Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges

Author(s): M. Yazdan, S.M. Naghib* and M.R. Mozafari

Volume 25, Issue 10, 2024

Published on: 25 June, 2024

Page: [649 - 669] Pages: 21

DOI: 10.2174/0113894501294136240610061328

Price: $65

Abstract

Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.

Next »
[1]
Avan A, Mehrabadi S, Velayati M, et al. Growth-hormone-releasing hormone as a prognostic biomarker and therapeutic target in gastrointestinal cancer. Curr Cancer Drug Targets 2023; 23(5): 346-53.
[http://dx.doi.org/10.2174/1568009623666221228094557] [PMID: 36582060]
[2]
Sebastian J, Rathinasamy K. Microtubules and cell division: Potential pharmacological targets in cancer therapy. Curr Drug Targets 2023; 24(11): 889-918.
[http://dx.doi.org/10.2174/1389450124666230731094837] [PMID: 37519203]
[3]
Malami I, Alhassan AM, Adamu AA, Bello MB, Muhammad A, Imam MU. Cytotoxic flavokawain B inhibits the growth and metastasis of hepatocellular carcinoma through UCK2 modulation of the STAT3/Hif-1α/VEGF signalling pathway. Curr Drug Targets 2023; 24(11): 919-28.
[http://dx.doi.org/10.2174/1389450124666230803153750] [PMID: 37534791]
[4]
Xu C, Najafi M, Shang Z. Lung pneumonitis and fibrosis in cancer therapy: A review on cellular and molecular mechanisms. Curr Drug Targets 2022; 23(16): 1505-25.
[http://dx.doi.org/10.2174/1389450123666220907144131] [PMID: 36082868]
[5]
Mu W, Jiang Y, Liang G, Feng Y, Qu F. Metformin: A promising antidiabetic medication for cancer treatment. Curr Drug Targets 2023; 24(1): 41-54.
[http://dx.doi.org/10.2174/1389450124666221104094918] [PMID: 36336804]
[6]
Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A, Borji H. Antitumor mechanisms of molecules secreted by Trypanosoma cruzi in colon and breast cancer: A review. Anticancer Agents Med Chem 2023; 23(15): 1710-21.
[http://dx.doi.org/10.2174/1871520623666230529141544] [PMID: 37254546]
[7]
Liu N, Luo T, Zhang J, et al. YF343, a novel histone deacetylase inhibitor, combined with CQ to inhibit-autophagy, contributes to increased apoptosis in triple-negative breast cancer. Curr Med Chem 2023; 30(40): 4605-21.
[http://dx.doi.org/10.2174/0929867330666230120152815] [PMID: 36683315]
[8]
Sahoo SK, Sahoo S, Mohapatra P. Flavonoids for the treatment of breast cancer, present status and future prospective. Anticancer Agents Med Chem 2023; 23(6): 658-75.
[http://dx.doi.org/10.2174/1871520623666221024114521] [PMID: 36284374]
[9]
Das A, Lavanya KJ, Nandini , Kaur K, Jaitak V. Effectiveness of selective estrogen receptor modulators in breast cancer therapy: An update. Curr Med Chem 2023; 30(29): 3287-314.
[http://dx.doi.org/10.2174/0929867329666221006110528] [PMID: 36201273]
[10]
Tang Z, Tan Y, Chen H, Wan Y. Benzoxazine: A privileged scaffold in medicinal chemistry. Curr Med Chem 2023; 30(4): 372-89.
[http://dx.doi.org/10.2174/0929867329666220705140846] [PMID: 35792127]
[11]
Ardevines S, Marqués-López E, Herrera RP. Heterocycles in breast cancer treatment: The use of pyrazole derivatives. Curr Med Chem 2023; 30(10): 1145-74.
[http://dx.doi.org/10.2174/0929867329666220829091830] [PMID: 36043746]
[12]
Irshad Khan MZ, Nazli A, Pan YL, Chen JZ. Recent developments in medicinal chemistry and therapeutic potential of anti-cancer PROTACs-based molecules. Curr Med Chem 2023; 30(14): 1576-622.
[http://dx.doi.org/10.2174/0929867329666220803112409] [PMID: 35927805]
[13]
Gholivand K, Faraghi M, Pooyan M, et al. Anti-cancer activity of new phosphoramide-functionalized graphene oxides: An experimental and theoretical evaluation. Curr Med Chem 2023; 30(30): 3486-503.
[http://dx.doi.org/10.2174/0929867330666221027152716] [PMID: 36305155]
[14]
Wu Y, Du Z, Mou J, et al. The functions of EphA1 receptor tyrosine kinase in several tumors. Curr Med Chem 2023; 30(20): 2340-53.
[http://dx.doi.org/10.2174/0929867329666220820125638] [PMID: 35996244]
[15]
Beilankouhi EAV, Valilo M, Dastmalchi N, Teimourian S, Safaralizadeh R. The function of autophagy in the initiation, and development of breast cancer. Curr Med Chem 2024; 31(20): 2974-90.
[PMID: 37138421]
[16]
Nasr S, Nakisa A, Jandaghian S, Kouhi M, Sadeghi E, Varshosaz J. A systematic review and meta-analysis on the effect of flavonoids on insulin-like growth factor and insulin-like growth factor binding protein and incidence of breast cancer. Curr Med Chem 2023; 30(14): 1657-66.
[http://dx.doi.org/10.2174/0929867329666220801164740] [PMID: 35927904]
[17]
Srivastava N, Mishra Y, Mishra V, Ranjan A, Tambuwala MM. Carbon nanotubes in breast cancer treatment: An insight into properties, functionalization, and toxicity. Anticancer Agents Med Chem 2023; 23(14): 1606-17.
[http://dx.doi.org/10.2174/1871520623666230510094850] [PMID: 37165493]
[18]
Robinson P, Coveñas R, Muñoz M. Combination therapy of chemotherapy or radiotherapy and the neurokinin-1 receptor antagonist aprepitant: A new antitumor strategy? Curr Med Chem 2023; 30(16): 1798-812.
[http://dx.doi.org/10.2174/0929867329666220811152602] [PMID: 35959620]
[19]
Patel VK, Shirbhate E, Tiwari P, et al. Multi-targeted HDAC inhibitors as anticancer agents: Current status and future prospective. Curr Med Chem 2023; 30(24): 2762-95.
[http://dx.doi.org/10.2174/0929867329666220922105615] [PMID: 36154583]
[20]
Xin Y, Wang F, Ren D, Zhao F, Zhao J. Male breast cancer: Three case reports and a literature review. Anticancer Agents Med Chem 2023; 23(19): 2161-9.
[http://dx.doi.org/10.2174/1871520623666230821124008] [PMID: 37605409]
[21]
Younis NK, Yassine HM, Eid AH. Nanomedicine for cancer. Curr Med Chem 2023; 30(23): 2592-4.
[http://dx.doi.org/10.2174/0929867330666221228121947] [PMID: 36579388]
[22]
Mou J, Chen J, Wu Y, He Y, Zhou G, Yuan C. WDFY3-AS2: A potential prognostic factor and therapeutic target related to cancer. Curr Med Chem 2023; 30(25): 2814-21.
[http://dx.doi.org/10.2174/0929867329666220909114416] [PMID: 36093824]
[23]
Choudhury B, Chanda K. Recent advancement in the inhibition of triple-negative breast cancer by N-heterocycles. Anticancer Agents Med Chem 2023; 23(13): 1484-9.
[http://dx.doi.org/10.2174/1871520623666230330124044] [PMID: 37005538]
[24]
Balsa LM, Baran EJ, León IE . Copper complexes as antitumor agents: in vitro and in vivo evidence. Curr Med Chem 2023; 30(5): 510-57.
[http://dx.doi.org/10.2174/0929867328666211117094550] [PMID: 34789122]
[25]
Tuncbilek M, Tutar Y, Kul P, Ergul M, Yenilmez Tunoglu EN. A novel 6,8,9-trisubstituted purine analogue drives breast cancer luminal A subtype MCF-7 to apoptosis and senescence through Hsp70 inhibition. Anticancer Agents Med Chem 2023; 23(5): 585-98.
[http://dx.doi.org/10.2174/1871520622666220905122346] [PMID: 36065916]
[26]
Zhang X, Li N, Zhang G, et al. Nano strategies for artemisinin derivatives to enhance reverse efficiency of multidrug resistance in breast cancer. Curr Pharm Des 2023; 29(43): 3458-66.
[http://dx.doi.org/10.2174/0113816128282248231205105408] [PMID: 38270162]
[27]
Bhavnagari H, Raval A, Shah F. Deciphering potential role of hippo signaling pathway in breast cancer: A comprehensive review. Curr Pharm Des 2023; 29(44): 3505-18.
[http://dx.doi.org/10.2174/0113816128274418231215054210] [PMID: 38141194]
[28]
Jin Y, Zhai M, Cao R, Yu H, Wu C, Liu Y. Silencing MFHAS1 induces pyroptosis via the JNK-activated NF-κB/Caspase1/ GSDMD signal axis in breast cancer. Curr Pharm Des 2023; 29(42): 3408-20.
[http://dx.doi.org/10.2174/0113816128268130231026054649] [PMID: 37936452]
[29]
Shahab M, Liang C, Duan X, Zheng G, Wadood A. in silico mutagenesis and modeling of decoy peptides targeting CIB1 to obscure its role in triple-negative breast cancer progression. Curr Pharm Des 2023; 29(8): 630-8.
