Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Comprehensive Role of GDF15 in Inhibiting Adipogenesis and Hyperlipidemia, Enhancing Cardiovascular Health and Alleviating Inflammation in Metabolic Disorders

Author(s): Nikita Nayak, Tuhin Mukherjee and Ashok Pattnaik*

Volume 30, Issue 30, 2024

Published on: 26 June, 2024

Page: [2387 - 2399] Pages: 13

DOI: 10.2174/0113816128318741240611114448

Price: $65

Abstract

Growth Differentiation Factor 15 (GDF15) has emerged as a pivotal signaling molecule implicated in diverse physiological processes, spanning metabolic regulation, inflammation, and cardiovascular health. This study provides a comprehensive exploration of GDF15's multifaceted role, primarily focusing on its association with obesity-related complications and therapeutic potential. GDF15's involvement in energy homeostasis, specifically its regulation of body weight and appetite through hindbrain neuron activation and the GFRAL-RET signaling pathway, underscores its significance as an appetite-regulating hormone. GDF15's intricate modulation within adipose tissue dynamics in response to dietary changes and obesity, coupled with its influence on insulin sensitivity, highlights its critical role in metabolic health. The manuscript delves into the intricate crosstalk between GDF15 and pathways related to insulin sensitivity, macrophage polarization, and adipose tissue function, elucidating its potential as a therapeutic target for metabolic disorders associated with obesity. GDF15's association with chronic low-grade inflammation and its impact on cardiovascular health, particularly during hyperlipidemia and ischemic events, are explored. The intricate relationship between GDF15 and cardiovascular diseases, including its effects on endothelial function, cardiac hypertrophy, and heart failure, emphasizes its multifaceted nature in maintaining overall cardiovascular well-being. Challenges regarding the therapeutic application of GDF15, such as long-term safety concerns and ongoing clinical investigations, are discussed. Lastly, future research directions exploring GDF15's potential in addressing obesity-related complications and cardiovascular risks are proposed, highlighting its promising role as a therapeutic target in reshaping treatment strategies for obesity and associated health conditions.

[1]
Hruby A, Hu FB. The epidemiology of obesity a big picture. PharmacoEconomics 2014; 33: 673-89.
[http://dx.doi.org/10.1007/s40273-014-0243-x]
[2]
Behl T, Sehgal A, Bala R, Chadha S. Understanding the molecular mechanisms and role of autophagy in obesity. Mol Biol Rep 2021; 48(3): 2881-95.
[http://dx.doi.org/10.1007/s11033-021-06298-w] [PMID: 33797660]
[3]
Kushner RF, Kahan S. Introduction: The start of obesity in 2017. Med Clin North Am 2018; 102(1): 1-11.
[http://dx.doi.org/10.1016/j.mcna.2017.08.003] [PMID: 29156178]
[4]
Kelly T, Yang W, Chen C-S, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes 2008; 32(9): 1431-7.
[http://dx.doi.org/10.1038/ijo.2008.102] [PMID: 18607383]
[5]
Hale C, Véniant MM. Growth differentiation factor 15 as a potential therapeutic for treating obesity. Mol Metab 2021; 46: 101117.
[http://dx.doi.org/10.1016/j.molmet.2020.101117] [PMID: 33220493]
[6]
Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. Gdf15 and cardiac cells: Current concepts and new insights. Int J Mol Sci 2021; 22(16): 8889.
[http://dx.doi.org/10.3390/ijms22168889] [PMID: 34445593]
[7]
Park HJ, Hong SS, Hwang J, Hur KY. Mini-gastric bypass to control morbid obesity and diabetes mellitus: What radiologists need to know. Korean J Radiol 2015; 16(2): 325-33.
[http://dx.doi.org/10.3348/kjr.2015.16.2.325] [PMID: 25741194]
[8]
Almudares F, Hagan J, Chen X, Devaraj S, Moorthy B, Lingappan K. Growth and differentiation factor 15 (GDF15) levels predict adverse respiratory outcomes in premature neonates. Pediatr Pulmonol 2023; 58(1): 271-8.
