Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Introduction: Hydroxysteroid 17-beta dehydrogenase 4 (HSD17B4) is involved in the progression of hepatocellular carcinoma (HCC).
Aims: This study aimed to investigate the inhibitory effect of gamma-tocotrienol (γ-T3) on the proliferation and growth of HSD17B4-overexpressing HepG2 cells. Methods: HepG2 cells were transfected with empty or HSD17B4-overexpressing plasmids, followed by vitamin E (VE) or γ-T3 treatment. MTS assay, Western blotting, qRT-PCR, and flow cytometry were employed to assess cell proliferation, protein expression, mRNA levels, and apoptosis. HSD17B4 interaction with γ-T3 was assessed by quantifying γ-T3 in the collected precipitate of HSD17B4 using anti-flag magnetic beads. Tumor xenografts were established in NSG mice, and tumor growth was monitored. Results: HSD17B4 overexpression significantly promoted HepG2 cell proliferation, which was effectively counteracted by VE or γ-T3 treatment in a dose-dependent manner. VE and γ-T3 did not exert their effects through direct regulation of HSD17B4 expression. Instead, γ-T3 was found to interact with HSD17B4, inhibiting its activity in catalyzing the conversion of estradiol (E2) into estrone. Moreover, γ-T3 treatment led to a reduction in cyclin D1 expression and suppressed key proliferation signaling pathways, such as ERK, MEK, AKT, and STAT3. Additionally, γ-T3 promoted apoptosis in HSD17B4-overexpressing HepG2 cells. In an in vivo model, γ-T3 effectively reduced the growth of HepG2 xenograft tumors. Conclusion: In conclusion, our study demonstrates that γ-T3 exhibits potent anti-proliferative and anti-tumor effects against HepG2 cells overexpressing HSD17B4. These findings highlight the therapeutic potential of γ-T3 in HCC treatment and suggest its role in targeting HSD17B4-associated pathways to inhibit tumor growth and enhance apoptosis.[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Samant, H.; Amiri, H.S.; Zibari, G.B. Addressing the worldwide hepatocellular carcinoma: epidemiology, prevention and management. J. Gastrointest. Oncol., 2021, 12(S2)(Suppl. 2), S361-S373.
[http://dx.doi.org/10.21037/jgo.2020.02.08] [PMID: 34422400]
[http://dx.doi.org/10.21037/jgo.2020.02.08] [PMID: 34422400]
[3]
Villanueva, A.; Minguez, B.; Forner, A.; Reig, M.; Llovet, J.M. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu. Rev. Med., 2010, 61(1), 317-328.
[http://dx.doi.org/10.1146/annurev.med.080608.100623] [PMID: 20059340]
[http://dx.doi.org/10.1146/annurev.med.080608.100623] [PMID: 20059340]
[4]
Bahardoust, M.; Sarveazad, A.; Agah, S.; Babahajian, A.; Amini, N. Predictors of 5 year survival rate in hepatocellular carcinoma patients. J. Res. Med. Sci., 2019, 24(1), 86.
[http://dx.doi.org/10.4103/jrms.JRMS_1017_18] [PMID: 31741658]
[http://dx.doi.org/10.4103/jrms.JRMS_1017_18] [PMID: 31741658]
[5]
Sun, H.; Yang, H.; Mao, Y. Personalized treatment for hepatocellular carcinoma in the era of targeted medicine and bioengineering. Front. Pharmacol., 2023, 14, 1150151.
[http://dx.doi.org/10.3389/fphar.2023.1150151] [PMID: 37214451]
[http://dx.doi.org/10.3389/fphar.2023.1150151] [PMID: 37214451]
[6]
Patel, N.; Yopp, A.C.; Singal, A.G. Diagnostic delays are common among patients with hepatocellular carcinoma. J. Natl. Compr. Canc. Netw., 2015, 13(5), 543-549.
[http://dx.doi.org/10.6004/jnccn.2015.0074] [PMID: 25964640]
[http://dx.doi.org/10.6004/jnccn.2015.0074] [PMID: 25964640]
[7]
Abboud, Y.; Ismail, M.; Khan, H.; Medina-Morales, E.; Alsakarneh, S.; Jaber, F.; Pyrsopoulos, N.T. Hepatocellular carcinoma incidence and mortality in the usa by sex, age, and race: A nationwide analysis of two decades. J. Clin. Transl. Hepatol., 2024, 000(000), 000.