[http://dx.doi.org/10.2174/1381612829666230327162852] [PMID: 36998135]
[30]
Alimohammadi M, Faramarzi F, Mafi A, et al. Efficacy and safety of atezolizumab monotherapy or combined therapy with chemotherapy in patients with metastatic triple-negative breast cancer: A systematic review and meta-analysis of randomized controlled trials. Curr Pharm Des 2023; 29(31): 2461-76.
[http://dx.doi.org/10.2174/0113816128270102231016110637] [PMID: 37921135]
[31]
Mazidi Z, Javanmardi S, Naghib SM, Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem Eng J 2022; 433: 134569.
[http://dx.doi.org/10.1016/j.cej.2022.134569]
[32]
Abtahi NA, Naghib SM, Haghiralsadat F, Akbari Edgahi M. Development of highly efficient niosomal systems for co-delivery of drugs and genes to treat breast cancer in vitro and in vivo. Cancer Nanotechnol 2022; 13(1): 28.
[http://dx.doi.org/10.1186/s12645-022-00135-w]
[33]
Sadeghi M, Kashanian S, Naghib SM, Haghiralsadat F, Tofighi D. An efficient electrochemical biosensor based on pencil graphite electrode mediated by 2D functionalized graphene oxide to detect HER2 breast cancer biomarker. Int J Electrochem Sci 2022; 17(4): 220459.
[http://dx.doi.org/10.20964/2022.04.62]
[34]
Venugopal S, Kaur B, Verma A, Wadhwa P, Sahu SK. A review on modern approaches to benzimidazole synthesis. Curr Org Synth 2023; 20(6): 595-605.
[http://dx.doi.org/10.2174/1570179420666221010091157] [PMID: 36221870]
[35]
Fan X, Zhang P, Teng S, et al. Recent research on lipase immobilization with multipoint covalent treatment by glutaraldehyde. Curr Org Chem 2023; 27(4): 248-59.
[http://dx.doi.org/10.2174/1385272827666230417084200]
[36]
Zhang W, Chen Y. Recently published patents on janus base nanomaterials for RNA delivery. Curr Org Chem 2023; 27(19): 1738-40.
[http://dx.doi.org/10.2174/0113852728266064231017181717]
[37]
Sahoo SK, Dilnawaz F. Graphene oxide/reduced graphene oxide nanomaterials for targeted photothermal cancer therapy. Curr Org Chem 2023; 27(10): 844-51.
[http://dx.doi.org/10.2174/1385272827666230821102638]
[38]
Wadhwa P, Kaur B, Venugopal S, et al. Recent developments in the synthesis and anticancer activity of indole and its derivatives. Curr Org Synth 2023; 20(4): 376-94.
[http://dx.doi.org/10.2174/1570179419666220509215722] [PMID: 35538803]
[39]
Luo F, Luo X, Wang L, Qu Y, Yin XB. The design and applications of 1,8-naphthalimide-poly(amidoamine) dendritic platforms. Curr Org Chem 2023; 27(13): 1164-78.
[http://dx.doi.org/10.2174/1385272827666230911115827]
[40]
Kundu D, Roy T, Mahata A. Recent advances in copper-catalyzed carbon chalcogenides cross-coupling reactions. Curr Org Synth 2023; 20(3): 267-77.
[http://dx.doi.org/10.2174/1570179419666220324122735] [PMID: 35331115]
[41]
Hussen NH, Hasan AH, Muhammed GO, et al. Anthracycline in medicinal chemistry: Mechanism of cardiotoxicity, preventive and treatment strategies. Curr Org Chem 2023; 27(4): 363-77.
[http://dx.doi.org/10.2174/1385272827666230423144150]
[42]
Saini KK, Rani R, Muskan , Khanna N, Mehta B, Kumar R. An overview of recent advances in hantzsch’s multicomponent synthesis of 1,4- dihydropyridines: A class of prominent calcium channel blockers. Curr Org Chem 2023; 27(2): 119-29.
[http://dx.doi.org/10.2174/1385272827666230403112419]
[43]
Pizzetti F, Rossetti A, Sacchetti A, Rossi F. Click chemistry as efficient strategy to improve nanoparticles performances in drug delivery. Curr Org Chem 2023; 27(13): 1111-3.
[http://dx.doi.org/10.2174/0113852728263162231004042237]
[44]
Chaudhary T, Upadhyay PK. Recent advancement in synthesis and bioactivities of 1,3,4-oxadiazole. Curr Org Synth 2023; 20(6): 663-77.
[http://dx.doi.org/10.2174/1570179420666221129153933] [PMID: 36453511]
[45]
Shen R, Yuan H. Achievements and bottlenecks of PEGylation in nano-delivery systems. Curr Med Chem 2023; 30(12): 1386-405.
[http://dx.doi.org/10.2174/0929867329666220929152644] [PMID: 36177626]
[46]
Coutinho AJ, Pinheiro M, Neves AR, Pinto MMM. Therapeutic potential of genistein: Preclinical studies, clinical evidence, and nanotechnology application. Curr Med Chem 2023; 30(22): 2480-517.
[http://dx.doi.org/10.2174/0929867329666221004124800] [PMID: 36200214]
[47]
Lai C, Li L, Luo B, Shen J, Shao J. Current advances and prospects in carbon nanomaterials-based drug deliver systems for cancer therapy. Curr Med Chem 2023; 30(24): 2710-33.
[http://dx.doi.org/10.2174/0929867329666220821195353] [PMID: 36017849]
[48]
Theivendren P, Hegde YM, Srinivas G, et al. A recent advancement in nanotechnology approaches for the treatment of cervical cancer. Anticancer Agents Med Chem 2023; 23(1): 37-59.
[http://dx.doi.org/10.2174/1871520622666220513160706] [PMID: 35570521]
[49]
Ullah A, Aziz T, Ullah N, Nawaz T. Molecular mechanisms of Sanguinarine in cancer prevention and treatment. Anticancer Agents Med Chem 2023; 23(7): 765-78.
[http://dx.doi.org/10.2174/1871520622666220831124321] [PMID: 36045531]
[50]
Unnisa A, Greig NH, Kamal MA. Nanotechnology: A promising targeted drug delivery system for brain tumours and alzheimer’s disease. Curr Med Chem 2023; 30(3): 255-70.
[http://dx.doi.org/10.2174/0929867329666220328125206] [PMID: 35345990]
[51]
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent advances in lung cancer therapy based on nanomaterials: A review. Curr Med Chem 2023; 30(3): 335-55.
[http://dx.doi.org/10.2174/0929867328666210810160901] [PMID: 34375182]
[52]
Sa P, Sahoo SK, Dilnawaz F. Responsive role of nanomedicine in the tumor microenvironment and cancer drug resistance. Curr Med Chem 2023; 30(29): 3335-55.
[http://dx.doi.org/10.2174/0929867329666220922111336] [PMID: 36154585]
[53]
Akter Z, Khan FZ, Khan MA. Gold nanoparticles in triple-negative breast cancer therapeutics. Curr Med Chem 2023; 30(3): 316-34.
[http://dx.doi.org/10.2174/0929867328666210902141257] [PMID: 34477507]
[54]
Yazdan M, Naghib SM. Smart ultrasound-responsive polymers for drug delivery: An overview on advanced stimuli-sensitive materials and techniques. Curr Drug Deliv 2024; 21
[http://dx.doi.org/10.2174/0115672018283792240115053302] [PMID: 38288800]
[55]
Matini A, Naghib SM. The necessity of nanotechnology in Mycoplasma pneumoniae detection: A comprehensive examination. Sens Biosensing Res 2024; 43: 100631.
[http://dx.doi.org/10.1016/j.sbsr.2024.100631]
[56]
Jin S, Ye K. Targeted drug delivery for breast cancer treatment. Recent Patents Anticancer Drug Discov 2013; 8(2): 143-53.
[http://dx.doi.org/10.2174/1574892811308020003] [PMID: 23394116]
[57]
Lu RM, Chen MS, Chang DK, et al. Targeted drug delivery systems mediated by a novel Peptide in breast cancer therapy and imaging. PLoS One 2013; 8(6): e66128.
[http://dx.doi.org/10.1371/journal.pone.0066128] [PMID: 23776619]
[58]
Herdiana Y, Wathoni N, Shamsuddin S, Joni IM, Muchtaridi M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers 2021; 13(11): 1717.
[http://dx.doi.org/10.3390/polym13111717] [PMID: 34074020]
[59]
Jain AK, Jain S. Advances in oral delivery of anti-cancer prodrugs. Expert Opin Drug Deliv 2016; 13(12): 1759-75.
[http://dx.doi.org/10.1080/17425247.2016.1200554] [PMID: 27292717]
[60]
Yap KM, Sekar M, Fuloria S, et al. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int J Nanomedicine 2021; 16: 7891-941.
[http://dx.doi.org/10.2147/IJN.S328135] [PMID: 34880614]
[61]
Al-thoubaity FK. Molecular classification of breast cancer: A retrospective cohort study. Ann Med Surg 2020; 49: 44-8.