[http://dx.doi.org/10.1002/ppul.26197] [PMID: 36205439]
[9]
Upadhyay J, Farr O, Perakakis N, Ghaly W, Mantzoros C. Obesity as a disease. Med Clin North Am 2018; 102(1): 13-33.
[http://dx.doi.org/10.1016/j.mcna.2017.08.004]
[10]
Kim KH, Lee MS. GDF15 as a central mediator for integrated stress response and a promising therapeutic molecule for metabolic disorders and NASH. Biochim Biophys Acta, Gen Subj 2021; 1865(3): 129834.
[http://dx.doi.org/10.1016/j.bbagen.2020.129834] [PMID: 33358864]
[11]
Tran T, Yang J, Gardner J, Xiong Y. GDF15 deficiency promotes high fat diet-induced obesity in mice. PLoS One 2018; 13(8): e0201584.
[http://dx.doi.org/10.1371/journal.pone.0201584] [PMID: 30070999]
[12]
Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the united states, 2005 to 2014. JAMA 2016; 315(21): 2284-91.
[http://dx.doi.org/10.1001/jama.2016.6458] [PMID: 27272580]
[13]
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6(1): 425.
[http://dx.doi.org/10.1038/s41392-021-00828-5]
[14]
Hanker AB, Kaklamani V, Arteaga CL. Challenges for the clinical development of PI3K inhibitors: Strategies to improve their impact in solid tumors. Cancer Discov 2019; 9(4): 482-91.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1175]
[15]
Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal J. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 2008; 8(3): 187-98.
[http://dx.doi.org/10.2174/156800908784293659] [PMID: 18473732]
[16]
Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 2015; 35(6): 600-4.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[17]
Choi CH, Lee BH, Ahn SG, Oh SH. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3β. Biochem Biophys Res Commun 2012; 418(4): 759-64.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.095] [PMID: 22310719]
[18]
Umoh NA, Walker RK, Millis RM. Calcitonin gene-related peptide regulates cardiomyocytes survival through regulation of oxidative stress by PI3K/Akt and MAPK signaling pathways. Ann Clin Exp Hypertens 2014; 2: 1007.
[19]
Kim SW, Lim CM, Kim JB, et al. Extracellular HMGB1 released by NMDA treatment confers neuronal apoptosis via RAGE-p38 MAPK/ERK signaling pathway. Neurotox Res 2011; 20(2): 159-69.
[http://dx.doi.org/10.1007/s12640-010-9231-x] [PMID: 21116767]
[20]
Wen X, Zhang B, Wu B, et al. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7(1): 298.
[http://dx.doi.org/10.1038/s41392-022-01149-x] [PMID: 36031641]
[21]
Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab 2019; 1(8): 754-64.
[http://dx.doi.org/10.1038/s42255-019-0095-y] [PMID: 32694767]
[22]
Pudewell S, Wittich C, Kazemein Jasemi NS, Bazgir F, Ahmadian MR. Accessory proteins of the RAS-MAPK pathway: Moving from the side line to the front line. Commun Biol 2021; 4(1): 696.
[http://dx.doi.org/10.1038/s42003-021-02149-3] [PMID: 34103645]
[23]
Winer DA, Luck H, Tsai S, Winer S. The intestinal immune system in obesity and insulin resistance. Cell Metab 2016; 23(3): 413-26.
[http://dx.doi.org/10.1016/j.cmet.2016.01.003] [PMID: 26853748]
[24]
Zanucco E, El-Nikhely N, Götz R, et al. Elimination of B-RAF in oncogenic C-RAF-expressing alveolar epithelial type II cells reduces MAPK signal intensity and lung tumor growth. J Biol Chem 2014; 289(39): 26804-16.
[http://dx.doi.org/10.1074/jbc.M114.558999] [PMID: 25096573]
[25]
Patel S, Alvarez-Guaita A, Melvin A, et al. GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell Metab 2019; 29(3): 707-718.e8.