[http://dx.doi.org/10.14218/JCTH.2023.00356] [PMID: 38343612]
[http://dx.doi.org/10.14218/JCTH.2023.00356] [PMID: 38343612]
[8]
Singal, A.G.; Pillai, A.; Tiro, J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med., 2014, 11(4), e1001624.
[http://dx.doi.org/10.1371/journal.pmed.1001624] [PMID: 24691105]
[http://dx.doi.org/10.1371/journal.pmed.1001624] [PMID: 24691105]
[9]
Belghiti, J.; Fuks, D. Liver resection and transplantation in hepatocellular carcinoma. Liver Cancer, 2012, 1(2), 71-82.
[http://dx.doi.org/10.1159/000342403] [PMID: 24159575]
[http://dx.doi.org/10.1159/000342403] [PMID: 24159575]
[10]
Shahidi, F.; De Camargo, A. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. Int. J. Mol. Sci., 2016, 17(10), 1745.
[http://dx.doi.org/10.3390/ijms17101745] [PMID: 27775605]
[http://dx.doi.org/10.3390/ijms17101745] [PMID: 27775605]
[11]
Traber, M.G.; Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med., 2007, 43(1), 4-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.024] [PMID: 17561088]
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.024] [PMID: 17561088]
[12]
Azzi, A. Many tocopherols, one vitamin E. Mol. Aspects Med., 2018, 61, 92-103.
[http://dx.doi.org/10.1016/j.mam.2017.06.004] [PMID: 28624327]
[http://dx.doi.org/10.1016/j.mam.2017.06.004] [PMID: 28624327]
[13]
Kunnumakkara, A.B.; Sung, B.; Ravindran, J.; Diagaradjane, P.; Deorukhkar, A.; Dey, S.; Koca, C.; Yadav, V.R.; Tong, Z.; Gelovani, J.G.; Guha, S.; Krishnan, S.; Aggarwal, B.B. γ-tocotrienol inhibits pancreatic tumors and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment. Cancer Res., 2010, 70(21), 8695-8705.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2318] [PMID: 20864511]
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2318] [PMID: 20864511]
[14]
Wong, W.Y.; Ward, L.C.; Fong, C.W.; Yap, W.N.; Brown, L. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. Eur. J. Nutr., 2017, 56(1), 133-150.
[http://dx.doi.org/10.1007/s00394-015-1064-1]
[http://dx.doi.org/10.1007/s00394-015-1064-1]
[15]
Muid, S.; Froemming, G.R.A.; Rahman, T.; Ali, A.M.; Nawawi, H.M. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells. Food Nutr. Res., 2016, 60(1), 31526.
[http://dx.doi.org/10.3402/fnr.v60.31526] [PMID: 27396399]
[http://dx.doi.org/10.3402/fnr.v60.31526] [PMID: 27396399]
[16]
Pang, K.L.; Foong, L.C.; Abd Ghafar, N.; Soelaiman, I.N.; Law, J.X.; Leong, L.M.; Chin, K.Y. Transcriptomic analysis of the anticancer effects of annatto tocotrienol, delta-tocotrienol and gamma-tocotrienol on chondrosarcoma cells. Nutrients, 2022, 14(20), 4277.
[http://dx.doi.org/10.3390/nu14204277] [PMID: 36296960]
[http://dx.doi.org/10.3390/nu14204277] [PMID: 36296960]
[17]
Abdul Rahman Sazli, F.; Jubri, Z.; Abdul Rahman, M.; Karsani, S.A.; Md Top, A.G.; Wan Ngah, W.Z. Gamma-tocotrienol treatment increased peroxiredoxin-4 expression in HepG2 liver cancer cell line. BMC Complement. Altern. Med., 2015, 15(1), 64.