[http://dx.doi.org/10.1016/j.amsu.2019.11.021] [PMID: 31890196]
[62]
Nadimi AE, Ebrahimipour SY, Afshar EG , et al. Nano-scale drug delivery systems for antiarrhythmic agents. Eur J Med Chem 2018; 157: 1153-63.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.080] [PMID: 30189397]
[63]
Peng Q, Ren X. Mapping of female breast cancer incidence and mortality rates to socioeconomic factors cohort: Path diagram analysis. Front Public Health 2022; 9: 761023.
[http://dx.doi.org/10.3389/fpubh.2021.761023] [PMID: 35178368]
[64]
Grobmyer SR, Zhou G, Gutwein LG, Iwakuma N, Sharma P, Hochwald SN. Nanoparticle delivery for metastatic breast cancer. Nanomedicine 2012; 8 (Suppl. 1): S21-30.
[http://dx.doi.org/10.1016/j.nano.2012.05.011] [PMID: 22640908]
[65]
Luo X, Zhang Q, Chen H, Hou K, Zeng N, Wu Y. Smart nanoparticles for breast cancer treatment based on the tumor microenvironment. Front Oncol 2022; 12: 907684.
[http://dx.doi.org/10.3389/fonc.2022.907684] [PMID: 35720010]
[66]
Raj S, Khurana S, Choudhari R, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol 2021; 69: 166-77.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002] [PMID: 31715247]
[67]
Liang P, Huang X, Wang Y, et al. Tumor-microenvironment-responsive nanoconjugate for synergistic antivascular activity and phototherapy. ACS Nano 2018; 12(11): 11446-57.
[http://dx.doi.org/10.1021/acsnano.8b06478] [PMID: 30345740]
[68]
Alamdari SG, Amini M, Jalilzadeh N, et al. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349: 269-303.
[http://dx.doi.org/10.1016/j.jconrel.2022.06.050] [PMID: 35787915]
[69]
Jafari S, Soleimani M, Salehi R. Nanotechnology-based combinational drug delivery systems for breast cancer treatment. Int J Polym Mater 2019; 68(14): 859-69.
[http://dx.doi.org/10.1080/00914037.2018.1517348]
[70]
El-Ghannam A, Ricci K, Malkawi A, et al. A ceramic-based anticancer drug delivery system to treat breast cancer. J Mater Sci Mater Med 2010; 21(9): 2701-10.
[http://dx.doi.org/10.1007/s10856-010-4121-6] [PMID: 20644983]
[71]
Matini A, Naghib SM. Microwave-assisted natural gums for drug delivery systems: Recent progresses and advances over emerging biopolymers and technologies. Curr Med Chem 2024; 31
[http://dx.doi.org/10.2174/0109298673283144231212055603] [PMID: 38192130]
[72]
Yazdan M, Naghib SM, Mozafari MR. Liposomal nano-based drug delivery systems for breast cancer therapy: Recent advances and progresses. Anticancer Agents Med Chem 2024; 24(12): 896-915.
[http://dx.doi.org/10.2174/0118715206293653240322041047] [PMID: 38529608]
[73]
Sánchez-Moreno P, Boulaiz H, Ortega-Vinuesa JL, Peula-García JM, Aránega A. Novel drug delivery system based on docetaxel-loaded nanocapsules as a therapeutic strategy against breast cancer cells. Int J Mol Sci 2012; 13(4): 4906-19.
[http://dx.doi.org/10.3390/ijms13044906] [PMID: 22606019]
[74]
Marcu A, Pop S, Dumitrache F, et al. Magnetic iron oxide nanoparticles as drug delivery system in breast cancer. Appl Surf Sci 2013; 281: 60-5.
[http://dx.doi.org/10.1016/j.apsusc.2013.02.072]
[75]
Chang J, Mo L, Song J, et al. A pH-responsive mesoporous silica nanoparticle-based drug delivery system for targeted breast cancer therapy. J Mater Chem B Mater Biol Med 2022; 10(17): 3375-85.
[http://dx.doi.org/10.1039/D1TB02828F] [PMID: 35388835]
[76]
Khan MI, Hossain MI, Hossain MK, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review. ACS Appl Bio Mater 2022; 5(3): 971-1012.
[http://dx.doi.org/10.1021/acsabm.2c00002] [PMID: 35226465]
[77]
Lohiya G, Katti DS. Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targeted drug delivery system for breast cancer therapy. Carbohydr Polym 2022; 277: 118822.
[http://dx.doi.org/10.1016/j.carbpol.2021.118822] [PMID: 34893239]
[78]
Kong X, Qi Y, Wang X, et al. Nanoparticle drug delivery systems and their applications as targeted therapies for triple negative breast cancer. Prog Mater Sci 2023; 134: 101070.
[http://dx.doi.org/10.1016/j.pmatsci.2023.101070]
[79]
Choi J, Cha YJ, Koo JS. Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog Lipid Res 2018; 69: 11-20.
[http://dx.doi.org/10.1016/j.plipres.2017.11.002] [PMID: 29175445]
[80]
Fang X, Cao J, Shen A. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 2020; 57: 101662.
[http://dx.doi.org/10.1016/j.jddst.2020.101662]
[81]
Sheikh A, Md S, Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother 2022; 146: 112530.
[http://dx.doi.org/10.1016/j.biopha.2021.112530] [PMID: 34915416]
[82]
Yedjou C, Tchounwou P, Payton M, et al. Assessing the racial and ethnic disparities in breast cancer mortality in the United States. Int J Environ Res Public Health 2017; 14(5): 486.
[http://dx.doi.org/10.3390/ijerph14050486] [PMID: 28475137]
[83]
Marshall SK, Angsantikul P, Pang Z, Nasongkla N, Hussen RSD, Thamphiwatana SD. Biomimetic targeted theranostic nanoparticles for breast cancer treatment. Molecules 2022; 27(19): 6473.
[http://dx.doi.org/10.3390/molecules27196473]
[84]
Burstein HJ, Curigliano G, Thürlimann B, et al. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen international consensus guidelines for treatment of early breast cancer 2021. Ann Oncol 2021; 32(10): 1216-35.
[http://dx.doi.org/10.1016/j.annonc.2021.06.023] [PMID: 34242744]
[85]
Waks AG, Winer EP. Breast cancer treatment. JAMA 2019; 321(3): 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[86]
Dongsar TT, Dongsar TS, Abourehab MAS, Gupta N, Kesharwani P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur Polym J 2023; 187: 111898.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.111898]
[87]
Hu C, Cun X, Ruan S, et al. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials 2018; 168: 64-75.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.046] [PMID: 29626787]
[88]
Anderson BO, Yip CH, Smith RA, et al. Guideline implementation for breast healthcare in low-income and middle-income countries. Cancer 2008; 113(S8) (Suppl.): 2221-43.
[http://dx.doi.org/10.1002/cncr.23844] [PMID: 18816619]
[89]
Kang X, Chen H, Li S, et al. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids Surf B Biointerfaces 2018; 161: 597-605.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.008] [PMID: 29156336]
[90]
Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol 2020; 60: 14-27.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.012] [PMID: 31421262]
[91]
De A, Kuppusamy G. Metformin in breast cancer: Preclinical and clinical evidence. Curr Probl Cancer 2020; 44(1): 100488.
[http://dx.doi.org/10.1016/j.currproblcancer.2019.06.003] [PMID: 31235186]
[92]
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK, Karri VVSR. Nanocarrier based approaches for targeting breast cancer stem cells. Artif Cells Nanomed Biotechnol 2018; 46(5): 885-98.
[http://dx.doi.org/10.1080/21691401.2017.1366337] [PMID: 28826237]
[93]
Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv 2017; 14(1): 123-36.
[http://dx.doi.org/10.1080/17425247.2016.1208650]
[94]
Du M, Ouyang Y, Meng F, et al. Nanotargeted agents: An emerging therapeutic strategy for breast cancer. Nanomedicine (Lond) 2019; 14(13): 1771-86.
[http://dx.doi.org/10.2217/nnm-2018-0481] [PMID: 31298065]
[95]
Bamrungsap S. Nanotechnology in therapeutics : A focus on nanoparticles as a drug delivery system Review. Carbohydr Polym 2016; 1: 71-88.
[96]
Kundu M, Sadhukhan P, Ghosh N, et al. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res 2019; 18: 161-72.
[http://dx.doi.org/10.1016/j.jare.2019.02.036] [PMID: 31032117]
[97]
Tran P, Lee SE, Kim DH, Pyo YC, Park JS. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J Pharm Investig 2020; 50(3): 261-70.
[http://dx.doi.org/10.1007/s40005-019-00459-7]
[98]
Pastor-Barriuso R, Fernández MF, Castaño-Vinyals G, et al. Total effective xenoestrogen burden in serum samples and risk for breast cancer in a population-based multicase–control study in Spain. Environ Health Perspect 2016; 124(10): 1575-82.
[http://dx.doi.org/10.1289/EHP157] [PMID: 27203080]
[99]
Khan MS, Gowda BHJ, Nasir N, et al. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm 2023; 643: 123276.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123276] [PMID: 37516217]
[100]
Aghebati-Maleki A, Dolati S, Ahmadi M, et al. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 2020; 235(3): 1962-72.
[http://dx.doi.org/10.1002/jcp.29126] [PMID: 31441032]
[101]
Grewal IK, Singh S, Arora S, Sharma N. Polymeric nanoparticles for breast cancer therapy: A comprehensive review. Biointerface Res Appl Chem 2020; 11(4): 11151-71.
[http://dx.doi.org/10.33263/BRIAC114.1115111171]
[102]
Tagde P, Kulkarni GT, Mishra DK, Kesharwani P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J Drug Deliv Sci Technol 2020; 56: 101613.
[http://dx.doi.org/10.1016/j.jddst.2020.101613]
[103]
Khot P, Nangare K, Payghan V, Kamble T, Payghan S. Drug delivery systems based on polymeric micelles. Asian J Res Pharm Sci 2022; 37-41.
[http://dx.doi.org/10.52711/2231-5659.2022.00007]
[104]
Kaur J, Gulati M, Jha NK, et al. Recent advances in developing polymeric micelles for treating cancer: Breakthroughs and bottlenecks in their clinical translation. Drug Discov Today 2022; 27(5): 1495-512.
[http://dx.doi.org/10.1016/j.drudis.2022.02.005] [PMID: 35158056]
[105]
Chaudhuri A, Ramesh K, Kumar DN, et al. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022; 77: 103886.
[http://dx.doi.org/10.1016/j.jddst.2022.103886]
[106]
Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release 2012; 159(3): 312-23.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.012] [PMID: 22285551]
[107]
Keskin D, Tezcaner A. Micelles as delivery system for cancer treatment. Curr Pharm Des 2018; 23(35): 23.
[http://dx.doi.org/10.2174/1381612823666170526102757] [PMID: 28552065]
[108]
Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: An ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res 2023; 13(1): 135-63.
[http://dx.doi.org/10.1007/s13346-022-01197-4] [PMID: 35727533]
[109]
Negut I, Bita B. Polymeric micellar systems—a special emphasis on “smart” drug delivery. Pharmaceutics 2023; 15(3): 976.
[http://dx.doi.org/10.3390/pharmaceutics15030976] [PMID: 36986837]
[110]
Zamani M, Aghajanzadeh M, Sharafi A, Rostamizadeh K, Danafar H. Targeted drug delivery via folate decorated nanocarriers based on linear polymer for treatment of breast cancer. Pharm Dev Technol 2022; 27(1): 19-24.
[http://dx.doi.org/10.1080/10837450.2021.2018457] [PMID: 34895033]
[111]
Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Yt K. Progress in polymeric micelles for drug delivery applications. Pharmaceutics 2022; 14(8): 1636.
[http://dx.doi.org/10.3390/pharmaceutics14081636] [PMID: 36015262]
[112]
Yang D, Li Z, Zhang Y, Chen X, Liu M, Yang C. Design of dual-targeted pH-sensitive hybrid polymer micelles for breast cancer treatment: Three birds with one stone. Pharmaceutics 2023; 15(6): 1580.
[http://dx.doi.org/10.3390/pharmaceutics15061580] [PMID: 37376029]
[113]
Nasr M, Hashem F, Teiama M, Tantawy N, Abdelmoniem R. Folic acid grafted mixed polymeric micelles as a targeted delivery strategy for tamoxifen citrate in treatment of breast cancer. Drug Deliv Transl Res 2024; 14(4): 945-58.
[http://dx.doi.org/10.1007/s13346-023-01443-3] [PMID: 37906415]
[114]
Lu M, Huang X, Cai X, et al. Hypoxia-responsive stereocomplex polymeric micelles with improved drug loading inhibit breast cancer metastasis in an orthotopic murine model. ACS Appl Mater Interfaces 2022; 14(18): 20551-65.
[http://dx.doi.org/10.1021/acsami.1c23737] [PMID: 35476401]
[115]
Dristant U, Mukherjee K, Saha S, Maity D. An overview of polymeric nanoparticles-based drug delivery system in cancer treatment. Technol Cancer Res Treat 2023; 22
[http://dx.doi.org/10.1177/15330338231152083] [PMID: 36718541]
[116]
Imran M, Shah MR. Chapter 10 - Amphiphilic block copolymers–based micelles for drug delivery. Design and Development of New Nanocarriers. William Andrew Publishing. 2018; pp. 365-400.
[http://dx.doi.org/10.1016/B978-0-12-813627-0.00010-7]
[117]
Yang J, Jia C, Yang J. Designing nanoparticle-based drug delivery systems for precision medicine. Int J Med Sci 2021; 18(13): 2943-9.
[http://dx.doi.org/10.7150/ijms.60874] [PMID: 34220321]
[118]
Barriga HMG, Holme MN, Stevens MM. Europe PMC funders group cubosomes ; The next generation of smart lipid nanoparticles ? Angew Chem Int Ed Engl 2020; 58(10): 2958-78.
[119]
Chai Z, Teng C, Yang L, et al. Doxorubicin delivered by redox-responsive Hyaluronic Acid–Ibuprofen prodrug micelles for treatment of metastatic breast cancer. Carbohydr Polym 2020; 245: 116527.
[http://dx.doi.org/10.1016/j.carbpol.2020.116527] [PMID: 32718631]
[120]
Simonyan A, Gitsov I. Linear-dendritic supramolecular complexes as nanoscale reaction vessels for “green” chemistry. Diels-Alder reactions between fullerene C60 and polycyclic aromatic hydrocarbons in aqueous medium. Langmuir 2008; 24(20): 11431-41.
[http://dx.doi.org/10.1021/la801593y] [PMID: 18781794]
[121]
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf B Biointerfaces 2019; 173: 581-90.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.022] [PMID: 30352379]
[122]
Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine 2010; 5(3): 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[123]
Bai S, Ma X, Zhang T, et al. Polymeric micelles as delivery systems. Nanoengineered Biomaterials for Advanced Drug Delivery. Woodhead Publishing Series in Biomaterials 2020; pp. 261-78.
[http://dx.doi.org/10.1016/B978-0-08-102985-5.00012-7]
[124]
Kafle U, Agrawal S, Dash AK. Injectable nano drug delivery systems for the treatment of breast cancer. Pharmaceutics 2022; 14(12): 2783.
[http://dx.doi.org/10.3390/pharmaceutics14122783] [PMID: 36559276]
[125]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[126]
Pramanik A, Xu Z, Shamsuddin SH, et al. Affimer tagged cubosomes: Targeting of carcinoembryonic antigen expressing colorectal cancer cells using in vitro and in vivo models. ACS Appl Mater Interfaces 2022; 14(9): 11078-91.
[http://dx.doi.org/10.1021/acsami.1c21655] [PMID: 35196008]
[127]
Zamani M, Rostamizadeh K, Kheiri Manjili H, Danafar H. in vitro and in vivo biocompatibility study of folate-lysine-PEG-PCL as nanocarrier for targeted breast cancer drug delivery. Eur Polym J 2018; 103: 260-70.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.04.020]
[128]
Ahmad Shariff SH, Wan Abdul Khodir WK, Abd Hamid S, Haris MS, Ismail MW. Poly(caprolactone)-b-poly(ethylene glycol)-based polymeric micelles as drug carriers for efficient breast cancer therapy: A systematic review. Polymers 2022; 14(22): 4847.
[http://dx.doi.org/10.3390/polym14224847] [PMID: 36432974]
[129]
Junnuthula V, Kolimi P, Nyavanandi D, Sampathi S, Vora LK, Dyawanapelly S. Polymeric micelles for breast cancer therapy: Recent updates, clinical translation and regulatory considerations. Pharmaceutics 2022; 14(9): 1860.
[http://dx.doi.org/10.3390/pharmaceutics14091860] [PMID: 36145608]
[130]
Bai S, Ma X, Shi X, et al. Smart unimolecular micelle-based polyprodrug with dual-redox stimuli response for tumor microenvironment: Enhanced in vivo delivery efficiency and tumor penetration. ACS Appl Mater Interfaces 2019; 11(39): 36130-40.
[http://dx.doi.org/10.1021/acsami.9b13214] [PMID: 31490659]
[131]
Wang CY, Wang TC, Liang WM, et al. Effect of chinese herbal medicine therapy on overall and cancer related mortality in patients with advanced nasopharyngeal carcinoma in taiwan. Front Pharmacol 2021; 11: 607413.
[http://dx.doi.org/10.3389/fphar.2020.607413] [PMID: 33708119]
[132]
Zhang J, Kinoh H, Hespel L, et al. Effective treatment of drug resistant recurrent breast tumors harboring cancer stem-like cells by staurosporine/epirubicin co-loaded polymeric micelles. J Control Release 2017; 264: 127-35.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.025] [PMID: 28842317]
[133]
Pramanik A, Xu Z, Ingram N, et al. Hyaluronic-acid-tagged cubosomes deliver cytotoxics specifically to CD44-positive cancer cells. Mol Pharm 2022; 19(12): 4601-11.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00439] [PMID: 35938983]
[134]
Hanafy N, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers 2018; 10(7): 238.
[http://dx.doi.org/10.3390/cancers10070238] [PMID: 30037052]
[135]
Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006; 3(1): 139-62.
[http://dx.doi.org/10.1517/17425247.3.1.139] [PMID: 16370946]
[136]
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003; 2(5): 347-60.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[137]
Zhang Z, Yu M, An T, et al. Tumor microenvironment stimuli-responsive polymeric prodrug micelles for improved cancer therapy. Pharm Res 2020; 37(1): 4.
[http://dx.doi.org/10.1007/s11095-019-2709-1] [PMID: 31823030]
[138]
Liu P, Situ JQ, Li WS, et al. High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine 2015; 11(4): 855-66.