[http://dx.doi.org/10.1016/j.cmet.2018.12.016] [PMID: 30639358]
[26]
Reddy JK, Rao MS. Lipid metabolism and lipid inflammation II fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 2006; 290(5): G852-8.
[http://dx.doi.org/10.1152/ajpgi.00521.2005]
[27]
Chrysovergi K, Wang X, Kosak J, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes 2014; 38: 1555-64.
[http://dx.doi.org/10.1038/ijo.2014.27]
[28]
Mankowska M, Nowacka-Woszuk J, Graczyk A, Ciazynska P, Stachowiak M, Switonski M. Polymorphism and methylation of the MC4R gene in obese and non-obese dogs. Mol Biol Rep 2017; 44(4): 333-9.
[http://dx.doi.org/10.1007/s11033-017-4114-3] [PMID: 28755272]
[29]
Hsu JY, Crawley S, Chen M, et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 2017; 550(7675): 255-9.
[http://dx.doi.org/10.1038/nature24042] [PMID: 28953886]
[30]
Contreras RJ, Fox E, Drugovich ML. Area postrema lesions produce feeding deficits in the rat: Effects of preoperative dieting and 2-deoxy-D-glucose. Physiol Behav 1982; 29: 875-84.
[31]
Lu JF, Zhu MQ, Xie BC, et al. Camptothecin effectively treats obesity in mice through GDF15 induction. PLoS Biol 2022; 20(2): e3001517.
[http://dx.doi.org/10.1371/journal.pbio.3001517] [PMID: 35202387]
[32]
Yang L, Chang CC, Sun Z, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med 2017; 23(10): 1158-66.
[http://dx.doi.org/10.1038/nm.4394] [PMID: 28846099]
[33]
Tsai VWW, Husaini Y, Sainsbury A, Brown DA, Breit SN. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: Implications for obesity, cachexia, and other associated diseases. Cell Metab 2018; 28(3): 353-68.
[http://dx.doi.org/10.1016/j.cmet.2018.07.018] [PMID: 30184485]
[34]
Macia L, Tsai VWW, Nguyen AD, et al. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS One 2012; 7(4): e34868.
[http://dx.doi.org/10.1371/journal.pone.0034868] [PMID: 22514681]
[35]
Siddiqui JA, Pothuraju R, Khan P, et al. Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev 2022; 64: 71-83.
[http://dx.doi.org/10.1016/j.cytogfr.2021.11.002] [PMID: 34836750]
[36]
Assadi A, Zahabi A, Hart RA. GDF15, an update of the physiological and pathological roles it plays: A review. Pflugers Arch 2020; 472(11): 1535-46.
[http://dx.doi.org/10.1007/s00424-020-02459-1] [PMID: 32936319]
[37]
Bauskin AR, Brown DA, Junankar S, et al. The propeptide mediates formation of stromal stores of PROMIC-1: Role in determining prostate cancer outcome. Cancer Res 2005; 65(6): 2330-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3827] [PMID: 15781647]
[38]
Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: A translational prospective. J Diabetes Res 2015; 2015: 490842.
[http://dx.doi.org/10.1155/2015/490842]
[39]
Hiram R. Resolution-promoting autacoids demonstrate promising cardioprotective effects against heart diseases. Mol Biol Rep 2022; 49(6): 5179-97.
[http://dx.doi.org/10.1007/s11033-022-07230-6] [PMID: 35142983]
[40]
Lajer M, Jorsal A, Tarnow L, Parving HH, Rossing P. Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetes Care 2010; 33(7): 1567-72.
[http://dx.doi.org/10.2337/dc09-2174] [PMID: 20357380]
[41]
Berthoud HR, Lenard NR, Shin AC. Food reward, hyperphagia, and obesity. Am J Physiol Regul Integr Comp Physiol 2011; 300(6): R1266-77.
