Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Gamma-Tocotrienol Inhibits Proliferation and Growth of HSD17B4-Overexpressing HepG2 Liver Cancer Cells

In Press, (this is not the final "Version of Record"). Available online 26 June, 2024
Author(s): Xiaoming Wang, Xijia Liang, Nan Zhang, Yaqi Wang, Meng Hu, Yun Shi, Min Yao, Lianguo Hou and Lingling Jiang*
Published on: 26 June, 2024

DOI: 10.2174/0115680096319171240623091614

Abstract

Introduction: Hydroxysteroid 17-beta dehydrogenase 4 (HSD17B4) is involved in the progression of hepatocellular carcinoma (HCC).

Aims: This study aimed to investigate the inhibitory effect of gamma-tocotrienol (γ-T3) on the proliferation and growth of HSD17B4-overexpressing HepG2 cells.

Methods: HepG2 cells were transfected with empty or HSD17B4-overexpressing plasmids, followed by vitamin E (VE) or γ-T3 treatment. MTS assay, Western blotting, qRT-PCR, and flow cytometry were employed to assess cell proliferation, protein expression, mRNA levels, and apoptosis. HSD17B4 interaction with γ-T3 was assessed by quantifying γ-T3 in the collected precipitate of HSD17B4 using anti-flag magnetic beads. Tumor xenografts were established in NSG mice, and tumor growth was monitored.

Results: HSD17B4 overexpression significantly promoted HepG2 cell proliferation, which was effectively counteracted by VE or γ-T3 treatment in a dose-dependent manner. VE and γ-T3 did not exert their effects through direct regulation of HSD17B4 expression. Instead, γ-T3 was found to interact with HSD17B4, inhibiting its activity in catalyzing the conversion of estradiol (E2) into estrone. Moreover, γ-T3 treatment led to a reduction in cyclin D1 expression and suppressed key proliferation signaling pathways, such as ERK, MEK, AKT, and STAT3. Additionally, γ-T3 promoted apoptosis in HSD17B4-overexpressing HepG2 cells. In an in vivo model, γ-T3 effectively reduced the growth of HepG2 xenograft tumors.

Conclusion: In conclusion, our study demonstrates that γ-T3 exhibits potent anti-proliferative and anti-tumor effects against HepG2 cells overexpressing HSD17B4. These findings highlight the therapeutic potential of γ-T3 in HCC treatment and suggest its role in targeting HSD17B4-associated pathways to inhibit tumor growth and enhance apoptosis.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Samant, H.; Amiri, H.S.; Zibari, G.B. Addressing the worldwide hepatocellular carcinoma: epidemiology, prevention and management. J. Gastrointest. Oncol., 2021, 12(S2)(Suppl. 2), S361-S373.
[http://dx.doi.org/10.21037/jgo.2020.02.08] [PMID: 34422400]
[3]
Villanueva, A.; Minguez, B.; Forner, A.; Reig, M.; Llovet, J.M. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu. Rev. Med., 2010, 61(1), 317-328.
[http://dx.doi.org/10.1146/annurev.med.080608.100623] [PMID: 20059340]
[4]
Bahardoust, M.; Sarveazad, A.; Agah, S.; Babahajian, A.; Amini, N. Predictors of 5 year survival rate in hepatocellular carcinoma patients. J. Res. Med. Sci., 2019, 24(1), 86.
[http://dx.doi.org/10.4103/jrms.JRMS_1017_18] [PMID: 31741658]
[5]
Sun, H.; Yang, H.; Mao, Y. Personalized treatment for hepatocellular carcinoma in the era of targeted medicine and bioengineering. Front. Pharmacol., 2023, 14, 1150151.
[http://dx.doi.org/10.3389/fphar.2023.1150151] [PMID: 37214451]
[6]
Patel, N.; Yopp, A.C.; Singal, A.G. Diagnostic delays are common among patients with hepatocellular carcinoma. J. Natl. Compr. Canc. Netw., 2015, 13(5), 543-549.
[http://dx.doi.org/10.6004/jnccn.2015.0074] [PMID: 25964640]
[7]
Abboud, Y.; Ismail, M.; Khan, H.; Medina-Morales, E.; Alsakarneh, S.; Jaber, F.; Pyrsopoulos, N.T. Hepatocellular carcinoma incidence and mortality in the usa by sex, age, and race: A nationwide analysis of two decades. J. Clin. Transl. Hepatol., 2024, 000(000), 000.
[http://dx.doi.org/10.14218/JCTH.2023.00356] [PMID: 38343612]
[8]
Singal, A.G.; Pillai, A.; Tiro, J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med., 2014, 11(4), e1001624.
[http://dx.doi.org/10.1371/journal.pmed.1001624] [PMID: 24691105]
[9]
Belghiti, J.; Fuks, D. Liver resection and transplantation in hepatocellular carcinoma. Liver Cancer, 2012, 1(2), 71-82.
[http://dx.doi.org/10.1159/000342403] [PMID: 24159575]
[10]
Shahidi, F.; De Camargo, A. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. Int. J. Mol. Sci., 2016, 17(10), 1745.
[http://dx.doi.org/10.3390/ijms17101745] [PMID: 27775605]
[11]
Traber, M.G.; Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med., 2007, 43(1), 4-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.024] [PMID: 17561088]
[12]
Azzi, A. Many tocopherols, one vitamin E. Mol. Aspects Med., 2018, 61, 92-103.
[http://dx.doi.org/10.1016/j.mam.2017.06.004] [PMID: 28624327]
[13]
Kunnumakkara, A.B.; Sung, B.; Ravindran, J.; Diagaradjane, P.; Deorukhkar, A.; Dey, S.; Koca, C.; Yadav, V.R.; Tong, Z.; Gelovani, J.G.; Guha, S.; Krishnan, S.; Aggarwal, B.B. γ-tocotrienol inhibits pancreatic tumors and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment. Cancer Res., 2010, 70(21), 8695-8705.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2318] [PMID: 20864511]
[14]
Wong, W.Y.; Ward, L.C.; Fong, C.W.; Yap, W.N.; Brown, L. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. Eur. J. Nutr., 2017, 56(1), 133-150.
[http://dx.doi.org/10.1007/s00394-015-1064-1]
[15]
Muid, S.; Froemming, G.R.A.; Rahman, T.; Ali, A.M.; Nawawi, H.M. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells. Food Nutr. Res., 2016, 60(1), 31526.
[http://dx.doi.org/10.3402/fnr.v60.31526] [PMID: 27396399]
[16]
Pang, K.L.; Foong, L.C.; Abd Ghafar, N.; Soelaiman, I.N.; Law, J.X.; Leong, L.M.; Chin, K.Y. Transcriptomic analysis of the anticancer effects of annatto tocotrienol, delta-tocotrienol and gamma-tocotrienol on chondrosarcoma cells. Nutrients, 2022, 14(20), 4277.
[http://dx.doi.org/10.3390/nu14204277] [PMID: 36296960]
[17]
Abdul Rahman Sazli, F.; Jubri, Z.; Abdul Rahman, M.; Karsani, S.A.; Md Top, A.G.; Wan Ngah, W.Z. Gamma-tocotrienol treatment increased peroxiredoxin-4 expression in HepG2 liver cancer cell line. BMC Complement. Altern. Med., 2015, 15(1), 64.
[http://dx.doi.org/10.1186/s12906-015-0590-y] [PMID: 25886747]
[18]
Rajendran, P.; Li, F.; Manu, K.A.; Shanmugam, M.K.; Loo, S.Y.; Kumar, A.P.; Sethi, G. γ-Tocotrienol is a novel inhibitor of constitutive and inducible STAT3 signalling pathway in human hepatocellular carcinoma: potential role as an antiproliferative, pro-apoptotic and chemosensitizing agent. Br. J. Pharmacol., 2011, 163(2), 283-298.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01187.x] [PMID: 21198544]
[19]
Siveen, K.S.; Ahn, K.S.; Ong, T.H.; Shanmugam, M.K.; Li, F.; Yap, W.N.; Kumar, A.P.; Fong, C.W.; Tergaonkar, V.; Hui, K.M.; Sethi, G. γ-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget, 2014, 5(7), 1897-1911.
[http://dx.doi.org/10.18632/oncotarget.1876] [PMID: 24722367]
[20]
Sailo, B.L.; Banik, K.; Padmavathi, G.; Javadi, M.; Bordoloi, D.; Kunnumakkara, A.B. Tocotrienols: The promising analogues of vitamin E for cancer therapeutics. Pharmacol. Res., 2018, 130, 259-272.
[http://dx.doi.org/10.1016/j.phrs.2018.02.017] [PMID: 29496592]
[21]
Sakai, M.; Okabe, M.; Tachibana, H.; Yamada, K. Apoptosis induction by γ-tocotrienol in human hepatoma Hep3B cells. J. Nutr. Biochem., 2006, 17(10), 672-676.
[http://dx.doi.org/10.1016/j.jnutbio.2005.11.001] [PMID: 16517139]
[22]
Burdeos, G.C.; Ito, J.; Eitsuka, T.; Nakagawa, K.; Kimura, F.; Miyazawa, T. δ and γ tocotrienols suppress human hepatocellular carcinoma cell proliferation via regulation of Ras-Raf-MEK-ERK pathway-associated upstream signaling. Food Funct., 2016, 7(10), 4170-4174.
[http://dx.doi.org/10.1039/C6FO00826G] [PMID: 27713963]
[23]
Smy, L.; Straseski, J.A. Measuring estrogens in women, men, and children: Recent advances 2012–2017. Clin. Biochem., 2018, 62, 11-23.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.05.014] [PMID: 29800559]
[24]
Asokan Shibu, M.; Kuo, W.W.; Kuo, C.H.; Day, C.H.; Shen, C.Y.; Chung, L.C.; Lai, C.H.; Pan, L.F.; Vijaya Padma, V.; Huang, C.Y. Potential phytoestrogen alternatives exert cardio-protective mechanisms via estrogen receptors. Biomedicine, 2017, 7(2), 11.
[http://dx.doi.org/10.1051/bmdcn/2017070204] [PMID: 28612709]
[25]
Raghava, N.; Das, B.C.; Ray, S.K. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. Neurosci. Neuroecon., 2017, 6, 15-29.
[http://dx.doi.org/10.2147/NAN.S105134] [PMID: 28845391]
[26]
Caron, P.; Audet-Walsh, E.; Lépine, J.; Bélanger, A.; Guillemette, C. Profiling endogenous serum estrogen and estrogen-glucuronides by liquid chromatography-tandem mass spectrometry. Anal. Chem., 2009, 81(24), 10143-10148.
[http://dx.doi.org/10.1021/ac9019126] [PMID: 19916521]
[27]
Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev., 2007, 28(5), 521-574.
[http://dx.doi.org/10.1210/er.2007-0001] [PMID: 17640948]
[28]
Iavarone, M.; Lampertico, P.; Seletti, C.; Francesca Donato, M.; Ronchi, G.; Del Ninno, E.; Colombo, M. The clinical and pathogenetic significance of estrogen receptor-β expression in chronic liver diseases and liver carcinoma. Cancer, 2003, 98(3), 529-534.
[http://dx.doi.org/10.1002/cncr.11528] [PMID: 12879470]
[29]
Brady, C.W. Liver disease in menopause. World J. Gastroenterol., 2015, 21(25), 7613-7620.
[http://dx.doi.org/10.3748/wjg.v21.i25.7613] [PMID: 26167064]
[30]
Wang, J.; Green, P.S.; Simpkins, J.W. Estradiol protects against ATP depletion, mitochondrial membrane potential decline and the generation of reactive oxygen species induced by 3-nitroproprionic acid in SK-N-SH human neuroblastoma cells. J. Neurochem., 2001, 77(3), 804-811.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00271.x] [PMID: 11331409]
[31]
Song, S.; Wu, S.; Wang, Y.; Wang, Z.; Ye, C.; Song, R.; Song, D.; Ruan, Y. 17β-estradiol inhibits human umbilical vascular endothelial cell senescence by regulating autophagy via p53. Exp. Gerontol., 2018, 114, 57-66.
[http://dx.doi.org/10.1016/j.exger.2018.10.021] [PMID: 30399406]
[32]
Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol., 2015, 294(2), 63-69.
[http://dx.doi.org/10.1016/j.cellimm.2015.01.018] [PMID: 25682174]
[33]
Tian, G-X.; Sun, Y.; Pang, C-J.; Tan, A-H.; Gao, Y.; Zhang, H-Y.; Yang, X-B.; Li, Z-X.; Mo, Z-N. Oestradiol is a protective factor for non-alcoholic fatty liver disease in healthy men. Obes. Rev., 2012, 13(4), 381-387.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00978.x] [PMID: 22239319]
[34]
Tanaka, K.; Sakai, H.; Hashizume, M.; Hirohata, T. Serum testosterone:estradiol ratio and the development of hepatocellular carcinoma among male cirrhotic patients. Cancer Res., 2000, 60(18), 5106-5110.
[PMID: 11016636]
[35]
Yang, W.; Lu, Y.; Xu, Y.; Xu, L.; Zheng, W.; Wu, Y.; Li, L.; Shen, P. Estrogen represses hepatocellular carcinoma (HCC) growth via inhibiting alternative activation of tumor-associated macrophages (TAMs). J. Biol. Chem., 2012, 287(48), 40140-40149.
[http://dx.doi.org/10.1074/jbc.M112.348763] [PMID: 22908233]
[36]
Xu, H.; Wei, Y.; Zhang, Y.; Xu, Y.; Li, F.; Liu, J.; Zhang, W.; Han, X.; Tan, R.; Shen, P. Oestrogen attenuates tumour progression in hepatocellular carcinoma. J. Pathol., 2012, 228(2), 216-229.
[http://dx.doi.org/10.1002/path.4009] [PMID: 22374713]
[37]
Shimizu, I.; Yasuda, M.; Mizobuchi, Y.; Ma, Y-R.; Liu, F.; Shiba, M.; Horie, T.; Ito, S. Suppressive effect of oestradiol on chemical hepatocarcinogenesis in rats. Gut, 1998, 42(1), 112-119.
[http://dx.doi.org/10.1136/gut.42.1.112] [PMID: 9505896]
[38]
Shimizu, I.; Kohno, N.; Tamaki, K.; Shono, M.; Huang, H.W.; He, J.H.; Yao, D.F. Female hepatology: Favorable role of estrogen in chronic liver disease with hepatitis B virus infection. World J. Gastroenterol., 2007, 13(32), 4295-4305.
[http://dx.doi.org/10.3748/wjg.v13.i32.4295] [PMID: 17708600]
[39]
Rogers, A.B.; Theve, E.J.; Feng, Y.; Fry, R.C.; Taghizadeh, K.; Clapp, K.M.; Boussahmain, C.; Cormier, K.S.; Fox, J.G. Hepatocellular carcinoma associated with liver-gender disruption in male mice. Cancer Res., 2007, 67(24), 11536-11546.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1479] [PMID: 18089782]
[40]
Naugler, W.E.; Sakurai, T.; Kim, S.; Maeda, S.; Kim, K.; Elsharkawy, A.M.; Karin, M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science, 2007, 317(5834), 121-124.
[http://dx.doi.org/10.1126/science.1140485] [PMID: 17615358]
[41]
de Launoit, Y.; Adamski, J. Unique multifunctional HSD17B4 gene product: 17beta-hydroxysteroid dehydrogenase 4 and D-3-hydroxyacyl-coenzyme A dehydrogenase/hydratase involved in Zellweger syndrome. J. Mol. Endocrinol., 1999, 22(3), 227-240.
[http://dx.doi.org/10.1677/jme.0.0220227] [PMID: 10343282]
[42]
Lu, X.; Kong, L.; Wang, X.; Liu, W.; Ma, P.; Jiang, L. 17β-hydroxysteroid dehydrogenase-4 induces liver cancer proliferation-associated genes via STAT3 activation. Oncol. Rep., 2019, 41(3), 2009-2019.
[http://dx.doi.org/10.3892/or.2019.6981] [PMID: 30747222]
[43]
Zhang, N.; Wang, Y-Q.; Sun, C.; Shi, Y.; Hou, L.G.; Yao, M.; Hu, M.; Wang, X.M.; Ma, P.P.; Li, W.J.; Jiang, L.L. High expression of peroxisomal D-bifunctional protein in cytosol regulates apoptosis and energy metabolism of hepatocellular carcinoma cells via PI3K/AKT pathway. Am. J. Cancer Res., 2023, 13(5), 1884-1903.
[PMID: 37293151]
[44]
Lu, X.; Ma, P.; Kong, L.; Wang, X.; Wang, Y.; Jiang, L. Vitamin K2 inhibits hepatocellular carcinoma cell proliferation by binding to 17β-hydroxysteroid dehydrogenase 4. Front. Oncol., 2021, 11, 757603.
[http://dx.doi.org/10.3389/fonc.2021.757603]
[45]
Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. γ-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules. Br. J. Cancer, 2016, 115(7), 814-824.
[http://dx.doi.org/10.1038/bjc.2016.257] [PMID: 27575851]
[46]
Yap, W.N.; Zaiden, N.; Luk, S.Y.; Lee, D.T.W.; Ling, M.T.; Wong, Y.C.; Yap, Y.L. In vivo evidence of γ-tocotrienol as a chemosensitizer in the treatment of hormone-refractory prostate cancer. Pharmacology, 2010, 85(4), 248-258.
[http://dx.doi.org/10.1159/000278205] [PMID: 20375535]
[47]
Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc., 2008, 3(6), 1101-1108.
[http://dx.doi.org/10.1038/nprot.2008.73] [PMID: 18546601]
[48]
Zaiden, N.; Yap, W.N.; Ong, S.; Xu, C.H.; Teo, V.H.; Chang, C.P.; Zhang, X.W.; Nesaretnam, K.; Shiba, S.; Yap, Y.L. Gamma delta tocotrienols reduce hepatic triglyceride synthesis and VLDL secretion. J. Atheroscler. Thromb., 2010, 17(10), 1019-1032.
[http://dx.doi.org/10.5551/jat.4911] [PMID: 20702976]
[49]
Liu, M.H.; Lin, X.L.; Li, J.; He, J.; Tan, T.P.; Wu, S.J.; Yu, S.; Chen, L.; Liu, J.; Tian, W.; Chen, Y.D.; Fu, H.Y.; Yuan, C.; Zhang, Y. Resveratrol induces apoptosis through modulation of the Akt/FoxO3a/Bim pathway in HepG2 cells. Mol. Med. Rep., 2016, 13(2), 1689-1694.
[http://dx.doi.org/10.3892/mmr.2015.4695] [PMID: 26709007]
[50]
Dawson, P.A. Bile acid metabolism. Biochemistry of Lipids. In: Lipoproteins and Membranes; Elsevier, 2016; pp. 359-389.
[51]
Breitling, R.; Marijanović, Z.; Perović, D.; Adamski, J. Evolution of 17β-HSD type 4, a multifunctional protein of β-oxidation. Mol. Cell. Endocrinol., 2001, 171(1-2), 205-210.
[http://dx.doi.org/10.1016/S0303-7207(00)00415-9] [PMID: 11165031]
[52]
Lathe, R.; Kotelevtsev, Y. Steroid signaling: Ligand-binding promiscuity, molecular symmetry, and the need for gating. Steroids, 2014, 82, 14-22.
[http://dx.doi.org/10.1016/j.steroids.2014.01.002] [PMID: 24462647]
[53]
Hiltunen, J.K.; Kastaniotis, A.J.; Autio, K.J.; Jiang, G.; Chen, Z.; Glumoff, T. 17B-hydroxysteroid dehydrogenases as acyl thioester metabolizing enzymes. Mol. Cell. Endocrinol., 2019, 489, 107-118.
[http://dx.doi.org/10.1016/j.mce.2018.11.012] [PMID: 30508570]
[54]
Rasiah, K.K.; Gardiner-Garden, M.; Padilla, E.J.D.; Möller, G.; Kench, J.G.; Alles, M.C.; Eggleton, S.A.; Stricker, P.D.; Adamski, J.; Sutherland, R.L.; Henshall, S.M.; Hayes, V.M. HSD17B4 overexpression, an independent biomarker of poor patient outcome in prostate cancer. Mol. Cell. Endocrinol., 2009, 301(1-2), 89-96.
[http://dx.doi.org/10.1016/j.mce.2008.11.021] [PMID: 19100308]
[55]
Ding, G.; Liu, S.; Ding, Q.; Feng, C. Overexpression of HSD17B4 exerts tumor suppressive function in adrenocortical carcinoma and is not associated with hormone excess. Oncotarget, 2017, 8(70), 114736-114745.
[http://dx.doi.org/10.18632/oncotarget.22827] [PMID: 29383116]
[56]
Hilborn, E.; Stål, O.; Jansson, A. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget, 2017, 8(18), 30552-30562.
[http://dx.doi.org/10.18632/oncotarget.15547] [PMID: 28430630]
[57]
Lu, X.; Ma, P.; Shi, Y.; Yao, M.; Hou, L.; Zhang, P.; Jiang, L. NF-κB increased expression of 17β-hydroxysteroid dehydrogenase 4 promotes HepG2 proliferation via inactivating estradiol. Mol. Cell. Endocrinol., 2015, 401, 1-11.
[http://dx.doi.org/10.1016/j.mce.2014.11.016]
[58]
Sakai, M.; Okabe, M.; Yamasaki, M.; Tachibana, H.; Yamada, K. Induction of apoptosis by tocotrienol in rat hepatoma dRLh-84 cells. Anticancer Res., 2004, 24(3a), 1683-1688.
[PMID: 15274341]
[59]
Hiura, Y.; Tachibana, H.; Arakawa, R.; Aoyama, N.; Okabe, M.; Sakai, M.; Yamada, K. Specific accumulation of γ- and δ-tocotrienols in tumor and their antitumor effect in vivo. J. Nutr. Biochem., 2009, 20(8), 607-613.
[http://dx.doi.org/10.1016/j.jnutbio.2008.06.004] [PMID: 18824342]
[60]
Patacsil, D.; Tran, A.T.; Cho, Y.S.; Suy, S.; Saenz, F.; Malyukova, I.; Ressom, H.; Collins, S.P.; Clarke, R.; Kumar, D. Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J. Nutr. Biochem., 2012, 23(1), 93-100.
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.012] [PMID: 21429729]
[61]
Aggarwal, V.; Kashyap, D.; Sak, K.; Tuli, H.; Jain, A.; Chaudhary, A.; Garg, V.; Sethi, G.; Yerer, M. Molecular mechanisms of action of tocotrienols in cancer: Recent trends and advancements. Int. J. Mol. Sci., 2019, 20(3), 656.
[http://dx.doi.org/10.3390/ijms20030656] [PMID: 30717416]
[62]
Subramaniam, S.; Anandha Rao, J.S.; Ramdas, P.; Ng, M.H.; Kannan Kutty, M.; Selvaduray, K.R.; Radhakrishnan, A.K. Reduced infiltration of regulatory T cells in tumours from mice fed daily with gamma-tocotrienol supplementation. Clin. Exp. Immunol., 2021, 206(2), 161-172.
[http://dx.doi.org/10.1111/cei.13650] [PMID: 34331768]
[63]
Subramaniam, S.; Radhakrishnan, A.K.; Rao, J.S.A. Palm gamma-tocotrienol supplementation suppress tumour growth and metastasis in a syngeneic mouse model of breast cancer. J. Oil Palm Res., 2022, 34(2), 368-379.
[64]
De Silva, L.; Chuah, L.H.; Meganathan, P.; Fu, J.Y. Tocotrienol and cancer metastasis. Biofactors, 2016, 42(2), 149-162.
[http://dx.doi.org/10.1002/biof.1259] [PMID: 26948691]
[65]
Lee, S.A.; Lee, J.; Kim, K.; Moon, H.; Min, C.; Moon, B.; Kim, D.; Yang, S.; Park, H.; Lee, G.; Park, R.; Park, D. The peroxisomal localization of Hsd17b4 is regulated by its interaction with phosphatidylserine. Mol. Cells, 2021, 44(4), 214-222.
[http://dx.doi.org/10.14348/molcells.2021.2217] [PMID: 33935042]
[66]
Otsuka, M.; Kato, N.; Ichimura, T.; Abe, S.; Tanaka, Y.; Taniguchi, H.; Hoshida, Y.; Moriyama, M.; Wang, Y.; Shao, R.X.; Narayan, D.; Muroyama, R.; Kanai, F.; Kawabe, T.; Isobe, T.; Omata, M. Vitamin K2 binds 17β-hydroxysteroid dehydrogenase 4 and modulates estrogen metabolism. Life Sci., 2005, 76(21), 2473-2482.
[http://dx.doi.org/10.1016/j.lfs.2004.12.020] [PMID: 15763078]
[67]
Wu, S.J.; Huang, G.Y.; Ng, L.T. γ-Tocotrienol induced cell cycle arrest and apoptosis via activating the Bax-mediated mitochondrial and AMPK signaling pathways in 3T3-L1 adipocytes. Food Chem. Toxicol., 2013, 59, 501-513.
[http://dx.doi.org/10.1016/j.fct.2013.06.011] [PMID: 23816832]
[68]
Shah, S.J.; Sylvester, P.W. γ-tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor kappaB activity. Exp. Biol. Med. (Maywood), 2005, 230(4), 235-241.
[http://dx.doi.org/10.1177/153537020523000402] [PMID: 15792944]
[69]
Samant, G.V.; Sylvester, P.W. γ-Tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells. Cell Prolif., 2006, 39(6), 563-574.
[http://dx.doi.org/10.1111/j.1365-2184.2006.00412.x] [PMID: 17109639]
[70]
Shin-Kang, S.; Ramsauer, V.P.; Lightner, J.; Chakraborty, K.; Stone, W.; Campbell, S.; Reddy, S.A.G.; Krishnan, K. Tocotrienols inhibit AKT and ERK activation and suppress pancreatic cancer cell proliferation by suppressing the ErbB2 pathway. Free Radic. Biol. Med., 2011, 51(6), 1164-1174.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.008] [PMID: 21723941]
[71]
Manu, K.A.; Shanmugam, M.K.; Ramachandran, L.; Li, F.; Fong, C.W.; Kumar, A.P.; Tan, P.; Sethi, G. First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway. Clin. Cancer Res., 2012, 18(8), 2220-2229.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2470] [PMID: 22351692]
[72]
Tang, K.; Liu, J.; Russell, P.; Clements, J.; Ling, M.T. Gamma-tocotrienol induces apoptosis in prostate cancer cells by targeting the Ang-1/Tie-2 signalling pathway. Int. J. Mol. Sci., 2019, 20(5), 1164.
[http://dx.doi.org/10.3390/ijms20051164] [PMID: 30866453]
[73]
Algayadh, I.G.; Dronamraju, V.; Sylvester, P.W. Role of Rac1/WAVE2 signaling in mediating the inhibitory effects of γ-tocotrienol on mammary cancer cell migration and invasion. Biol. Pharm. Bull., 2016, 39(12), 1974-1982.
[http://dx.doi.org/10.1248/bpb.b16-00461] [PMID: 27904039]
[74]
Zhang, Y.; Ma, K.; Liu, J.; Wang, H.; Tian, W.; Tu, Y.; Sun, W. γ-tocotrienol inhibits the invasion and migration of human gastric cancer cells through downregulation of cyclooxygenase-2 expression. Oncol. Rep., 2018, 40(2), 999-1007.
[http://dx.doi.org/10.3892/or.2018.6497] [PMID: 29901169]
[75]
Yap, W.N.; Chang, P.N.; Han, H.Y.; Lee, D.T.W.; Ling, M.T.; Wong, Y.C.; Yap, Y.L. γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. Br. J. Cancer, 2008, 99(11), 1832-1841.
[http://dx.doi.org/10.1038/sj.bjc.6604763] [PMID: 19002171]

© 2025 Bentham Science Publishers | Privacy Policy