[http://dx.doi.org/10.1016/j.nano.2015.02.002] [PMID: 25725489]
[139]
Panagi M, Mpekris F, Chen P, et al. Polymeric micelles effectively reprogram the tumor microenvironment to potentiate nano-immunotherapy in mouse breast cancer models. Nat Commun 2022; 13(1): 7165.
[http://dx.doi.org/10.1038/s41467-022-34744-1] [PMID: 36418896]
[140]
Ordanini S, Cellesi F. Complex polymeric architectures self-assembling in unimolecular micelles: Preparation, characterization and drug nanoencapsulation. Pharmaceutics 2018; 10(4): 209.
[http://dx.doi.org/10.3390/pharmaceutics10040209] [PMID: 30388744]
[141]
Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett 2002; 2(9): 979-82.
[http://dx.doi.org/10.1021/nl025604a]
[142]
Yang Y, Long Y, Wang Y, et al. Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. Int J Pharm 2020; 577: 119085.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119085] [PMID: 32001290]
[143]
Birhan YS, Hailemeskel BZ, Mekonnen TW, et al. Fabrication of redox-responsive Bi(mPEG-PLGA)-Se2 micelles for doxorubicin delivery. Int J Pharm 2019; 567: 118486.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118486] [PMID: 31260783]
[144]
Majumder N, G Das N, Das SK. Polymeric micelles for anticancer drug delivery. Ther Deliv 2020; 11(10): 613-35.
[http://dx.doi.org/10.4155/tde-2020-0008] [PMID: 32933425]
[145]
Pham DT, Chokamonsirikun A, Phattaravorakarn V, Tiyaboonchai W. Polymeric micelles for pulmonary drug delivery: A comprehensive review. J Mater Sci 2021; 56(3): 2016-36.
[http://dx.doi.org/10.1007/s10853-020-05361-4]
[146]
Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013; 2013: 1-15.
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[147]
Chu L, Zhang Y, Feng Z, et al. Synthesis and application of a series of amphipathic chitosan derivatives and the corresponding magnetic nanoparticle-embedded polymeric micelles. Carbohydr Polym 2019; 223: 114966.
[http://dx.doi.org/10.1016/j.carbpol.2019.06.005] [PMID: 31426997]
[148]
Li Y, Yu A, Li L, Zhai G. The development of stimuli-responsive polymeric micelles for effective delivery of chemotherapeutic agents. J Drug Target 2018; 26(9): 753-65.
[http://dx.doi.org/10.1080/1061186X.2017.1419477] [PMID: 29256633]
[149]
Zhuang W, Ma B, Hu J, et al. Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics. Theranostics 2019; 9(22): 6618-30.
[http://dx.doi.org/10.7150/thno.33901] [PMID: 31588239]
[150]
Gener P, Montero S, Xandri-Monje H, et al. Zileuton™ loaded in polymer micelles effectively reduce breast cancer circulating tumor cells and intratumoral cancer stem cells. Nanomedicine 2020; 24: 102106.
[http://dx.doi.org/10.1016/j.nano.2019.102106] [PMID: 31666201]
[151]
Guzzarlamudi S, Singh PK, Pawar VK, et al. Synergistic chemotherapeutic activity of curcumin bearing methoxypolyethylene glycol-g-linoleic acid based micelles on breast cancer cells. J Nanosci Nanotechnol 2016; 16(4): 4180-90.
[http://dx.doi.org/10.1166/jnn.2016.11699] [PMID: 27451784]
[152]
Cao Z, Liu R, Li Y, et al. MTX-PEG-modified CG/DMMA polymeric micelles for targeted delivery of doxorubicin to induce synergistic autophagic death against triple-negative breast cancer. Breast Cancer Res 2023; 25(1): 3.
[http://dx.doi.org/10.1186/s13058-022-01599-9] [PMID: 36635685]
[153]
Ma YC, Wang JX, Tao W, et al. Redox-responsive polyphosphoester-based micellar nanomedicines for overriding chemoresistance in breast cancer cells. ACS Appl Mater Interfaces 2015; 7(47): 26315-25.
[http://dx.doi.org/10.1021/acsami.5b09195] [PMID: 26552849]
[154]
Chary PS, Rajana N, Devabattula G, et al. Design, fabrication and evaluation of stabilized polymeric mixed micelles for effective management in cancer therapy. Pharm Res 2022; 39(11): 2761-80.
[http://dx.doi.org/10.1007/s11095-022-03395-8] [PMID: 36171346]
[155]
Lv L, Qiu K, Yu X, et al. Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer. J Biomed Nanotechnol 2016; 12(5): 973-85.
[http://dx.doi.org/10.1166/jbn.2016.2231] [PMID: 27305819]
[156]
Değirmenci NS, Uslu M, Kırbaş OK, Şahin F, Önay Uçar E. Lapatinib loaded exosomes as a drug delivery system in breast cancer. J Drug Deliv Sci Technol 2022; 75: 103584.
[http://dx.doi.org/10.1016/j.jddst.2022.103584]
[157]
Cenik M, Abas BI, Kocabiyik B, Demirbolat GM, Cevik O. Development of a new drug delivery system from HELA-derived exosomes and the effect of docetaxel-loaded exosomes on mitochondrial apoptosis. J Pharm Innov 2022; 17(3): 931-9.
[http://dx.doi.org/10.1007/s12247-021-09566-1]
[158]
Tran NHB, Nguyen DDN, Nguyen NM, et al. Dual-targeting exosomes for improved drug delivery in breast cancer. Nanomedicine 2023; 18(7): 599-611.
[http://dx.doi.org/10.2217/nnm-2022-0328] [PMID: 37194929]
[159]
Ferreira D, Moreira JN, Rodrigues LR. New advances in exosome-based targeted drug delivery systems. Crit Rev Oncol Hematol 2022; 172: 103628.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103628] [PMID: 35189326]
[160]
Bovy N, Blomme B, Frères P, et al. Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget 2015; 6(12): 10253-66.
[http://dx.doi.org/10.18632/oncotarget.3520] [PMID: 25860935]
[161]
Phinney DG. Building a consensus regarding the nature and origin of mesenchymal stem cells. J Cell Biochem 2002; 85(S38): 7-12.
[http://dx.doi.org/10.1002/jcb.10084] [PMID: 12046852]
[162]
Boelens MC, Wu TJ, Nabet BY, et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 2014; 159(3): 499-513.
[http://dx.doi.org/10.1016/j.cell.2014.09.051] [PMID: 25417103]
[163]
Li S, Wu Y, Ding F, et al. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale 2020; 12(19): 10854-62.
[http://dx.doi.org/10.1039/D0NR00523A] [PMID: 32396590]
[164]
Bianco P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 2014; 30(1): 677-704.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013132] [PMID: 25150008]
[165]
Wei Y, Li M, Cui S, et al. Shikonin inhibits the proliferation of human breast cancer cells by reducing tumor-derived exosomes. Molecules 2016; 21(6): 777.
[http://dx.doi.org/10.3390/molecules21060777] [PMID: 27322220]
[166]
Chen W, Liu X, Lv M, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 2014; 9(4): e95240.
[http://dx.doi.org/10.1371/journal.pone.0095240] [PMID: 24740415]
[167]
Gao W, Hu CMJ, Fang RH, Zhang L. Liposome-like nanostructures for drug delivery. J Mater Chem B Mater Biol Med 2013; 1(48): 6569-85.
[http://dx.doi.org/10.1039/c3tb21238f] [PMID: 24392221]
[168]
Jarred M K. Extraction of neonatal rat myocardium HHS Public Access. Physiol Behav 2017; 176: 139-48.
[http://dx.doi.org/10.1038/ncb1800.Glioblastoma]
[169]
Zheng Y, Li M, Weng B, Mao H, Zhao J. Exosome-based delivery nanoplatforms: Next-generation theranostic platforms for breast cancer. Biomater Sci 2022; 10(7): 1607-25.
[http://dx.doi.org/10.1039/D2BM00062H] [PMID: 35188522]
[170]
Pullan J, Dailey K, Bhallamudi S, et al. Modified bovine milk exosomes for doxorubicin delivery to triple-negative breast cancer cells. ACS Appl Bio Mater 2022; 5(5): 2163-75.
[http://dx.doi.org/10.1021/acsabm.2c00015] [PMID: 35417133]
[171]
Melzer C, Rehn V, Yang Y, Bähre H, von der Ohe J, Hass R. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers 2019; 11(6): 798.
[http://dx.doi.org/10.3390/cancers11060798] [PMID: 31181850]
[172]
Wang T, Fu Y, Sun S, et al. Exosome-based drug delivery systems in cancer therapy. Chin Chem Lett 2023; 34(2): 107508.
[http://dx.doi.org/10.1016/j.cclet.2022.05.022]
[173]
Malekian F, Shamsian A, Kodam SP, Ullah M. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective. J Physiol 2023; 601(22): 4853-72.
[http://dx.doi.org/10.1113/JP282799] [PMID: 35570717]
[174]
Uslu D, Abas BI, Demirbolat GM, Cevik O. Effect of platelet exosomes loaded with doxorubicin as a targeted therapy on triple-negative breast cancer cells. Mol Divers 2022.
[http://dx.doi.org/10.1007/s11030-022-10591-6] [PMID: 36576666]
[175]
Kar R, Dhar R, Mukherjee S, et al. Exosome-based smart drug delivery tool for cancer theranostics. ACS Biomater Sci Eng 2023; 9(2): 577-94.
[http://dx.doi.org/10.1021/acsbiomaterials.2c01329] [PMID: 36621949]
[176]
Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9(1): 12.
[http://dx.doi.org/10.1186/1478-811X-9-12] [PMID: 21569606]
[177]
Derman S, Mustafaeva ZA, Abamor ES, Bagirova M, Allahverdiyev A. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. J Biomed Sci 2015; 22(1): 89.
[http://dx.doi.org/10.1186/s12929-015-0195-2] [PMID: 26482775]
[178]
Rayamajhi S, Nguyen TDT, Marasini R, Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater 2019; 94: 482-94.
[http://dx.doi.org/10.1016/j.actbio.2019.05.054] [PMID: 31129363]
[179]
Santos JC, Lima NS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep 2018; 8(1): 829.
[http://dx.doi.org/10.1038/s41598-018-19339-5] [PMID: 29339789]
[180]
Chen W, Cai Y, Lv M, et al. Exosomes from docetaxel-resistant breast cancer cells alter chemosensitivity by delivering microRNAs. Tumour Biol 2014; 35(10): 9649-59.
[http://dx.doi.org/10.1007/s13277-014-2242-0]
[181]
Gangoda L, Boukouris S, Liem M, Kalra H, Mathivanan S. Extracellular vesicles including exosomes are mediators of signal transduction: Are they protective or pathogenic? Proteomics 2015; 15(2-3): 260-71.
[http://dx.doi.org/10.1002/pmic.201400234] [PMID: 25307053]
[182]
Agrawal AK, Aqil F, Jeyabalan J, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine 2017; 13(5): 1627-36.
[http://dx.doi.org/10.1016/j.nano.2017.03.001] [PMID: 28300659]
[183]
Kumar DN, Chaudhuri A, Aqil F, et al. Exosomes as emerging drug delivery and diagnostic modality for breast cancer: Recent advances in isolation and application. Cancers 2022; 14(6): 1435.
[http://dx.doi.org/10.3390/cancers14061435] [PMID: 35326585]
[184]
Liu T, Li T, Zheng Y, et al. Evaluating adipose-derived stem cell exosomes as MIRNA drug delivery systems for the treatment of bladder cancer. Cancer Med 2022; 11(19): 3687-99.
[http://dx.doi.org/10.1002/cam4.4745] [PMID: 35441482]
[185]
Kumar DN, Chaudhuri A, Dehari D, et al. Combination therapy comprising paclitaxel and 5-fluorouracil by using folic acid functionalized bovine milk exosomes improves the therapeutic efficacy against breast cancer. Life 2022; 12(8): 1143.
[http://dx.doi.org/10.3390/life12081143] [PMID: 36013322]
[186]
Li T, Li X, Han G, et al. The therapeutic potential and clinical significance of exosomes as carriers of drug delivery system. Pharmaceutics 2022; 15(1): 21.
[http://dx.doi.org/10.3390/pharmaceutics15010021] [PMID: 36678650]
[187]
Barnwal RP, Kumar S, Singh G, Khera A, Alajangi HK, Khajuria A. Highlighting the potential role of exosomes as the targeted nanotherapeutic carrier in metastatic breast cancer. Curr Drug Deliv 2023; 20(4): 317-34.
[http://dx.doi.org/10.2174/1567201819666220404103936] [PMID: 35379150]
[188]
Zeng W, Wen Z, Chen H, Duan Y. Exosomes as carriers for drug delivery in cancer therapy. Pharm Res 2023; 40(4): 873-87.
[http://dx.doi.org/10.1007/s11095-022-03224-y] [PMID: 35352281]
[189]
Rezakhani L, Rahmati S, Ghasemi S, Alizadeh M, Alizadeh A. A comparative study of the effects of crab derived exosomes and doxorubicin in 2 & 3-dimensional in vivo models of breast cancer. Chem Phys Lipids 2022; 243: 105179.
[http://dx.doi.org/10.1016/j.chemphyslip.2022.105179] [PMID: 35150707]
[190]
Moon B, Chang S. Exosome as a delivery vehicle for cancer therapy. Cells 2022; 11(3): 316.
[http://dx.doi.org/10.3390/cells11030316] [PMID: 35159126]
[191]
Weaver JW, Zhang J, Rojas J, Musich PR, Yao Z, Jiang Y. The application of exosomes in the treatment of triple-negative breast cancer. Front Mol Biosci 2022; 9: 1022725.
[http://dx.doi.org/10.3389/fmolb.2022.1022725] [PMID: 36438660]
[192]
Rao D, Huang D, Sang C, Zhong T, Zhang Z, Tang Z. Advances in mesenchymal stem cell-derived exosomes as drug delivery vehicles. Front Bioeng Biotechnol 2022; 9: 797359.
[http://dx.doi.org/10.3389/fbioe.2021.797359] [PMID: 35186913]
[193]
Zhang J, Zhang H, Yao YF, Zhong SL, Zhao JH, Tang JH. β-elemene reverses chemoresistance of breast cancer cells by reducing resistance transmission via exosomes. Cell Physiol Biochem 2015; 36(6): 2274-86.
[http://dx.doi.org/10.1159/000430191] [PMID: 26279432]
[194]
Chen EI, Crew KD, Trivedi M, et al. Identifying predictors of taxane-induced peripheral neuropathy using mass spectrometry-based proteomics technology. PLoS One 2015; 10(12): e0145816.
[http://dx.doi.org/10.1371/journal.pone.0145816] [PMID: 26710119]
[195]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(1979): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143]
[196]
Lee JH, Kim JA, Jeong S, Rhee WJ. Simultaneous and multiplexed detection of exosome microRNAs using molecular beacons. Biosens Bioelectron 2016; 86: 202-10.
[http://dx.doi.org/10.1016/j.bios.2016.06.058] [PMID: 27372573]
[197]
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles — Endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1846(1): 75-87.
[http://dx.doi.org/10.1016/j.bbcan.2014.04.005] [PMID: 24747178]
[198]
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016; 6(4): 287-96.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[199]
Lin R, Wang S, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem 2013; 383(1-2): 13-20.
[http://dx.doi.org/10.1007/s11010-013-1746-z] [PMID: 23812844]
[200]
Pang SW, Teow SY. Emerging therapeutic roles of exosomes in HIV-1 infection, exosomes: A clinical compendium. Exosomes 2019; 126: 147-78.
[http://dx.doi.org/10.1016/B978-0-12-816053-4.00007-9]
[201]
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 2017; 38(6): 754-63.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[202]
Thomas S, Liao Z, Clark D, et al. Exosomal proteome profiling: A potential multi-marker cellular phenotyping tool to characterize hypoxia-induced radiation resistance in breast cancer. Proteomes 2013; 1(2): 87-108.
[http://dx.doi.org/10.3390/proteomes1020087] [PMID: 24860738]
[203]
Gilligan K, Dwyer R. Engineering exosomes for cancer therapy. Int J Mol Sci 2017; 18(6): 1122.
[http://dx.doi.org/10.3390/ijms18061122] [PMID: 28538671]
[204]
Huang S, Dong M, Chen Q. Tumor-derived exosomes and their role in breast cancer metastasis. Int J Mol Sci 2022; 23(22): 13993.
[http://dx.doi.org/10.3390/ijms232213993] [PMID: 36430471]
[205]
Yu M, Gai C, Li Z, et al. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci 2019; 110(10): 3173-82.
[http://dx.doi.org/10.1111/cas.14181] [PMID: 31464035]
[206]
Yu D, Wu Y, Zhang X, et al. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222. Tumour Biol 2016; 37(3): 3227-35.
[http://dx.doi.org/10.1007/s13277-015-4161-0]
[207]
Wang K, Ye H, Zhang X, et al. An exosome-like programmable-bioactivating paclitaxel prodrug nanoplatform for enhanced breast cancer metastasis inhibition. Biomaterials 2020; 257: 120224.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120224] [PMID: 32736255]
[208]
Risha Y, Minic Z, Ghobadloo SM, Berezovski MV. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci Rep 2020; 10(1): 13572.
[http://dx.doi.org/10.1038/s41598-020-70393-4] [PMID: 32782317]
[209]
Li R, Lin Z, Zhang Q, et al. Injectable and in situ -formable thiolated chitosan-coated liposomal hydrogels as curcumin carriers for prevention of in vivo breast cancer recurrence. ACS Appl Mater Interfaces 2020; 12(15): 17936-48.
[http://dx.doi.org/10.1021/acsami.9b21528] [PMID: 32208630]
[210]
Mi D, Li J, Wang R, et al. Postsurgical wound management and prevention of triple-negative breast cancer recurrence with a pryoptosis-inducing, photopolymerizable hydrogel. J Control Release 2023; 356: 205-18.
[http://dx.doi.org/10.1016/j.jconrel.2023.02.042] [PMID: 36870543]
[211]
Garshasbi H, Salehi S, Naghib SM, Ghorbanzadeh S, Zhang W. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems. Front Bioeng Biotechnol 2023; 10: 1126774.
[http://dx.doi.org/10.3389/fbioe.2022.1126774] [PMID: 36698640]
[212]
Kangarshahi BM, Naghib SM, Kangarshahi GM, Mozafari MR. Bioprinting of self-healing materials and nanostructures for biomedical applications: Recent advances and progresses on fabrication and characterization techniques. Bioprinting 2024; 38: e00335.
[http://dx.doi.org/10.1016/j.bprint.2024.e00335]
[213]
Wei W, Li H, Yin C, Tang F. Research progress in the application of in situ hydrogel system in tumor treatment. Drug Deliv 2020; 27(1): 460-8.
[http://dx.doi.org/10.1080/10717544.2020.1739171] [PMID: 32166987]
[214]
Reig-Vano B, Tylkowski B, Montané X, Giamberini M. Alginate-based hydrogels for cancer therapy and research. Int J Biol Macromol 2021; 170: 424-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.161] [PMID: 33383080]
[215]
Aslzad S, Heydari P, Abdolahinia ED, et al. Chitosan/gelatin hybrid nanogel containing doxorubicin as enzyme-responsive drug delivery system for breast cancer treatment. Colloid Polym Sci 2023; 301(3): 273-81.
[http://dx.doi.org/10.1007/s00396-023-05066-5]
[216]
Bayat F, Pourmadadi M, Eshaghi MM, Yazdian F, Rashedi H. Improving release profile and anticancer activity of 5-fluorouracil for breast cancer therapy using a double drug delivery system: Chitosan/Agarose/γ-Alumina Nanocomposite@Double emulsion. J Cluster Sci 2023; 34(5): 2565-77.
[http://dx.doi.org/10.1007/s10876-023-02405-y]
[217]
Jafari H, Namazi H. pH-sensitive biosystem based on laponite RD/chitosan/polyvinyl alcohol hydrogels for controlled delivery of curcumin to breast cancer cells. Colloids Surf B Biointerfaces 2023; 231: 113585.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113585] [PMID: 37837689]
[218]
Jaiswal C, Gupta T, Jadi PK, Moses JC, Mandal BB. Injectable anti-cancer drug loaded silk-based hydrogel for the prevention of cancer recurrence and post-lumpectomy tissue regeneration aiding triple-negative breast cancer therapy. Biomaterials Advances 2023; 145: 213224.
[http://dx.doi.org/10.1016/j.bioadv.2022.213224] [PMID: 36516618]
[219]
Chen J, Li J, Sun X, et al. Precision therapy of recurrent breast cancer through targeting different malignant tumor cells with a HER2/CD44-targeted hydrogel nanobot. Small 2023; 19(37): 2301043.
[http://dx.doi.org/10.1002/smll.202301043] [PMID: 37154208]
[220]
Kesharwani P, Bisht A, Alexander A, Dave V, Sharma S. Biomedical applications of hydrogels in drug delivery system: An update. J Drug Deliv Sci Technol 2021; 66: 102914.
[http://dx.doi.org/10.1016/j.jddst.2021.102914]
[221]
Abasalizadeh F, Moghaddam SV, Alizadeh E, et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 2020; 14(1): 8.
[http://dx.doi.org/10.1186/s13036-020-0227-7] [PMID: 32190110]
[222]
Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm 2021; 600: 120478.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120478] [PMID: 33722756]
[223]
Shinde SS, Ahmed S, Malik JA, et al. Therapeutic delivery of tumor suppressor miRNAs for breast cancer treatment. Biology 2023; 12(3): 467.
[http://dx.doi.org/10.3390/biology12030467] [PMID: 36979159]
[224]
Zhao D, Hu C, Fu Q, Lv H. Combined chemotherapy for triple negative breast cancer treatment by paclitaxel and niclosamide nanocrystals loaded thermosensitive hydrogel. Eur J Pharm Sci 2021; 167: 105992.
[http://dx.doi.org/10.1016/j.ejps.2021.105992] [PMID: 34517104]
[225]
Hyun H, Yoo Y, Kim S, et al. Hydrogel-mediated DOX⋅HCl/PTX delivery system for breast cancer therapy. Int J Mol Sci 2019; 20(19): 4671.
[http://dx.doi.org/10.3390/ijms20194671] [PMID: 31547111]
[226]
Luo Y, Wei X, Wan Y, Lin X, Wang Z, Huang P. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. Acta Biomater 2019; 92: 37-47.
[http://dx.doi.org/10.1016/j.actbio.2019.05.039] [PMID: 31108260]
[227]
Qi Y, Min H, Mujeeb A, et al. Injectable hexapeptide hydrogel for localized chemotherapy prevents breast cancer recurrence. ACS Appl Mater Interfaces 2018; 10(8): 6972-81.
[http://dx.doi.org/10.1021/acsami.7b19258] [PMID: 29409316]
[228]
Li T, Ashrafizadeh M, Shang Y, Nuri Ertas Y, Orive G. Chitosan-functionalized bioplatforms and hydrogels in breast cancer: Immunotherapy, phototherapy and clinical perspectives. Drug Discov Today 2024; 29(1): 103851.
[http://dx.doi.org/10.1016/j.drudis.2023.103851] [PMID: 38092146]
[229]
Goyal PK, Khurana S, Mittal A. Hydrogel-bound cytotoxic drug delivery system for breast cancer. Health Sci Rep 2023; 9: 100140.
[http://dx.doi.org/10.1016/j.hsr.2023.100140]
[230]
Chen J, Zhang X, Zhang J, et al. Multifunctional hydrogel for synergistic reoxygenation and chemo/photothermal therapy in metastatic breast cancer recurrence and wound infection. J Control Release 2024; 365: 74-88.
[http://dx.doi.org/10.1016/j.jconrel.2023.11.024] [PMID: 37972761]
[231]
Tang RZ, Liu ZZ, Gu SS, Liu XQ. Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. J Mater Chem B Mater Biol Med 2021; 9(6): 1521-35.
[http://dx.doi.org/10.1039/D0TB02737E] [PMID: 33474559]
[232]
Wang S, Qian Z, Xiao H, et al. A photo-responsive self-healing hydrogel loaded with immunoadjuvants and MoS 2 nanosheets for combating post-resection breast cancer recurrence. Nanoscale 2024; 16(17): 8417-26.
[http://dx.doi.org/10.1039/D4NR00372A] [PMID: 38591110]
[233]
Pansuriya R, Patel T, Kumar S, et al. Multifunctional ionic hydrogel-based transdermal delivery of 5-fluorouracil for the breast cancer treatment. ACS Appl Bio Mater 2024; 7(5): 3110-23.
[http://dx.doi.org/10.1021/acsabm.4c00152] [PMID: 38620030]
[234]
Zhang Z, Cao Q, Xia Y, et al. Combination of biodegradable hydrogel and antioxidant bioadhesive for treatment of breast cancer recurrence and radiation skin injury. Bioact Mater 2024; 31: 408-21.
[http://dx.doi.org/10.1016/j.bioactmat.2023.08.021] [PMID: 37692912]
[235]
Pourmadadi M, Darvishan S, Abdouss M, Yazdian F, Rahdar A, Díez-Pascual AM. pH-responsive polyacrylic acid (PAA)-carboxymethyl cellulose (CMC) hydrogel incorporating halloysite nanotubes (HNT) for controlled curcumin delivery. Ind Crops Prod 2023; 197: 116654.
[http://dx.doi.org/10.1016/j.indcrop.2023.116654]
[236]
Khan B, Arbab A, Khan S, et al. Recent progress in thermosensitive hydrogels and their applications in drug delivery area. MedComm – Biomaterials and Applications 2023; 2(3): e55.
[http://dx.doi.org/10.1002/mba2.55]
[237]
Zeng W, Luo Y, Gan D, Zhang Y, Deng H, Liu G. Advances in Doxorubicin-based nano-drug delivery system in triple negative breast cancer. Front Bioeng Biotechnol 2023; 11: 1271420.
[http://dx.doi.org/10.3389/fbioe.2023.1271420] [PMID: 38047286]
[238]
Hani U, Jaswanth Gowda BH, Siddiqua A, et al. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems. J Mol Liq 2023; 390: 123037.
[http://dx.doi.org/10.1016/j.molliq.2023.123037]
[239]
Jahanban-Esfahlan R, Derakhshankhah H, Haghshenas B, Massoumi B, Abbasian M, Jaymand M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int J Biol Macromol 2020; 156: 438-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.074] [PMID: 32298719]
[240]
Matini A, Naghib SM, Mozafari MR. Quantum dots in cancer theranostics: A thorough review of recent advancements in bioimaging, tracking, and therapy across various cancer types. Curr Pharm Biotechnol 2024; 25
[http://dx.doi.org/10.2174/0113892010294163240407153842] [PMID: 38644717]
[241]
Luo Y, Li J, Hu Y, et al. Injectable thermo-responsive nano-hydrogel loading triptolide for the anti-breast cancer enhancement via localized treatment based on “two strikes” effects. Acta Pharm Sin B 2020; 10(11): 2227-45.
[http://dx.doi.org/10.1016/j.apsb.2020.05.011] [PMID: 33304788]
[242]
Kozlovskaya V, Alexander JF, Wang Y, et al. Internalization of red blood cell-mimicking hydrogel capsules with pH-triggered shape responses. ACS Nano 2014; 8(6): 5725-37.
[http://dx.doi.org/10.1021/nn500512x] [PMID: 24848786]
[243]
Salehi S, Naghib SM, Garshasbi HR, Ghorbanzadeh S, Zhang W. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: A review. Front Bioeng Biotechnol 2023; 11: 1104126.