[http://dx.doi.org/10.1152/ajpregu.00028.2011] [PMID: 21411768]
[42]
Gil CI, Coull BM, Jonas W, Lippert R, Ost M. Mitochondrial stress-induced GDF15-GFRAL axis promotes anxiety-like behavior and CRH-dependent anorexia. bioRxiv 2021.
[43]
Kang SG, Choi MJ, Jung SB, et al. Differential roles of GDF15 and FGF21 in systemic metabolic adaptation to the mitochondrial integrated stress response. iScience 2021; 24(3): 102181.
[http://dx.doi.org/10.1016/j.isci.2021.102181] [PMID: 33718833]
[44]
Chung HK, Ryu D, Kim KS, et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol 2017; 216(1): 149-65.
[http://dx.doi.org/10.1083/jcb.201607110] [PMID: 27986797]
[45]
Ost M. Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodelling during mitochondrial stress. EMBO Rep 2020; 21(3): e48804.
[http://dx.doi.org/10.15252/embr.201948804]
[46]
Keipert S, Ost M. Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends Endocrinol Metab 2021; 32(11): 904-15.
[http://dx.doi.org/10.1016/j.tem.2021.08.008] [PMID: 34526227]
[47]
Sabatini PV, Frikke-Schmidt H, Arthurs J, et al. GFRAL-expressing neurons suppress food intake via aversive pathways. Proc Natl Acad Sci 2021; 118(8): e2021357118.
[http://dx.doi.org/10.1073/pnas.2021357118] [PMID: 33593916]
[48]
Klein AB, Nicolaisen TS, Ørtenblad N, et al. Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nat Commun 2021; 12(1): 1041.
[http://dx.doi.org/10.1038/s41467-021-21309-x] [PMID: 33589633]
[49]
Choi MJ, Jung SB, Lee SE, et al. An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models. Diabetologia 2020; 63(4): 837-52.
[http://dx.doi.org/10.1007/s00125-019-05082-7] [PMID: 31925461]
[50]
Koc G, Doran T, Uygur MM, Kirac D. Obesity is associated with IL-6 gene polymorphisms rs1800795 and rs1800796 but not SOCS3 rs4969170. Mol Biol Rep 2023; 50(3): 2041-8.
[http://dx.doi.org/10.1007/s11033-022-08129-y] [PMID: 36538174]
[51]
Villanueva MT. GDF15 tells the brain to lose weight. Nat Rev Drug Discov 2017; 16(12): 827.
[http://dx.doi.org/10.1038/nrd.2017.241] [PMID: 29180731]
[52]
Quarta C, Claret M, Zeltser LM, et al. POMC neuronal heterogeneity in energy balance and beyond: An integrated view. Nat Metab 2021; 3(3): 299-308.
[http://dx.doi.org/10.1038/s42255-021-00345-3] [PMID: 33633406]
[53]
Lawton LN, Bonaldo MF, Jelenc PC, Qiu L, Baumes SA, Marcelin RA. Identification of a novel member of the TGF-β superfamily highly expressed in human placenta. Gene 1997; 203(1): 17-26.
[54]
Bray GA, Greenway FL. Pharmacological treatment of the overweight patient. Pharmacol Rev 2007; 59(2): 151-84.
[http://dx.doi.org/10.1124/pr.59.2.2] [PMID: 17540905]
[55]
Long SD, O’brien K, Macdonald KG Jr, et al. Weight loss in severely obese subjects prevents the progression of impaired glucose tolerance to type II diabetes. A longitudinal interventional study. Diabetes Care 1994; 17(5): 372-5.
[http://dx.doi.org/10.2337/diacare.17.5.372] [PMID: 8062602]
[56]
Wirth A, Wabitsch M, Hauner H. The prevention and treatment of obesity. Dtsch Arztebl Int 2014; 111(42): 705-13.
[http://dx.doi.org/10.3238/arztebl.2014.0705] [PMID: 25385482]
[57]
Porcheray F, Viaud S, Rimaniol A-C, et al. Macrophage activation switching: An asset for the resolution of inflammation. Clin Exp Immunol 2005; 142(3): 481-9.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02934.x] [PMID: 16297160]
[58]
Jung SB, Choi MJ, Ryu D, et al. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun 2018; 9(1): 1551.
[http://dx.doi.org/10.1038/s41467-018-03998-z] [PMID: 29674655]
[59]
Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, et al. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci 2010; 107(52): 22617-22.
[http://dx.doi.org/10.1073/pnas.1009152108] [PMID: 21149710]
[60]
Berg AH, Lin Y, Lisanti MP, Scherer PE. Adipocyte differentiation induces dynamic changes in NF-κB expression and activity. Am J Physiol Endocrinol Metab 2004; 287(6): E1178-88.
[http://dx.doi.org/10.1152/ajpendo.00002.2004] [PMID: 15251865]
[61]
Dostálová I, Roubíček T, Bártlová M, et al. Increased serum concentrations of macrophage inhibitory cytokine-1 in patients with obesity and type 2 diabetes mellitus: The influence of very low calorie diet. Eur J Endocrinol 2009; 161(3): 397-404.
[http://dx.doi.org/10.1530/EJE-09-0417] [PMID: 19515791]
[62]
Xie B, Murali A, Vandevender AM, et al. Hepatocyte-derived GDF15 suppresses feeding and improves insulin sensitivity in obese mice. iScience 2022; 25(12): 105569.
[http://dx.doi.org/10.1016/j.isci.2022.105569] [PMID: 36465107]
[63]
Wu X, Xuan W, You L, et al. Associations of GDF-15 and GDF-15/adiponectin ratio with odds of type 2 diabetes in the Chinese population. Endocrine 2021; 72(2): 423-36.
[http://dx.doi.org/10.1007/s12020-021-02632-1] [PMID: 33713014]
[64]
Stiermaier T, Adams V, Just M, et al. Growth differentiation factor-15 in Takotsubo cardiomyopathy: Diagnostic and prognostic value. Int J Cardiol 2014; 173(3): 424-9.
[http://dx.doi.org/10.1016/j.ijcard.2014.03.014] [PMID: 24681016]
[65]
Govaere O, Cockell S, Tiniakos D, et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med 2020; 12(572): eaba4448.
[http://dx.doi.org/10.1126/scitranslmed.aba4448] [PMID: 33268509]
[66]
Ruze R, Song J, Yin X, et al. Mechanisms of obesity and diabetes mellitus-related pancreatic carcinogenesis: A comprehensive and systematic review. Signal Transduct Target Ther 2023; 8(1): 139.
[http://dx.doi.org/10.1038/s41392-023-01376-w] [PMID: 36964133]
[67]
Catanzaro R, Cuffari B, Italia A, Marotta F. Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease World J Gastroenterol 22 7660–7675 growth and adiposity measurements. Pediatr Res 2020; 87(5): 897-902.
[http://dx.doi.org/10.3748/wjg.v22.i34.7660] [PMID: 31645058]
[68]
Ding Q, Mracek T, Gonzalez-Muniesa P, et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology 2009; 150(4): 1688-96.
[http://dx.doi.org/10.1210/en.2008-0952] [PMID: 19074584]
[69]
Ferrari N, Pfeffer U, Dell’Eva R, Ambrosini C, Noonan DM, Albini A. The transforming growth factor-β family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl)retinamide. Clin Cancer Res 2005; 11(12): 4610-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2210] [PMID: 15958647]
[70]
Tan M, Wang Y, Guan K, Sun Y. PTGF-β, a type β transforming growth factor (TGF-β) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-β signaling pathway. Proc Natl Acad Sci USA 2000; 97(1): 109-14.
[http://dx.doi.org/10.1073/pnas.97.1.109] [PMID: 10618379]
[71]
Yilmaz H, Çelik HT, Gurel OM. Increased serum levels of GDF-15 associated with mortality and subclinical atherosclerosis in patients on maintenance hemodialysis. Herz 2014; 40: 305-12.
[http://dx.doi.org/10.1007/s00059-014-4139-5] [PMID: 25117302]
[72]
Kempf T, Eden M, Strelau J, et al. The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 2006; 98(3): 351-60.
[http://dx.doi.org/10.1161/01.RES.0000202805.73038.48] [PMID: 16397141]
[73]
L’homme L, Sermikli B, Staels B, Piette J, Legrand-Poels S, Dombrowicz D. Saturated fatty acids promote GDF15 expression in human macrophages through the PERK/eIF2/CHOP signaling pathway. Nutrients 2020; 12(12): 3771.
[http://dx.doi.org/10.3390/nu12123771] [PMID: 33302552]
[74]
Szewczuk M, Boguszewska K, Kaźmierczak-Barańska J, Karwowski BT. The role of AMPK in metabolism and its influence on DNA damage repair. Mol Biol Rep 2020; 47(11): 9075-86.
[http://dx.doi.org/10.1007/s11033-020-05900-x] [PMID: 33070285]
[75]
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446): 445-55.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[76]
Carballo-Casla A, García-Esquinas E, Buño-Soto A, et al. Metabolic syndrome and growth differentiation factor 15 in older adults. Geroscience 2022; 44(2): 867-80.
[http://dx.doi.org/10.1007/s11357-021-00370-w] [PMID: 33961185]
[77]
Simmons RK, Alberti KGMM, Gale EAM, et al. The metabolic syndrome: Useful concept or clinical tool? Report of a WHO Expert Consultation. Diabetologia 2010; 53(4): 600-5.
[http://dx.doi.org/10.1007/s00125-009-1620-4] [PMID: 20012011]
[78]
Kolb H, Mandrup-Poulsen T. The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia 2010; 53(1): 10-20.
[http://dx.doi.org/10.1007/s00125-009-1573-7] [PMID: 19890624]
[79]
Desmedt S, Desmedt V, De Vos L, Delanghe JR, Speeckaert R, Speeckaert MM. Growth differentiation factor 15: A novel biomarker with high clinical potential. Crit Rev Clin Lab Sci 2019; 56(5): 333-50.
[http://dx.doi.org/10.1080/10408363.2019.1615034] [PMID: 31076013]
[80]
Gutiérrez-Fisac JL, Guallar-Castillón P, León-Muñoz LM, Graciani A, Banegas JR, Rodríguez-Artalejo F. Prevalence of general and abdominal obesity in the adult population of Spain, 2008–2010: The ENRICA study. Obes Rev 2012; 13(4): 388-92.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00964.x] [PMID: 22151906]
[81]
Lindahl B. The story of growth differentiation factor 15: Another piece of the puzzle. Clin Chem 2013; 59(11): 1550-2.
[http://dx.doi.org/10.1373/clinchem.2013.212811] [PMID: 24003064]
[82]
Wallentin L, Hijazi Z, Andersson U, et al. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: Insights from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Circulation 2014; 130(21): 1847-58.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.011204] [PMID: 25294786]
[83]
Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P. Usefulness of growth differentiation factor-15 levels to predict diabetic cardiomyopathy in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol 2014; 114(6): 890-4.
[http://dx.doi.org/10.1016/j.amjcard.2014.06.020]
[84]
Li M, Duan L, Cai YL, et al. Growth differentiation factor-15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovasc Diabetol 2020; 19(1): 120.
[http://dx.doi.org/10.1186/s12933-020-01092-7] [PMID: 31910850]
[85]
Luan HH, Wang A, Hilliard BK, et al. GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell 2019; 178(5): 1231-1244.e11.
[http://dx.doi.org/10.1016/j.cell.2019.07.033] [PMID: 31402172]
[86]
Zethelius B, Berglund L, Sundström J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med 2008; 358(20): 2107-16.
[http://dx.doi.org/10.1056/NEJMoa0707064] [PMID: 18480203]
[87]
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117(1): 175-84.
[http://dx.doi.org/10.1172/JCI29881]
[88]
Hagström E, Held C, Stewart RAH, et al. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease. Clin Chem 2017; 63(1): 325-33.
[http://dx.doi.org/10.1373/clinchem.2016.260570] [PMID: 27811204]
[89]
Schlittenhardt D, Schober A, Strelau J, et al. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res 2004; 318(2): 325-33.
[http://dx.doi.org/10.1007/s00441-004-0986-3] [PMID: 15459768]
[90]
Strelau J, Strzelczyk A, Rusu P, et al. Progressive postnatal motoneuron loss in mice lacking GDF-15. J Neurosci 2009; 29(43): 13640-8.
[http://dx.doi.org/10.1523/JNEUROSCI.1133-09.2009] [PMID: 19864576]
[91]
Olsen OE, Skjærvik A, Størdal BF, Sundan A, Holien T. TGF-β contamination of purified recombinant GDF15. PLoS One 2017; 12(11): e0187349.
[http://dx.doi.org/10.1371/journal.pone.0187349] [PMID: 29161287]
[92]
Xiong Y, Walker K, Min X, et al. Long-acting MIC-1/GDF15 molecules to treat obesity: Evidence from mice to monkeys. Sci Transl Med 2017; 9(412): eaan8732.
[http://dx.doi.org/10.1126/scitranslmed.aan8732] [PMID: 29046435]
[93]
Corre J, Hébraud B, Bourin P. Concise review: Growth differentiation factor 15 in pathology: A clinical role? Stem Cells Transl Med 2013; 2(12): 946-52.
[http://dx.doi.org/10.5966/sctm.2013-0055] [PMID: 24191265]
[94]
Gerstein HC, Paré G, Hess S, et al. Growth differentiation factor 15 as a novel biomarker for metformin. Diabetes Care 2017; 40(2): 280-3.
[http://dx.doi.org/10.2337/dc16-1682] [PMID: 27974345]
[95]
Valeeva FV, Medvedeva MS, Khasanova KB, et al. Association of gene polymorphisms with body weight changes in prediabetic patients. Mol Biol Rep 2022; 49(6): 4217-24.
[http://dx.doi.org/10.1007/s11033-022-07254-y] [PMID: 35292917]
[96]
Karhunen V, Larsson SC, Gill D. Genetically proxied growth-differentiation factor 15 levels and body mass index. Br J Clin Pharmacol 2021; 87(10): 4036-9.
[http://dx.doi.org/10.1111/bcp.14808] [PMID: 33686698]
[97]
Frikke-Schmidt H, Hultman K, Galaske JW, Jorgensen SB, Myers MG, Seeley RJ. GDF15 acts synergistically with liraglutide but is not necessary for the weight loss induced by bariatric surgery in mice. Mol Metab 2019; 21: 13-21.
[http://dx.doi.org/10.1016/j.molmet.2019.01.003]
[98]
Coll AP, Chen M, Taskar P, Rimmington D. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2019; 578(7795): 444-8.
[http://dx.doi.org/10.1038/s41586-019-1911-y]
[99]
Doerstling S, Hedberg P, Öhrvik J, Leppert J, Henriksen E. Growth differentiation factor 15 in a community-based sample: Age-dependent reference limits and prognostic impact. Ups J Med Sci 2018; 123(2): 86-93.
[http://dx.doi.org/10.1080/03009734.2018.1460427]
[100]
Day EA, Ford RJ, Smith BK, et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat Metab 2019; 1(12): 1202-8.
[http://dx.doi.org/10.1038/s42255-019-0146-4] [PMID: 32694673]
[101]
Kleinert M, Clemmensen C, Sjøberg KA, et al. Exercise increases circulating GDF15 in humans. Mol Metab 2018; 9: 187-91.
[http://dx.doi.org/10.1016/j.molmet.2017.12.016] [PMID: 29398617]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy