle, K.F.; Shideman, F.E. Phases of the inflammatory response to subcutaneous implantation of a cotton pellet and their modification by certain anti-inflammatory agents. J. Pharmacol. Exp. Ther., 1972, 183(1), 226-234.
[PMID: 4562620]
[PMID: 4562620]
[49]
Li, W.; Huang, H.; Zhang, Y.; Fan, T.; Liu, X.; Xing, W.; Niu, X. Anti-inflammatory effect of tetrahydrocoptisine from Corydalis impatiens is a function of possible inhibition of TNF-α, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-κB activation and MAPK pathway. Eur. J. Pharmacol., 2013, 715(1-3), 62-71.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.017] [PMID: 23810685]
[http://dx.doi.org/10.1016/j.ejphar.2013.06.017] [PMID: 23810685]
[50]
Liao, J.C.; Tsai, J.C.; Peng, W.H.; Chiu, Y.J.; Sung, P.J.; Tsuzoki, M.; Kuo, Y.H. Anti-inflammatory activity of N-(3-florophenyl)ethylcaffeamide in mice. Int. J. Mol. Sci., 2013, 14(8), 15199-15211.
[http://dx.doi.org/10.3390/ijms140815199] [PMID: 23887648]
[http://dx.doi.org/10.3390/ijms140815199] [PMID: 23887648]
[51]
Vysakh, A.; Jayesh, K.; Helen, L.R.; Jyothis, M.; Latha, M.S. Acute oral toxicity and anti-inflammatory evaluation of methanolic extract of Rotula aquatica roots in Wistar rats. J. Ayurveda Integr. Med., 2020, 11(1), 45-52.
[http://dx.doi.org/10.1016/j.jaim.2017.09.007] [PMID: 30120055]
[http://dx.doi.org/10.1016/j.jaim.2017.09.007] [PMID: 30120055]