[http://dx.doi.org/10.1186/s12906-015-0590-y] [PMID: 25886747]
[http://dx.doi.org/10.1186/s12906-015-0590-y] [PMID: 25886747]
[18]
Rajendran, P.; Li, F.; Manu, K.A.; Shanmugam, M.K.; Loo, S.Y.; Kumar, A.P.; Sethi, G. γ-Tocotrienol is a novel inhibitor of constitutive and inducible STAT3 signalling pathway in human hepatocellular carcinoma: potential role as an antiproliferative, pro-apoptotic and chemosensitizing agent. Br. J. Pharmacol., 2011, 163(2), 283-298.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01187.x] [PMID: 21198544]
[http://dx.doi.org/10.1111/j.1476-5381.2010.01187.x] [PMID: 21198544]
[19]
Siveen, K.S.; Ahn, K.S.; Ong, T.H.; Shanmugam, M.K.; Li, F.; Yap, W.N.; Kumar, A.P.; Fong, C.W.; Tergaonkar, V.; Hui, K.M.; Sethi, G. γ-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget, 2014, 5(7), 1897-1911.
[http://dx.doi.org/10.18632/oncotarget.1876] [PMID: 24722367]
[http://dx.doi.org/10.18632/oncotarget.1876] [PMID: 24722367]
[20]
Sailo, B.L.; Banik, K.; Padmavathi, G.; Javadi, M.; Bordoloi, D.; Kunnumakkara, A.B. Tocotrienols: The promising analogues of vitamin E for cancer therapeutics. Pharmacol. Res., 2018, 130, 259-272.
[http://dx.doi.org/10.1016/j.phrs.2018.02.017] [PMID: 29496592]
[http://dx.doi.org/10.1016/j.phrs.2018.02.017] [PMID: 29496592]
[21]
Sakai, M.; Okabe, M.; Tachibana, H.; Yamada, K. Apoptosis induction by γ-tocotrienol in human hepatoma Hep3B cells. J. Nutr. Biochem., 2006, 17(10), 672-676.
[http://dx.doi.org/10.1016/j.jnutbio.2005.11.001] [PMID: 16517139]
[http://dx.doi.org/10.1016/j.jnutbio.2005.11.001] [PMID: 16517139]
[22]
Burdeos, G.C.; Ito, J.; Eitsuka, T.; Nakagawa, K.; Kimura, F.; Miyazawa, T. δ and γ tocotrienols suppress human hepatocellular carcinoma cell proliferation via regulation of Ras-Raf-MEK-ERK pathway-associated upstream signaling. Food Funct., 2016, 7(10), 4170-4174.
[http://dx.doi.org/10.1039/C6FO00826G] [PMID: 27713963]
[http://dx.doi.org/10.1039/C6FO00826G] [PMID: 27713963]
[23]
Smy, L.; Straseski, J.A. Measuring estrogens in women, men, and children: Recent advances 2012–2017. Clin. Biochem., 2018, 62, 11-23.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.05.014] [PMID: 29800559]
[http://dx.doi.org/10.1016/j.clinbiochem.2018.05.014] [PMID: 29800559]
[24]
Asokan Shibu, M.; Kuo, W.W.; Kuo, C.H.; Day, C.H.; Shen, C.Y.; Chung, L.C.; Lai, C.H.; Pan, L.F.; Vijaya Padma, V.; Huang, C.Y. Potential phytoestrogen alternatives exert cardio-protective mechanisms via estrogen receptors. Biomedicine, 2017, 7(2), 11.
[http://dx.doi.org/10.1051/bmdcn/2017070204] [PMID: 28612709]
[http://dx.doi.org/10.1051/bmdcn/2017070204] [PMID: 28612709]
[25]
Raghava, N.; Das, B.C.; Ray, S.K. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. Neurosci. Neuroecon., 2017, 6, 15-29.
[http://dx.doi.org/10.2147/NAN.S105134] [PMID: 28845391]
[http://dx.doi.org/10.2147/NAN.S105134] [PMID: 28845391]
[26]
Caron, P.; Audet-Walsh, E.; Lépine, J.; Bélanger, A.; Guillemette, C. Profiling endogenous serum estrogen and estrogen-glucuronides by liquid chromatography-tandem mass spectrometry. Anal. Chem., 2009, 81(24), 10143-10148.
[http://dx.doi.org/10.1021/ac9019126] [PMID: 19916521]
[http://dx.doi.org/10.1021/ac9019126] [PMID: 19916521]
[27]
Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev., 2007, 28(5), 521-574.
[http://dx.doi.org/10.1210/er.2007-0001] [PMID: 17640948]
[http://dx.doi.org/10.1210/er.2007-0001] [PMID: 17640948]
[28]
Iavarone, M.; Lampertico, P.; Seletti, C.; Francesca Donato, M.; Ronchi, G.; Del Ninno, E.; Colombo, M. The clinical and pathogenetic significance of estrogen receptor-β expression in chronic liver diseases and liver carcinoma. Cancer, 2003, 98(3), 529-534.
[http://dx.doi.org/10.1002/cncr.11528] [PMID: 12879470]
[http://dx.doi.org/10.1002/cncr.11528] [PMID: 12879470]
[29]
Brady, C.W. Liver disease in menopause. World J. Gastroenterol., 2015, 21(25), 7613-7620.
[http://dx.doi.org/10.3748/wjg.v21.i25.7613] [PMID: 26167064]
[http://dx.doi.org/10.3748/wjg.v21.i25.7613] [PMID: 26167064]
[30]
Wang, J.; Green, P.S.; Simpkins, J.W. Estradiol protects against ATP depletion, mitochondrial membrane potential decline and the generation of reactive oxygen species induced by 3-nitroproprionic acid in SK-N-SH human neuroblastoma cells. J. Neurochem., 2001, 77(3), 804-811.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00271.x] [PMID: 11331409]
[http://dx.doi.org/10.1046/j.1471-4159.2001.00271.x] [PMID: 11331409]
[31]
Song, S.; Wu, S.; Wang, Y.; Wang, Z.; Ye, C.; Song, R.; Song, D.; Ruan, Y. 17β-estradiol inhibits human umbilical vascular endothelial cell senescence by regulating autophagy via p53. Exp. Gerontol., 2018, 114, 57-66.
[http://dx.doi.org/10.1016/j.exger.2018.10.021] [PMID: 30399406]
[http://dx.doi.org/10.1016/j.exger.2018.10.021] [PMID: 30399406]
[32]
Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol., 2015, 294(2), 63-69.
[http://dx.doi.org/10.1016/j.cellimm.2015.01.018] [PMID: 25682174]
[http://dx.doi.org/10.1016/j.cellimm.2015.01.018] [PMID: 25682174]
[33]
Tian, G-X.; Sun, Y.; Pang, C-J.; Tan, A-H.; Gao, Y.; Zhang, H-Y.; Yang, X-B.; Li, Z-X.; Mo, Z-N. Oestradiol is a protective factor for non-alcoholic fatty liver disease in healthy men. Obes. Rev., 2012, 13(4), 381-387.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00978.x] [PMID: 22239319]
[http://dx.doi.org/10.1111/j.1467-789X.2011.00978.x] [PMID: 22239319]
[34]
Tanaka, K.; Sakai, H.; Hashizume, M.; Hirohata, T. Serum testosterone:estradiol ratio and the development of hepatocellular carcinoma among male cirrhotic patients. Cancer Res., 2000, 60(18), 5106-5110.
[PMID: 11016636]
[PMID: 11016636]
[35]
Yang, W.; Lu, Y.; Xu, Y.; Xu, L.; Zheng, W.; Wu, Y.; Li, L.; Shen, P. Estrogen represses hepatocellular carcinoma (HCC) growth via inhibiting alternative activation of tumor-associated macrophages (TAMs). J. Biol. Chem., 2012, 287(48), 40140-40149.
[http://dx.doi.org/10.1074/jbc.M112.348763] [PMID: 22908233]
[http://dx.doi.org/10.1074/jbc.M112.348763] [PMID: 22908233]
[36]
Xu, H.; Wei, Y.; Zhang, Y.; Xu, Y.; Li, F.; Liu, J.; Zhang, W.; Han, X.; Tan, R.; Shen, P. Oestrogen attenuates tumour progression in hepatocellular carcinoma. J. Pathol., 2012, 228(2), 216-229.
[http://dx.doi.org/10.1002/path.4009] [PMID: 22374713]
[http://dx.doi.org/10.1002/path.4009] [PMID: 22374713]
[37]
Shimizu, I.; Yasuda, M.; Mizobuchi, Y.; Ma, Y-R.; Liu, F.; Shiba, M.; Horie, T.; Ito, S. Suppressive effect of oestradiol on chemical hepatocarcinogenesis in rats. Gut, 1998, 42(1), 112-119.
[http://dx.doi.org/10.1136/gut.42.1.112] [PMID: 9505896]
[http://dx.doi.org/10.1136/gut.42.1.112] [PMID: 9505896]
[38]
Shimizu, I.; Kohno, N.; Tamaki, K.; Shono, M.; Huang, H.W.; He, J.H.; Yao, D.F. Female hepatology: Favorable role of estrogen in chronic liver disease with hepatitis B virus infection. World J. Gastroenterol., 2007, 13(32), 4295-4305.
[http://dx.doi.org/10.3748/wjg.v13.i32.4295] [PMID: 17708600]
[http://dx.doi.org/10.3748/wjg.v13.i32.4295] [PMID: 17708600]
[39]
Rogers, A.B.; Theve, E.J.; Feng, Y.; Fry, R.C.; Taghizadeh, K.; Clapp, K.M.; Boussahmain, C.; Cormier, K.S.; Fox, J.G. Hepatocellular carcinoma associated with liver-gender disruption in male mice. Cancer Res., 2007, 67(24), 11536-11546.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1479] [PMID: 18089782]
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1479] [PMID: 18089782]
[40]
Naugler, W.E.; Sakurai, T.; Kim, S.; Maeda, S.; Kim, K.; Elsharkawy, A.M.; Karin, M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science, 2007, 317(5834), 121-124.
[http://dx.doi.org/10.1126/science.1140485] [PMID: 17615358]
[http://dx.doi.org/10.1126/science.1140485] [PMID: 17615358]
[41]
de Launoit, Y.; Adamski, J. Unique multifunctional HSD17B4 gene product: 17beta-hydroxysteroid dehydrogenase 4 and D-3-hydroxyacyl-coenzyme A dehydrogenase/hydratase involved in Zellweger syndrome. J. Mol. Endocrinol., 1999, 22(3), 227-240.
[http://dx.doi.org/10.1677/jme.0.0220227] [PMID: 10343282]
[http://dx.doi.org/10.1677/jme.0.0220227] [PMID: 10343282]
[42]
Lu, X.; Kong, L.; Wang, X.; Liu, W.; Ma, P.; Jiang, L. 17β-hydroxysteroid dehydrogenase-4 induces liver cancer proliferation-associated genes via STAT3 activation. Oncol. Rep., 2019, 41(3), 2009-2019.
[http://dx.doi.org/10.3892/or.2019.6981] [PMID: 30747222]
[http://dx.doi.org/10.3892/or.2019.6981] [PMID: 30747222]
[43]
Zhang, N.; Wang, Y-Q.; Sun, C.; Shi, Y.; Hou, L.G.; Yao, M.; Hu, M.; Wang, X.M.; Ma, P.P.; Li, W.J.; Jiang, L.L. High expression of peroxisomal D-bifunctional protein in cytosol regulates apoptosis and energy metabolism of hepatocellular carcinoma cells via PI3K/AKT pathway. Am. J. Cancer Res., 2023, 13(5), 1884-1903.
[PMID: 37293151]
[PMID: 37293151]
[44]
Lu, X.; Ma, P.; Kong, L.; Wang, X.; Wang, Y.; Jiang, L. Vitamin K2 inhibits hepatocellular carcinoma cell proliferation by binding to 17β-hydroxysteroid dehydrogenase 4. Front. Oncol., 2021, 11, 757603.
[http://dx.doi.org/10.3389/fonc.2021.757603]
[http://dx.doi.org/10.3389/fonc.2021.757603]
[45]
Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. γ-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules. Br. J. Cancer, 2016, 115(7), 814-824.
[http://dx.doi.org/10.1038/bjc.2016.257] [PMID: 27575851]
[http://dx.doi.org/10.1038/bjc.2016.257] [PMID: 27575851]
[46]
Yap, W.N.; Zaiden, N.; Luk, S.Y.; Lee, D.T.W.; Ling, M.T.; Wong, Y.C.; Yap, Y.L. In vivo evidence of γ-tocotrienol as a chemosensitizer in the treatment of hormone-refractory prostate cancer. Pharmacology, 2010, 85(4), 248-258.
[http://dx.doi.org/10.1159/000278205] [PMID: 20375535]
[http://dx.doi.org/10.1159/000278205] [PMID: 20375535]
[47]
Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc., 2008, 3(6), 1101-1108.
[http://dx.doi.org/10.1038/nprot.2008.73] [PMID: 18546601]
[http://dx.doi.org/10.1038/nprot.2008.73] [PMID: 18546601]
[48]
Zaiden, N.; Yap, W.N.; Ong, S.; Xu, C.H.; Teo, V.H.; Chang, C.P.; Zhang, X.W.; Nesaretnam, K.; Shiba, S.; Yap, Y.L. Gamma delta tocotrienols reduce hepatic triglyceride synthesis and VLDL secretion. J. Atheroscler. Thromb., 2010, 17(10), 1019-1032.
[http://dx.doi.org/10.5551/jat.4911] [PMID: 20702976]
[http://dx.doi.org/10.5551/jat.4911] [PMID: 20702976]
[49]
Liu, M.H.; Lin, X.L.; Li, J.; He, J.; Tan, T.P.; Wu, S.J.; Yu, S.; Chen, L.; Liu, J.; Tian, W.; Chen, Y.D.; Fu, H.Y.; Yuan, C.; Zhang, Y. Resveratrol induces apoptosis through modulation of the Akt/FoxO3a/Bim pathway in HepG2 cells. Mol. Med. Rep., 2016, 13(2), 1689-1694.
[http://dx.doi.org/10.3892/mmr.2015.4695] [PMID: 26709007]
[http://dx.doi.org/10.3892/mmr.2015.4695] [PMID: 26709007]
[50]
Dawson, P.A. Bile acid metabolism. Biochemistry of Lipids. In: Lipoproteins and Membranes; Elsevier, 2016; pp. 359-389.
[51]
Breitling, R.; Marijanović, Z.; Perović, D.; Adamski, J. Evolution of 17β-HSD type 4, a multifunctional protein of β-oxidation. Mol. Cell. Endocrinol., 2001, 171(1-2), 205-210.
[http://dx.doi.org/10.1016/S0303-7207(00)00415-9] [PMID: 11165031]
[http://dx.doi.org/10.1016/S0303-7207(00)00415-9] [PMID: 11165031]
[52]
Lathe, R.; Kotelevtsev, Y. Steroid signaling: Ligand-binding promiscuity, molecular symmetry, and the need for gating. Steroids, 2014, 82, 14-22.
[http://dx.doi.org/10.1016/j.steroids.2014.01.002] [PMID: 24462647]
[http://dx.doi.org/10.1016/j.steroids.2014.01.002] [PMID: 24462647]
[53]
Hiltunen, J.K.; Kastaniotis, A.J.; Autio, K.J.; Jiang, G.; Chen, Z.; Glumoff, T. 17B-hydroxysteroid dehydrogenases as acyl thioester metabolizing enzymes. Mol. Cell. Endocrinol., 2019, 489, 107-118.
[http://dx.doi.org/10.1016/j.mce.2018.11.012] [PMID: 30508570]
[http://dx.doi.org/10.1016/j.mce.2018.11.012] [PMID: 30508570]
[54]
Rasiah, K.K.; Gardiner-Garden, M.; Padilla, E.J.D.; Möller, G.; Kench, J.G.; Alles, M.C.; Eggleton, S.A.; Stricker, P.D.; Adamski, J.; Sutherland, R.L.; Henshall, S.M.; Hayes, V.M. HSD17B4 overexpression, an independent biomarker of poor patient outcome in prostate cancer. Mol. Cell. Endocrinol., 2009, 301(1-2), 89-96.
[http://dx.doi.org/10.1016/j.mce.2008.11.021] [PMID: 19100308]
[http://dx.doi.org/10.1016/j.mce.2008.11.021] [PMID: 19100308]
[55]
Ding, G.; Liu, S.; Ding, Q.; Feng, C. Overexpression of HSD17B4 exerts tumor suppressive function in adrenocortical carcinoma and is not associated with hormone excess. Oncotarget, 2017, 8(70), 114736-114745.
[http://dx.doi.org/10.18632/oncotarget.22827] [PMID: 29383116]
[http://dx.doi.org/10.18632/oncotarget.22827] [PMID: 29383116]
[56]
Hilborn, E.; Stål, O.; Jansson, A. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget, 2017, 8(18), 30552-30562.
[http://dx.doi.org/10.18632/oncotarget.15547] [PMID: 28430630]
[http://dx.doi.org/10.18632/oncotarget.15547] [PMID: 28430630]
[57]
Lu, X.; Ma, P.; Shi, Y.; Yao, M.; Hou, L.; Zhang, P.; Jiang, L. NF-κB increased expression of 17β-hydroxysteroid dehydrogenase 4 promotes HepG2 proliferation via inactivating estradiol. Mol. Cell. Endocrinol., 2015, 401, 1-11.
[http://dx.doi.org/10.1016/j.mce.2014.11.016]
[http://dx.doi.org/10.1016/j.mce.2014.11.016]
[58]
Sakai, M.; Okabe, M.; Yamasaki, M.; Tachibana, H.; Yamada, K. Induction of apoptosis by tocotrienol in rat hepatoma dRLh-84 cells. Anticancer Res., 2004, 24(3a), 1683-1688.
[PMID: 15274341]
[PMID: 15274341]
[59]
Hiura, Y.; Tachibana, H.; Arakawa, R.; Aoyama, N.; Okabe, M.; Sakai, M.; Yamada, K. Specific accumulation of γ- and δ-tocotrienols in tumor and their antitumor effect in vivo. J. Nutr. Biochem., 2009, 20(8), 607-613.
[http://dx.doi.org/10.1016/j.jnutbio.2008.06.004] [PMID: 18824342]
[http://dx.doi.org/10.1016/j.jnutbio.2008.06.004] [PMID: 18824342]
[60]
Patacsil, D.; Tran, A.T.; Cho, Y.S.; Suy, S.; Saenz, F.; Malyukova, I.; Ressom, H.; Collins, S.P.; Clarke, R.; Kumar, D. Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J. Nutr. Biochem., 2012, 23(1), 93-100.
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.012] [PMID: 21429729]
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.012] [PMID: 21429729]
[61]
Aggarwal, V.; Kashyap, D.; Sak, K.; Tuli, H.; Jain, A.; Chaudhary, A.; Garg, V.; Sethi, G.; Yerer, M. Molecular mechanisms of action of tocotrienols in cancer: Recent trends and advancements. Int. J. Mol. Sci., 2019, 20(3), 656.
[http://dx.doi.org/10.3390/ijms20030656] [PMID: 30717416]
[http://dx.doi.org/10.3390/ijms20030656] [PMID: 30717416]
[62]
Subramaniam, S.; Anandha Rao, J.S.; Ramdas, P.; Ng, M.H.; Kannan Kutty, M.; Selvaduray, K.R.; Radhakrishnan, A.K. Reduced infiltration of regulatory T cells in tumours from mice fed daily with gamma-tocotrienol supplementation. Clin. Exp. Immunol., 2021, 206(2), 161-172.
[http://dx.doi.org/10.1111/cei.13650] [PMID: 34331768]
[http://dx.doi.org/10.1111/cei.13650] [PMID: 34331768]
[63]
Subramaniam, S.; Radhakrishnan, A.K.; Rao, J.S.A. Palm gamma-tocotrienol supplementation suppress tumour growth and metastasis in a syngeneic mouse model of breast cancer. J. Oil Palm Res., 2022, 34(2), 368-379.
[64]
De Silva, L.; Chuah, L.H.; Meganathan, P.; Fu, J.Y. Tocotrienol and cancer metastasis. Biofactors, 2016, 42(2), 149-162.
[http://dx.doi.org/10.1002/biof.1259] [PMID: 26948691]
[http://dx.doi.org/10.1002/biof.1259] [PMID: 26948691]
[65]
Lee, S.A.; Lee, J.; Kim, K.; Moon, H.; Min, C.; Moon, B.; Kim, D.; Yang, S.; Park, H.; Lee, G.; Park, R.; Park, D. The peroxisomal localization of Hsd17b4 is regulated by its interaction with phosphatidylserine. Mol. Cells, 2021, 44(4), 214-222.
[http://dx.doi.org/10.14348/molcells.2021.2217] [PMID: 33935042]
[http://dx.doi.org/10.14348/molcells.2021.2217] [PMID: 33935042]
[66]
Otsuka, M.; Kato, N.; Ichimura, T.; Abe, S.; Tanaka, Y.; Taniguchi, H.; Hoshida, Y.; Moriyama, M.; Wang, Y.; Shao, R.X.; Narayan, D.; Muroyama, R.; Kanai, F.; Kawabe, T.; Isobe, T.; Omata, M. Vitamin K2 binds 17β-hydroxysteroid dehydrogenase 4 and modulates estrogen metabolism. Life Sci., 2005, 76(21), 2473-2482.
[http://dx.doi.org/10.1016/j.lfs.2004.12.020] [PMID: 15763078]
[http://dx.doi.org/10.1016/j.lfs.2004.12.020] [PMID: 15763078]
[67]
Wu, S.J.; Huang, G.Y.; Ng, L.T. γ-Tocotrienol induced cell cycle arrest and apoptosis via activating the Bax-mediated mitochondrial and AMPK signaling pathways in 3T3-L1 adipocytes. Food Chem. Toxicol., 2013, 59, 501-513.
[http://dx.doi.org/10.1016/j.fct.2013.06.011] [PMID: 23816832]
[http://dx.doi.org/10.1016/j.fct.2013.06.011] [PMID: 23816832]
[68]
Shah, S.J.; Sylvester, P.W. γ-tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor kappaB activity. Exp. Biol. Med. (Maywood), 2005, 230(4), 235-241.
[http://dx.doi.org/10.1177/153537020523000402] [PMID: 15792944]
[http://dx.doi.org/10.1177/153537020523000402] [PMID: 15792944]
[69]
Samant, G.V.; Sylvester, P.W. γ-Tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells. Cell Prolif., 2006, 39(6), 563-574.
[http://dx.doi.org/10.1111/j.1365-2184.2006.00412.x] [PMID: 17109639]
[http://dx.doi.org/10.1111/j.1365-2184.2006.00412.x] [PMID: 17109639]
[70]
Shin-Kang, S.; Ramsauer, V.P.; Lightner, J.; Chakraborty, K.; Stone, W.; Campbell, S.; Reddy, S.A.G.; Krishnan, K. Tocotrienols inhibit AKT and ERK activation and suppress pancreatic cancer cell proliferation by suppressing the ErbB2 pathway. Free Radic. Biol. Med., 2011, 51(6), 1164-1174.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.008] [PMID: 21723941]
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.008] [PMID: 21723941]
[71]
Manu, K.A.; Shanmugam, M.K.; Ramachandran, L.; Li, F.; Fong, C.W.; Kumar, A.P.; Tan, P.; Sethi, G. First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway. Clin. Cancer Res., 2012, 18(8), 2220-2229.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2470] [PMID: 22351692]
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2470] [PMID: 22351692]
[72]
Tang, K.; Liu, J.; Russell, P.; Clements, J.; Ling, M.T. Gamma-tocotrienol induces apoptosis in prostate cancer cells by targeting the Ang-1/Tie-2 signalling pathway. Int. J. Mol. Sci., 2019, 20(5), 1164.
[http://dx.doi.org/10.3390/ijms20051164] [PMID: 30866453]
[http://dx.doi.org/10.3390/ijms20051164] [PMID: 30866453]
[73]
Algayadh, I.G.; Dronamraju, V.; Sylvester, P.W. Role of Rac1/WAVE2 signaling in mediating the inhibitory effects of γ-tocotrienol on mammary cancer cell migration and invasion. Biol. Pharm. Bull., 2016, 39(12), 1974-1982.
[http://dx.doi.org/10.1248/bpb.b16-00461] [PMID: 27904039]
[http://dx.doi.org/10.1248/bpb.b16-00461] [PMID: 27904039]
[74]
Zhang, Y.; Ma, K.; Liu, J.; Wang, H.; Tian, W.; Tu, Y.; Sun, W. γ-tocotrienol inhibits the invasion and migration of human gastric cancer cells through downregulation of cyclooxygenase-2 expression. Oncol. Rep., 2018, 40(2), 999-1007.
[http://dx.doi.org/10.3892/or.2018.6497] [PMID: 29901169]
[http://dx.doi.org/10.3892/or.2018.6497] [PMID: 29901169]
[75]
Yap, W.N.; Chang, P.N.; Han, H.Y.; Lee, D.T.W.; Ling, M.T.; Wong, Y.C.; Yap, Y.L. γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. Br. J. Cancer, 2008, 99(11), 1832-1841.
[http://dx.doi.org/10.1038/sj.bjc.6604763] [PMID: 19002171]
[http://dx.doi.org/10.1038/sj.bjc.6604763] [PMID: 19002171]