[http://dx.doi.org/10.3389/fbioe.2023.1104126] [PMID: 36911200]
[244]
Wei X, Liu C, Wang Z, Luo Y. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer. Int J Pharm 2020; 580: 119219.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119219] [PMID: 32165221]
[245]
Jia YP, Shi K, Yang F, et al. Multifunctional nanoparticle loaded injectable thermoresponsive hydrogel as NIR controlled release platform for local photothermal immunotherapy to prevent breast cancer postoperative recurrence and metastases. Adv Funct Mater 2020; 30(25): 2001059.
[http://dx.doi.org/10.1002/adfm.202001059]
[246]
Dattilo M, Patitucci F, Prete S, Parisi OI, Puoci F. Polysaccharide-based hydrogels and their application as drug delivery systems in cancer treatment: A review. J Funct Biomater 2023; 14(2): 55.
[http://dx.doi.org/10.3390/jfb14020055] [PMID: 36826854]
[247]
Alioghli Ziaei A, Erfan-Niya H, Fathi M, Amiryaghoubi N. In situ forming alginate/gelatin hybrid hydrogels containing doxorubicin loaded chitosan/AuNPs nanogels for the local therapy of breast cancer. Int J Biol Macromol 2023; 246: 125640.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125640] [PMID: 37394211]
[248]
Shao J, Ruan C, Xie H, et al. Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv Sci 2018; 5(5): 1700848.
[http://dx.doi.org/10.1002/advs.201700848] [PMID: 29876210]
[249]
Rahmani M, Pourmadadi M, Abdouss M, Rahdar A, Díez-Pascual AM. Gelatin/polyethylene glycol/g-C3N4 hydrogel with olive oil as a sustainable and biocompatible nanovehicle for targeted delivery of 5-fluorouracil. Ind Crops Prod 2024; 208: 117912.
[http://dx.doi.org/10.1016/j.indcrop.2023.117912]
[250]
Wang Z, Ye Q, Yu S, Akhavan B. Poly ethylene glycol (PEG)-based hydrogels for drug delivery in cancer therapy: A comprehensive review. Adv Healthc Mater 2023; 12(18): 2300105.
[http://dx.doi.org/10.1002/adhm.202300105] [PMID: 37052256]
[251]
Wu H, Song L, Chen L, et al. Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model. Acta Biomater 2018; 74: 302-11.
[http://dx.doi.org/10.1016/j.actbio.2018.04.052] [PMID: 29729897]
[252]
Quagliariello V, Iaffaioli RV, Armenia E, et al. Hyaluronic acid nanohydrogel loaded with quercetin alone or in combination to a macrolide derivative of rapamycin RAD001 (Everolimus) as a new treatment for hormone-responsive human breast cancer. J Cell Physiol 2017; 232(8): 2063-74.
[http://dx.doi.org/10.1002/jcp.25587] [PMID: 27607841]
[253]
Li Q, Wen J, Liu C, et al. Graphene-nanoparticle-based self-healing hydrogel in preventing postoperative recurrence of breast cancer. ACS Biomater Sci Eng 2019; 5(2): 768-79.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01475] [PMID: 33405838]
[254]
Davoodi P, Ng WC, Srinivasan MP, Wang CH. Codelivery of anti-cancer agents via double-walled polymeric microparticles/injectable hydrogel: A promising approach for treatment of triple negative breast cancer. Biotechnol Bioeng 2017; 114(12): 2931-46.
[http://dx.doi.org/10.1002/bit.26406] [PMID: 28832946]
[255]
Sabino IJ, Lima-Sousa R, Alves CG, et al. Injectable in situ forming hydrogels incorporating dual-nanoparticles for chemo-photothermal therapy of breast cancer cells. Int J Pharm 2021; 600: 120510.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120510] [PMID: 33766636]
[256]
Derakhshankhah H, Jahanban-Esfahlan R, Vandghanooni S, et al. A bio-inspired gelatin-based PH - and thermal-sensitive magnetic hydrogel for in vitro chemo/hyperthermia treatment of breast cancer cells. J Appl Polym Sci 2021; 138(24): 50578.
[http://dx.doi.org/10.1002/app.50578]
[257]
Xie W, Gao Q, Guo Z, et al. Injectable and self-healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple-negative breast cancer. ACS Appl Mater Interfaces 2017; 9(39): 33660-73.
[http://dx.doi.org/10.1021/acsami.7b10699] [PMID: 28901139]
[258]
Fong Y, Chen CH, Chen JP. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials 2017; 7(11): 388.
[http://dx.doi.org/10.3390/nano7110388] [PMID: 29135959]
[259]
Ding L, Li J, Wu C, Yan F, Li X, Zhang S. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. J Mater Chem B Mater Biol Med 2020; 8(16): 3527-33.
[http://dx.doi.org/10.1039/C9TB01610D] [PMID: 31737891]
[260]
Rajaei M, Rashedi H, Yazdian F, Navaei-Nigjeh M, Rahdar A, Díez-Pascual AM. Chitosan/agarose/graphene oxide nanohydrogel as drug delivery system of 5-fluorouracil in breast cancer therapy. J Drug Deliv Sci Technol 2023; 82: 104307.
[http://dx.doi.org/10.1016/j.jddst.2023.104307]
[261]
Pushpamalar J, Meganathan P, Tan HL, et al. Development of a polysaccharide-based hydrogel drug delivery system (DDS): An update. Gels 2021; 7(4): 153.
[http://dx.doi.org/10.3390/gels7040153] [PMID: 34698125]
[262]
Xiao Y, Gu Y, Qin L, et al. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021; 200: 111581.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111581] [PMID: 33524696]
[263]
Xin H, Naficy S. Drug delivery based on stimuli-responsive injectable hydrogels for breast cancer therapy: A review. Gels 2022; 8(1): 45.
[http://dx.doi.org/10.3390/gels8010045] [PMID: 35049580]
[264]
Liu Y, Ran Y, Ge Y, et al. pH-sensitive peptide hydrogels as a combination drug delivery system for cancer treatment. Pharmaceutics 2022; 14(3): 652.
[http://dx.doi.org/10.3390/pharmaceutics14030652] [PMID: 35336026]
[265]
Zheng Z, Yang X, Zhang Y, et al. An injectable and pH-responsive hyaluronic acid hydrogel as metformin carrier for prevention of breast cancer recurrence. Carbohydr Polym 2023; 304: 120493.
[http://dx.doi.org/10.1016/j.carbpol.2022.120493] [PMID: 36641175]
[266]
Yin Y, Hu B, Yuan X, Cai L, Gao H, Yang Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics 2020; 12(3): 290.
[http://dx.doi.org/10.3390/pharmaceutics12030290] [PMID: 32210184]
[267]
Bray LJ, Binner M, Holzheu A, et al. Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 2015; 53: 609-20.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.124] [PMID: 25890757]
[268]
Danyuo Y, Dozie-Nwachukwu S, Obayemi JD, et al. Swelling of poly(N-isopropylacrylamide) P(NIPA)-based hydrogels with bacterial-synthesized prodigiosin for localized cancer drug delivery. Mater Sci Eng C 2016; 59: 19-29.
[http://dx.doi.org/10.1016/j.msec.2015.09.090] [PMID: 26652344]
[269]
Qin M, Zong H, Kopelman R. Click conjugation of peptide to hydrogel nanoparticles for tumor-targeted drug delivery. Biomacromolecules 2014; 15(10): 3728-34.
[http://dx.doi.org/10.1021/bm501028c] [PMID: 25162488]
[270]
Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J 2015; 65: 252-67.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[271]
McKenzie M, Betts D, Suh A, Bui K, Kim L, Cho H. Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 2015; 20(11): 20397-408.
[http://dx.doi.org/10.3390/molecules201119705] [PMID: 26580588]
[272]
Segovia N, Pont M, Oliva N, Ramos V, Borrós S, Artzi N. Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer. Adv Healthc Mater 2015; 4(2): 271-80.
[http://dx.doi.org/10.1002/adhm.201400235] [PMID: 25113263]
[273]
Paquin F, Rivnay J, Salleo A, Stingelin N, Silva C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J Mater Chem C Mater Opt Electron Devices 2015; 3: 10715-22.
[http://dx.doi.org/10.1039/C5TC02043C]
[274]
Andrade F, Roca-Melendres MM, Durán-Lara EF, Rafael D, Schwartz S Jr. Stimuli-responsive hydrogels for cancer treatment: The role of pH, light, ionic strength and magnetic field. Cancers 2021; 13(5): 1164.
[http://dx.doi.org/10.3390/cancers13051164] [PMID: 33803133]
[275]
Abdel-Bar HM, Abdel-Reheem AY, Osman R, Awad GAS, Mortada N. Defining cisplatin incorporation properties in thermosensitive injectable biodegradable hydrogel for sustained delivery and enhanced cytotoxicity. Int J Pharm 2014; 477(1-2): 623-30.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.005] [PMID: 25445973]
[276]
Liu C, Guo X, Ruan C, et al. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy. Acta Biomater 2019; 96: 281-94.
[http://dx.doi.org/10.1016/j.actbio.2019.07.024] [PMID: 31319202]
[277]
He G, Yan X, Miao Z, et al. Anti-inflammatory catecholic chitosan hydrogel for rapid surgical trauma healing and subsequent prevention of tumor recurrence. Chin Chem Lett 2020; 31(7): 1807-11.
[http://dx.doi.org/10.1016/j.cclet.2020.02.032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy