Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Exploring the Potential Role of Phytopharmaceuticals in Alleviating Toxicities of Chemotherapeutic Agents

Author(s): Ujwal N. Katolkar* and Sanjay J. Surana

Volume 25, Issue 10, 2024

Published on: 24 June, 2024

Page: [753 - 779] Pages: 27

DOI: 10.2174/0113892037307940240606075208

Price: $65

Abstract

Background: Chemotherapy is the mainstay of cancer treatment, bringing patients optimism about recurrence and survival. However, the clinical effectiveness of chemotherapeutic drugs is frequently jeopardized by their intrinsic toxicity, resulting in side effects affecting the quality of life of cancer patients. This analysis explores the ethnopharmacological impact of phytopharmaceuticals, highlighting their traditional use in many cultures. The present study, which takes its cues from indigenous knowledge, aims to close the knowledge gap between traditional medicine and modern medicine in reducing the toxicities of chemotherapy treatments.

Aim: The present in-depth study aims to highlight the current research and upcoming developments in phytopharmaceuticals for reducing the toxicity of chemotherapeutic drugs. Further, we address the mechanisms through which phytopharmaceuticals may reduce chemotherapy-induced side effects that include nausea, vomiting, myelosuppression, nephropathy, neuropathy, and cardiotoxicity using data from a variety of preclinical and clinical investigations.

Materials and Methods: The literature search was carried out by employing search engines such as PubMed and Google Scholar with keywords such as cancer, chemotherapy, CNS toxicity, hematopoietic toxicity, renal toxicity, GI toxicity, CNS toxicity, and phytopharmaceuticals.

Results: Bioactive chemicals found in plants, such as fruits, vegetables, herbs, and spices, are being studied for their capacity to improve the safety and acceptability of chemotherapy regimens. The current review also dives into the investigation of phytopharmaceuticals as adjuvant medicines in cancer treatment, which is a viable path for addressing the pressing need to lessen chemotherapy-induced toxicities.

Conclusion: The present review revealed that the potential of phytopharmaceuticals in alleviating chemotherapeutic drug toxicities would pave the way for better cancer treatment and patient outcomes, harmonizing with the larger trend towards personalized and holistic approaches to chemotherapy.

Next »
[1]
Mathur, G.; Nain, S.; Sharma, P.K. Cancer: An overview. Acad. J. Cancer Res., 2015, 8(1), 01-9.
[2]
Brennan, K; Offiah, G; McSherry, EA; Hopkins, AM Tight junctions: A barrier to the initiation and progression of breast cancer? J. Biomed. Biotechnol., 2010, 2010, 460607.
[3]
Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol., 2007, 302(1), 1-12.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.028] [PMID: 16989803]
[4]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell., 2000, 100(1), 57-70.
[5]
Kreeger, P.K.; Lauffenburger, D.A. Cancer systems biology: A network modeling perspective. Carcinogenesis, 2010, 31(1), 2-8.
[http://dx.doi.org/10.1093/carcin/bgp261] [PMID: 19861649]
[6]
Fu, B.; Wang, N.; Tan, H.Y.; Li, S.; Cheung, F.; Feng, Y. Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: A review on experimental and clinical evidences. Front. Pharmacol., 2018, 9, 1394.
[http://dx.doi.org/10.3389/fphar.2018.01394] [PMID: 30555327]
[7]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[8]
Ko, J.K.; Auyeung, K.K. Target-oriented mechanisms of novel herbal therapeutics in the chemotherapy of gastrointestinal cancer and inflammation. Curr. Pharm. Des., 2013, 19(1), 48-66.
[PMID: 22950499]
[9]
Abbas, Z.; Rehman, S. An overview of cancer treatment modalities. Neoplasm., 2018, 1, 139-157.
[10]
Sharma, V; Gupta, A; Sharma, A; Bisht, S; Scholar, UG Extraction of brain tumour using graphical user interface in MATLAB. IJCRT, 2020, 8(6), 1-8.
[11]
Menon, S; Thomas, B Use of multi omics data in precision medicine and cancer research with applications in tumor subtyping, prognosis, and diagnosis. Int. J. Adv. Nurs. Edu. Res., 2021, 6(5), 19-29.
[12]
Ghoshal, S.; Rigney, G.; Cheng, D.; Brumit, R.; Gee, M.S.; Hodin, R.A.; Lillemoe, K.D.; Levine, W.C.; Succi, M.D. Institutional surgical response and associated volume trends throughout the COVID-19 pandemic and postvaccination recovery period. JAMA Netw. Open, 2022, 5(8), e2227443-e2227443.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.27443] [PMID: 35980636]
[13]
Yabroff, K.R.; Wu, X.C.; Negoita, S.; Stevens, J.; Coyle, L.; Zhao, J.; Mumphrey, B.J.; Jemal, A.; Ward, K.C. Association of the COVID-19 pandemic with patterns of statewide cancer services. J. Natl. Cancer Inst., 2022, 114(6), 907-909.
[http://dx.doi.org/10.1093/jnci/djab122] [PMID: 34181001]
[14]
Chen, R.; Aschmann, H.E.; Chen, Y.H.; Glymour, M.M.; Bibbins-Domingo, K.; Stokes, A.C.; Kiang, M.V. Racial and ethnic disparities in estimated excess mortality from external causes in the US, March to December 2020. JAMA Intern. Med., 2022, 182(7), 776-778.
[http://dx.doi.org/10.1001/jamainternmed.2022.1461] [PMID: 35532918]
[15]
Woolf, S.H.; Chapman, D.A.; Sabo, R.T.; Zimmerman, E.B. Excess deaths from COVID-19 and other causes in the US, March 1, 2020, to January 2, 2021. JAMA, 2021, 325(17), 1786-1789.
[http://dx.doi.org/10.1001/jama.2021.5199] [PMID: 33797550]
[16]
Gaidai, O.; Yan, P.; Xing, Y. Future world cancer death rate prediction. Sci. Rep., 2023, 13(1), 303.
[http://dx.doi.org/10.1038/s41598-023-27547-x] [PMID: 36609490]
[17]
Ostrom, Q.; Kruchko, C.; Neff, C.; Firth, A.; Sherman, R. The central brain tumor registry of the united states histopathological grouping scheme provides clinically relevant brain and other central nervous system categories for cancer registry data. J. Registry Manag., 2022, 49(4), 139-152.
[PMID: 37260822]
[18]
NAACCR. Cancer in North America: 2015-2019. Volume Two: Registry-Specific Cancer Incidence in the United States and Canada North American Association of Central Cancer Registries. Inc. 2022. Available From: https://www.naaccr.org/wp-content/uploads/2022/06/CiNA.2015-2019.v2.incidence.pdf
[19]
Liu, B.; Zhu, L.; Zou, J.; Chen, H.S.; Miller, K.D.; Jemal, A.; Siegel, R.L.; Feuer, E.J. Updated methodology for projecting US-and state-level cancer counts for the current calendar year: Part I: Spatio-temporal modeling for cancer incidence. Cancer Epidemiol. Biomarkers Prev., 2021, 30(9), 1620-1626.
[http://dx.doi.org/10.1158/1055-9965.EPI-20-1727] [PMID: 34162657]
[20]
Miller, K.D.; Siegel, R.L.; Liu, B.; Zhu, L.; Zou, J.; Jemal, A.; Feuer, E.J.; Chen, H.S. Updated methodology for projecting US-and state-level cancer counts for the current calendar year: Part II: Evaluation of incidence and mortality projection methods. Cancer Epidemiol. Biomarkers Prev., 2021, 30(11), 1993-2000.
[http://dx.doi.org/10.1158/1055-9965.EPI-20-1780] [PMID: 34404684]
[21]
Pickle, L.W.; Hao, Y.; Jemal, A.; Zou, Z.; Tiwari, R.C.; Ward, E.; Hachey, M.; Howe, H.L.; Feuer, E.J. A new method of estimating United States and state-level cancer incidence counts for the current calendar year. CA Cancer J. Clin., 2007, 57(1), 30-42.
[http://dx.doi.org/10.3322/canjclin.57.1.30] [PMID: 17237034]
[22]
Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell, 2013, 153(1), 17-37.
[http://dx.doi.org/10.1016/j.cell.2013.03.002] [PMID: 23540688]
[23]
Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; Boyault, S.; Burkhardt, B.; Butler, A.P.; Caldas, C.; Davies, H.R.; Desmedt, C.; Eils, R.; Eyfjörd, J.E.; Foekens, J.A.; Greaves, M.; Hosoda, F.; Hutter, B.; Ilicic, T.; Imbeaud, S.; Imielinski, M.; Jäger, N.; Jones, D.T.W.; Jones, D.; Knappskog, S.; Kool, M.; Lakhani, S.R.; López-Otín, C.; Martin, S.; Munshi, N.C.; Nakamura, H.; Northcott, P.A.; Pajic, M.; Papaemmanuil, E.; Paradiso, A.; Pearson, J.V.; Puente, X.S.; Raine, K.; Ramakrishna, M.; Richardson, A.L.; Richter, J.; Rosenstiel, P.; Schlesner, M.; Schumacher, T.N.; Span, P.N.; Teague, J.W.; Totoki, Y.; Tutt, A.N.J.; Valdés-Mas, R.; van Buuren, M.M.; van ’t Veer, L.; Vincent-Salomon, A.; Waddell, N.; Yates, L.R.; Zucman-Rossi, J.; Andrew Futreal, P.; McDermott, U.; Lichter, P.; Meyerson, M.; Grimmond, S.M.; Siebert, R.; Campo, E.; Shibata, T.; Pfister, S.M.; Campbell, P.J.; Stratton, M.R. Signatures of mutational processes in human cancer. Nature, 2013, 500(7463), 415-421.
[http://dx.doi.org/10.1038/nature12477] [PMID: 23945592]
[24]
Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability — an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol., 2010, 11(3), 220-228.
[http://dx.doi.org/10.1038/nrm2858] [PMID: 20177397]
[25]
Vogelstein, B; Papadopoulos, N; Velculescu, VE; Zhou, S; Diaz, LA, Jr; Kinzler, KW Cancer genome landscapes. Science, 2013, 339(6127), 1546-58.
[http://dx.doi.org/10.1126/science.1235122]
[26]
Timp, W.; Feinberg, A.P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer, 2013, 13(7), 497-510.
[http://dx.doi.org/10.1038/nrc3486] [PMID: 23760024]
[27]
You, J.S.; Jones, P.A. Cancer genetics and epigenetics: Two sides of the same coin? Cancer Cell, 2012, 22(1), 9-20.
[http://dx.doi.org/10.1016/j.ccr.2012.06.008] [PMID: 22789535]
[28]
Xie, X.; Lu, J.; Kulbokas, E.J.; Golub, T.R.; Mootha, V.; Lindblad-Toh, K.; Lander, E.S.; Kellis, M. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature, 2005, 434(7031), 338-345.
[http://dx.doi.org/10.1038/nature03441] [PMID: 15735639]
[29]
Calin, G.A.; Liu, C.G.; Sevignani, C.; Ferracin, M.; Felli, N.; Dumitru, C.D.; Shimizu, M.; Cimmino, A.; Zupo, S.; Dono, M.; Dell’Aquila, M.L.; Alder, H.; Rassenti, L.; Kipps, T.J.; Bullrich, F.; Negrini, M.; Croce, C.M. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA, 2004, 101(32), 11755-11760.
[http://dx.doi.org/10.1073/pnas.0404432101] [PMID: 15284443]
[30]
Croce, C.M.; Croce, M.D. Oncogenes and Cancer. N. Engl. J. Med., 2008, 358(5), 502-511.
[http://dx.doi.org/10.1056/NEJMra072367] [PMID: 18234754]
[31]
Murakami, Y.; Tateyama, S.; Rungsipipat, A.; Uchida, K.; Yamaguchi, R. Amplification of the cyclin A gene in canine and feline mammary tumors. J. Vet. Med. Sci., 2000, 62(7), 783-787.
[http://dx.doi.org/10.1292/jvms.62.783] [PMID: 10945302]
[32]
Murakami, Y.; Tateyama, S.; Rungsipipat, A.; Uchida, K.; Yamaguchi, R. Immunohistochemical analysis of cyclin A, cyclin D1 and P53 in mammary tumors, squamous cell carcinomas and basal cell tumors of dogs and cats. J. Vet. Med. Sci., 2000, 62(7), 743-750.
[http://dx.doi.org/10.1292/jvms.62.743] [PMID: 10945293]
[33]
Sherbenou, D.W.; Druker, B.J. Applying the discovery of the Philadelphia chromosome. J. Clin. Invest., 2007, 117(8), 2067-2074.
[http://dx.doi.org/10.1172/JCI31988] [PMID: 17671641]
[34]
Figueiredo, J.F.; Culver, S.; Behling-Kelly, E.; Breen, M.; Friedrichs, K.R. Acute myeloblastic leukemia with associated BCR-ABL translocation in a dog. Vet. Clin. Pathol., 2012, 41(3), 362-368.
[http://dx.doi.org/10.1111/j.1939-165X.2012.00450.x] [PMID: 22747755]
[35]
Breen, M.; Modiano, J.F. Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans – man and his best friend share more than companionship. Chromosome Res., 2008, 16(1), 145-154.
[http://dx.doi.org/10.1007/s10577-007-1212-4] [PMID: 18293109]
[36]
Cruz Cardona, J.A.; Milner, R.; Alleman, A.R.; Williams, C.; Vernau, W.; Breen, M.; Tompkins, M. BCR-ABL translocation in a dog with chronic monocytic leukemia. Vet. Clin. Pathol., 2011, 40(1), 40-47.
[http://dx.doi.org/10.1111/j.1939-165X.2010.00277.x] [PMID: 21143615]
[37]
Culver, S.; Ito, D.; Borst, L.; Bell, J.S.; Modiano, J.F.; Breen, M. Molecular characterization of canine BCR-ABL–positive chronic myelomonocytic leukemia before and after chemotherapy. Vet. Clin. Pathol., 2013, 42(3), 314-322.
[http://dx.doi.org/10.1111/vcp.12055] [PMID: 23800034]
[38]
Misdorp, W.; Meuten, D.J. Tumors in domestic animals; , 2002.
[39]
Moulton, J.E. Tumors in domestic animals; Univ of California Press, 1978.
[40]
Pietras, K.; Östman, A. Hallmarks of cancer: Interactions with the tumor stroma. Exp. Cell Res., 2010, 316(8), 1324-1331.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.045] [PMID: 20211171]
[41]
Boyle, J.O.; Hakim, J.; Koch, W.; van der Riet, P.; Hruban, R.H.; Roa, R.A.; Correo, R.; Eby, Y.J.; Ruppert, J.M.; Sidransky, D. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res., 1993, 53(19), 4477-4480.
[PMID: 8402617]
[42]
Bieging, K.T.; Mello, S.S.; Attardi, L.D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer, 2014, 14(5), 359-370.
[http://dx.doi.org/10.1038/nrc3711] [PMID: 24739573]
[43]
Burkhart, D.L.; Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer, 2008, 8(9), 671-682.
[http://dx.doi.org/10.1038/nrc2399] [PMID: 18650841]
[44]
Olivier, M; Hollstein, M; Hainaut, P. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol., 2010, 2(1), a001008.
[45]
Diller, L.; Kassel, J.; Nelson, C.E.; Gryka, M.A.; Litwak, G.; Gebhardt, M.; Bressac, B.; Ozturk, M.; Baker, S.J.; Vogelstein, B. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol., 1990, 10(11), 5772-5781.
[PMID: 2233717]
[46]
Cullen, J.M.; Breen, M. An overview of molecular cancer pathogenesis, prognosis, and diagnosis; Tumors Domest Anim, 2016, pp. 1-26.
[http://dx.doi.org/10.1002/9781119181200.ch1]
[47]
Tian, H.; Faje, A.T.; Lee, S.L.; Jorgensen, T.J. Radiation-induced phosphorylation of Chk1 at S345 is associated with p53-dependent cell cycle arrest pathways. Neoplasia, 2002, 4(2), 171-180.
[http://dx.doi.org/10.1038/sj.neo.7900219] [PMID: 11896572]
[48]
Bernstein, C.; Bernstein, H.; Payne, C.M.; Garewal, H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: Fail-safe protection against carcinogenesis. Mutat. Res. Rev. Mutat. Res., 2002, 511(2), 145-178.
[http://dx.doi.org/10.1016/S1383-5742(02)00009-1] [PMID: 12052432]
[49]
Rayess, H.; Wang, M.B.; Srivatsan, E.S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer, 2012, 130(8), 1715-1725.
[http://dx.doi.org/10.1002/ijc.27316] [PMID: 22025288]
[50]
Alhmoud, J.F.; Woolley, J.F.; Al Moustafa, A.E.; Mallei, M.I. DNA damage/repair management in cancers. In: Adv. Med. Biochem. Genomics, Physiol. Pathol; , 2021; pp. 309-339.
[51]
Wright, W.E.; Shay, J.W. Telomere dynamics in cancer progression and prevention: Fundamental differences in human and mouse telomere biology. Nat. Med., 2000, 6(8), 849-851.
[http://dx.doi.org/10.1038/78592] [PMID: 10932210]
[52]
Novak, K.D. Telomeres and telomerases in cancer. MedGenMed, 2003, 5(1), 21.
[PMID: 12827082]
[53]
Renwick, M.G.; Argyle, D.J.; Long, S.; Nixon, C.; Gault, E.A.; Nasir, L. Telomerase activity and telomerase reverse transcriptase catalytic subunit expression in canine lymphoma: Correlation with Ki67 immunoreactivity. Vet. Comp. Oncol., 2006, 4(3), 141-150.
[http://dx.doi.org/10.1111/j.1476-5829.2006.00103.x] [PMID: 19754811]
[54]
Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3), 353-364.
[http://dx.doi.org/10.1016/S0092-8674(00)80108-7] [PMID: 8756718]
[55]
Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9, 20503121211034366.
[http://dx.doi.org/10.1177/20503121211034366] [PMID: 34408877]
[56]
Goss, P.E.; Strasser-Weippl, K.; Lee-Bychkovsky, B.L.; Fan, L.; Li, J.; Chavarri-Guerra, Y.; Liedke, P.E.R.; Pramesh, C.S.; Badovinac-Crnjevic, T.; Sheikine, Y.; Chen, Z.; Qiao, Y.; Shao, Z.; Wu, Y.L.; Fan, D.; Chow, L.W.C.; Wang, J.; Zhang, Q.; Yu, S.; Shen, G.; He, J.; Purushotham, A.; Sullivan, R.; Badwe, R.; Banavali, S.D.; Nair, R.; Kumar, L.; Parikh, P.; Subramanian, S.; Chaturvedi, P.; Iyer, S.; Shastri, S.S.; Digumarti, R.; Soto-Perez-de-Celis, E.; Adilbay, D.; Semiglazov, V.; Orlov, S.; Kaidarova, D.; Tsimafeyeu, I.; Tatishchev, S.; Danishevskiy, K.D.; Hurlbert, M.; Vail, C.; St Louis, J.; Chan, A. Challenges to effective cancer control in China, India, and Russia. Lancet Oncol., 2014, 15(5), 489-538.
[http://dx.doi.org/10.1016/S1470-2045(14)70029-4] [PMID: 24731404]
[57]
Purushotham, A.D.; Lewison, G.; Sullivan, R. The state of research and development in global cancer surgery. Ann. Surg., 2012, 255(3), 427-432.
[http://dx.doi.org/10.1097/SLA.0b013e318246591f] [PMID: 22281701]
[58]
Vasen, H.; Watson, P.; Mecklin, J.; Lynch, H. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology, 1999, 116(6), 1453-1456.
[http://dx.doi.org/10.1016/S0016-5085(99)70510-X] [PMID: 10348829]
[59]
Ringborg, U.; Bergqvist, D.; Brorsson, B.; Cavallin-ståhl, E.; Ceberg, J.; Einhorn, N.; Frödin, J.; Järhult, J.; Lamnevik, G.; Lindholm, C.; Littbrand, B.; Norlund, A.; Nylén, U.; Rosén, M.; Svensson, H.; Möller, T.R. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001--summary and conclusions. Acta Oncol., 2003, 42(5-6), 357-365.
[http://dx.doi.org/10.1080/02841860310010826] [PMID: 14596499]
[60]
Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment. Cancer, 2005, 104(6), 1129-1137.
[http://dx.doi.org/10.1002/cncr.21324] [PMID: 16080176]
[61]
Begg, A.C.; Stewart, F.A.; Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer, 2011, 11(4), 239-253.
[http://dx.doi.org/10.1038/nrc3007] [PMID: 21430696]
[62]
Barnett, G.C.; West, C.M.L.; Dunning, A.M.; Elliott, R.M.; Coles, C.E.; Pharoah, P.D.P.; Burnet, N.G. Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype. Nat. Rev. Cancer, 2009, 9(2), 134-142.
[http://dx.doi.org/10.1038/nrc2587] [PMID: 19148183]
[63]
Bernier, J.; Hall, E.J.; Giaccia, A. Radiation oncology: A century of achievements. Nat. Rev. Cancer, 2004, 4(9), 737-747.
[http://dx.doi.org/10.1038/nrc1451] [PMID: 15343280]
[64]
Nygren, P. What is cancer chemotherapy? Acta Oncol., 2001, 40(2-3), 166-174.
[http://dx.doi.org/10.1080/02841860151116204] [PMID: 11441929]
[65]
Pratt, W.B. The anticancer drugs; Oxford University Press: USA, 1994.
[66]
Johnson, S.W. Cisplatin and its analogues; Cancer Princ Pract Oncol, 2005.
[67]
Verweij, J.; Clavel, M.; Chevalier, B. Paclitaxel (TaxolTM) and docetaxel (TaxotereTM): Not simply two of a kind. Ann. Oncol., 1994, 5(6), 495-505.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058903] [PMID: 7918121]
[68]
Dancey, J.; Eisenhauer, E.A. Current perspectives on camptothecins in cancer treatment. Br. J. Cancer, 1996, 74(3), 327-338.
[http://dx.doi.org/10.1038/bjc.1996.362] [PMID: 8695345]
[69]
Gyanani, V. Turning stealth liposomes into cationic liposomes for anticancer drug delivery., 2013,
[70]
Allen, T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer, 2002, 2(10), 750-763.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[71]
Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Cisplatin nephrotoxicity: A review. Am. J. Med. Sci., 2007, 334(2), 115-124.
[http://dx.doi.org/10.1097/MAJ.0b013e31812dfe1e] [PMID: 17700201]
[72]
Pfeffer, B.; Tziros, C.; Katz, R.J. Current concepts of anthracycline cardiotoxicity: Pathogenesis, diagnosis and prevention. Br. J. Cardiol., 2009, 16(2)
[73]
Partridge, A.H.; Burstein, H.J.; Winer, E.P. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J. Natl. Cancer Inst. Monogr., 2001, 2001(30), 135-142.
[http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a003451] [PMID: 11773307]
[74]
Fabbrocini, G.; Cameli, N.; Romano, M.C.; Mariano, M.; Panariello, L.; Bianca, D.; Monfrecola, G. Chemotherapy and skin reactions. J. Exp. Clin. Cancer Res., 2012, 31(1), 50.
[http://dx.doi.org/10.1186/1756-9966-31-50] [PMID: 22640460]
[75]
de Vries Schultink, A.H.M.; Suleiman, A.A.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R. Pharmacodynamic modeling of adverse effects of anti-cancer drug treatment. Eur. J. Clin. Pharmacol., 2016, 72(6), 645-653.
[http://dx.doi.org/10.1007/s00228-016-2030-4] [PMID: 26915815]
[76]
Vadhan-Raj, S. Management of chemotherapy-induced thrombocytopenia: Current status of thrombopoietic agents. Seminars in Hematology; Elsevier, 2009, pp. S26-S32.
[http://dx.doi.org/10.1053/j.seminhematol.2008.12.007]
[77]
Crawford, J.; Dale, D.C.; Lyman, G.H. Chemotherapy-induced neutropenia. Cancer, 2004, 100(2), 228-237.
[http://dx.doi.org/10.1002/cncr.11882] [PMID: 14716755]
[78]
Lyman, G.H.; Poniewierski, M.S.; Culakova, E. Risk of chemotherapy-induced neutropenic complications when treating patients with non-Hodgkin lymphoma. Expert Opin. Drug Saf., 2016, 15(4), 483-492.
[http://dx.doi.org/10.1517/14740338.2016.1146675] [PMID: 26809103]
[79]
Feng, L.; Huang, Q.; Huang, Z.; Li, H.; Qi, X.; Wang, Y.; Liu, Z.; Liu, X.; Lu, L. Optimized animal model of cyclophosphamide-induced bone marrow suppression. Basic Clin. Pharmacol. Toxicol., 2016, 119(5), 428-435.
[http://dx.doi.org/10.1111/bcpt.12600] [PMID: 27061017]
[80]
Ma, R.M.; Chen, C.Z.; Zhang, W.; You, J.; Huang, D.P.; Guo, G.L. Prognostic value of chemotherapy-induced neutropenia at the first cycle in invasive breast cancer. Medicine (Baltimore), 2016, 95(13), e3240.
[http://dx.doi.org/10.1097/MD.0000000000003240] [PMID: 27043697]
[81]
Barreto, J.N.; McCullough, K.B.; Ice, L.L.; Smith, J.A. Antineoplastic agents and the associated myelosuppressive effects: A review. J. Pharm. Pract., 2014, 27(5), 440-446.
[http://dx.doi.org/10.1177/0897190014546108] [PMID: 25147158]
[82]
Kukec, R.R.; Grabnar, I.; Vovk, T.; Mrhar, A.; Kovac, V.; Cufer, T. Febrile neutropenia in chemotherapy treated small-cell lung cancer patients. Radiol. Oncol., 2015, 49(2), 173-180.
[http://dx.doi.org/10.2478/raon-2014-0050] [PMID: 26029029]
[83]
Andersohn, F.; Konzen, C.; Garbe, E. Systematic review: Agranulocytosis induced by nonchemotherapy drugs. Ann. Intern. Med., 2007, 146(9), 657-665.
[http://dx.doi.org/10.7326/0003-4819-146-9-200705010-00009] [PMID: 17470834]
[84]
Kaufman, D.W.; Kelly, J.P.; Issaragrisil, S.; Laporte, J.R.; Anderson, T.; Levy, M.; Shapiro, S.; Young, N.S. Relative incidence of agranulocytosis and aplastic anemia. Am. J. Hematol., 2006, 81(1), 65-67.
[http://dx.doi.org/10.1002/ajh.20489] [PMID: 16369972]
[85]
Printz, M.A.; Dychter, S.S.; DeNoia, E.P.; Harrigan, R.; Sugarman, B.J.; Zepeda, M.; Souratha, J.; Kang, D.W.; Maneval, D.C. A phase I study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of recombinant human hyaluronidase PH20 administered intravenously in healthy volunteers. Curr. Ther. Res. Clin. Exp., 2020, 93, 100604.
[http://dx.doi.org/10.1016/j.curtheres.2020.100604] [PMID: 32963641]
[86]
Johnson, P.; Glennie, M. The mechanisms of action of rituximab in the elimination of tumor cells.Seminars in oncology; Elsevier, 2003, pp. 3-8.
[http://dx.doi.org/10.1053/sonc.2003.50025]
[87]
Motl, S.E.; Baskin, R.C. Delayed-onset grade 4 neutropenia associated with rituximab therapy in a patient with lymphoma: Case report and literature review. Pharmacotherapy, 2005, 25(8), 1151-1155.
[http://dx.doi.org/10.1592/phco.2005.25.8.1151] [PMID: 16207108]
[88]
Nitta, E.; Izutsu, K.; Sato, T.; Ota, Y.; Takeuchi, K.; Kamijo, A.; Takahashi, K.; Oshima, K.; Kanda, Y.; Chiba, S.; Motokura, T.; Kurokawa, M. A high incidence of late-onset neutropenia following rituximab-containing chemotherapy as a primary treatment of CD20-positive B-cell lymphoma: A single-institution study. Ann. Oncol., 2007, 18(2), 364-369.
[http://dx.doi.org/10.1093/annonc/mdl393] [PMID: 17079695]
[89]
Hirayama, Y.; Kohda, K.; Konuma, Y.; Hirata, Y.; Kuroda, H.; Fujimi, Y.; Shirao, S.; Kobune, M.; Takimoto, R.; Matsunaga, T.; Kato, J. Late onset neutropenia and immunoglobulin suppression of the patients with malignant lymphoma following autologous stem cell transplantation with rituximab. Intern. Med., 2009, 48(1), 57-60.
[http://dx.doi.org/10.2169/internalmedicine.48.1368] [PMID: 19122357]
[90]
National Cancer Institute (NCI). Common Terminology Criteria for Adverse Events v3.0 (CTCAE). 2006. Available From: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf
[91]
Kuter, D.J. General aspects of thrombocytopenia, platelet transfusions, and thrombopoietic growth factors.Consultative hemostasis and thrombosis; Elsevier, 2019, pp. 108-126.
[http://dx.doi.org/10.1016/B978-0-323-46202-0.00007-8]
[92]
Schmied, L.; Höglund, P.; Meinke, S. Platelet-mediated protection of cancer cells from immune surveillance–possible implications for cancer immunotherapy. Front. Immunol., 2021, 12, 640578.
[http://dx.doi.org/10.3389/fimmu.2021.640578] [PMID: 33777033]
[93]
Wright, J.H. A rapid method for the differential staining of blood films and malarial parasites. J. Med. Res., 1902, 7(1), 138-144.
[PMID: 19971449]
[94]
Potts, K.S.; Farley, A.; Dawson, C.A.; Rimes, J.; Biben, C.; de Graaf, C.; Potts, M.A.; Stonehouse, O.J.; Carmagnac, A.; Gangatirkar, P.; Josefsson, E.C.; Anttila, C.; Amann-Zalcenstein, D.; Naik, S.; Alexander, W.S.; Hilton, D.J.; Hawkins, E.D.; Taoudi, S. Membrane budding is a major mechanism of in vivo platelet biogenesis. J. Exp. Med., 2020, 217(9), e20191206.
[http://dx.doi.org/10.1084/jem.20191206] [PMID: 32706855]
[95]
Balduini, C.L. 100-Year-Old Haematologica Images: The Quarrel About The Origin Of Platelets (II). Haematologica, 2020, 105(6), 1467.
[http://dx.doi.org/10.3324/haematol.2020.254011] [PMID: 32482749]
[96]
Skverchinskaya, E.; Levdarovich, N.; Ivanov, A.; Mindukshev, I.; Bukatin, A. Anticancer drugs paclitaxel, carboplatin, doxorubicin, and cyclophosphamide alter the biophysical characteristics of red blood cells, in vitro. Biology (Basel), 2023, 12(2), 230.
[http://dx.doi.org/10.3390/biology12020230] [PMID: 36829507]
[97]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[98]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[99]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56(2), 185-229.
[http://dx.doi.org/10.1124/pr.56.2.6] [PMID: 15169927]
[100]
Colombo, R.; Necco, A.; Vailati, G.; Milzani, A. Dose-dependence of doxorubicin effect on actin assembly in vitro. Exp. Mol. Pathol., 1988, 49(3), 297-304.
[http://dx.doi.org/10.1016/0014-4800(88)90002-0] [PMID: 3197812]
[101]
Alves, A.C.; Ribeiro, D.; Nunes, C.; Reis, S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochim. Biophys. Acta Biomembr., 2016, 1858(9), 2231-2244.
[http://dx.doi.org/10.1016/j.bbamem.2016.06.025] [PMID: 27368477]
[102]
Shinohara, K.; Tanaka, K.R. The effects of adriamycin (doxorubicin HCl) on human red blood cells. Hemoglobin, 1980, 4(5-6), 735-745.
[http://dx.doi.org/10.3109/03630268008997741] [PMID: 6254923]
[103]
Lyman, G.H.; Dale, D.C.; Crawford, J. Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: A nationwide study of community practices. J. Clin. Oncol., 2003, 21(24), 4524-4531.
[http://dx.doi.org/10.1200/JCO.2003.05.002] [PMID: 14673039]
[104]
Lyman, G.H.; Dale, D.C.; Friedberg, J.; Crawford, J.; Fisher, R.I. Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin’s lymphoma: A nationwide study. J. Clin. Oncol., 2004, 22(21), 4302-4311.
[http://dx.doi.org/10.1200/JCO.2004.03.213] [PMID: 15381684]
[105]
Mauch, P.; Constine, L.; Greenberger, J.; Knospe, W.; Sullivan, J.; Liesveld, J.L.; Deeg, H.J. Hematopoietic stem cell compartment: Acute and late effects of radiation therapy and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys., 1995, 31(5), 1319-1339.
[http://dx.doi.org/10.1016/0360-3016(94)00430-S] [PMID: 7713791]
[106]
Marsh, J.C. The effects of cancer chemotherapeutic agents on normal hematopoietic precursor cells: A review. Cancer Res., 1976, 36(6), 1853-1882.
[PMID: 773531]
[107]
Bonfield, T.L.; Farver, C.F.; Barna, B.P.; Malur, A.; Abraham, S.; Raychaudhuri, B.; Kavuru, M.S.; Thomassen, M.J. Peroxisome proliferator-activated receptor-γ is deficient in alveolar macrophages from patients with alveolar proteinosis. Am. J. Respir. Cell Mol. Biol., 2003, 29(6), 677-682.
[http://dx.doi.org/10.1165/rcmb.2003-0148OC] [PMID: 12805087]
[108]
Schmiegelow, K.; Attarbaschi, A.; Barzilai, S.; Escherich, G.; Frandsen, T.L.; Halsey, C.; Hough, R.; Jeha, S.; Kato, M.; Liang, D.C.; Mikkelsen, T.S.; Möricke, A.; Niinimäki, R.; Piette, C.; Putti, M.C.; Raetz, E.; Silverman, L.B.; Skinner, R.; Tuckuviene, R.; van der Sluis, I.; Zapotocka, E. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: A Delphi consensus. Lancet Oncol., 2016, 17(6), e231-e239.
[http://dx.doi.org/10.1016/S1470-2045(16)30035-3] [PMID: 27299279]
[109]
Braña, I.; Zamora, E.; Tabernero, J. Cardiotoxicity; Side Eff Med Cancer Ther Prev Treat, 2013, pp. 483-530.
[110]
Cardinale, D.; Colombo, A.; Lamantia, G.; Colombo, N.; Civelli, M.; De Giacomi, G.; Rubino, M.; Veglia, F.; Fiorentini, C.; Cipolla, C.M. Anthracycline-Induced Cardiomyopathy. J. Am. Coll. Cardiol., 2010, 55(3), 213-220.
[http://dx.doi.org/10.1016/j.jacc.2009.03.095] [PMID: 20117401]
[111]
Steinherz, L.J.; Steinherz, P.G.; Tan, C.T.C.; Heller, G.; Murphy, M.L. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA, 1991, 266(12), 1672-1677.
[http://dx.doi.org/10.1001/jama.1991.03470120074036] [PMID: 1886191]
[112]
Florescu, M.; Cinteza, M.; Vinereanu, D. Chemotherapy-induced Cardiotoxicity. Maedica (Buchar.), 2013, 8(1), 59-67.
[PMID: 24023601]
[113]
Khakoo, A.Y.; Liu, P.P.; Force, T.; Lopez-Berestein, G.; Jones, L.W.; Schneider, J.; Hill, J. Cardiotoxicity due to cancer therapy. Tex. Heart Inst. J., 2011, 38(3), 253-256.
[PMID: 21720463]
[114]
Jensen, B.V. Cardiotoxic consequences of anthracycline-containing therapy in patients with breast cancer. Seminars in oncology; Elsevier, 2006, pp. 15-21.
[http://dx.doi.org/10.1053/j.seminoncol.2006.04.022]
[115]
Jiji, R.S.; Kramer, C.M.; Salerno, M. Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J. Nucl. Cardiol., 2012, 19(2), 377-388.
[http://dx.doi.org/10.1007/s12350-012-9512-2] [PMID: 22351492]
[116]
Seidman, A.; Hudis, C.; Pierri, M.K.; Shak, S.; Paton, V.; Ashby, M.; Murphy, M.; Stewart, S.J.; Keefe, D. Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin. Oncol., 2002, 20(5), 1215-1221.
[http://dx.doi.org/10.1200/JCO.2002.20.5.1215] [PMID: 11870163]
[117]
Dolci, A.; Dominici, R.; Cardinale, D.; Sandri, M.T.; Panteghini, M. Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: Systematic review of the literature and recommendations for use. Am. J. Clin. Pathol., 2008, 130(5), 688-695.
[http://dx.doi.org/10.1309/AJCPB66LRIIVMQDR] [PMID: 18854260]
[118]
DeAngelis, L.M. Side effects of radiation therapy.Neurologic Complications of Cancer; DeAngelis, L.M.; Posner, J.B., Eds.; Oxford University Press: New York, 2009.
[119]
Orlopp, K.; Schmidt-Wolf, I.G.H.; Urbach, H.; Schlegel, U. Acute central nervous symptoms in oncologic patients. Internist (Berl.), 2005, 46(1), 19-29.
[http://dx.doi.org/10.1007/s00108-004-1315-3] [PMID: 15580462]
[120]
Ziske, C.G.; Schöttker, B.; Gorschlüter, M.; Mey, U.; Kleinschmidt, R.; Schlegel, U.; Sauerbruch, T.; Schmidt-Wolf, I.G.H. Acute transient encephalopathy after paclitaxel infusion: Report of three cases. Ann. Oncol., 2002, 13(4), 629-631.
[http://dx.doi.org/10.1093/annonc/mdf025] [PMID: 12056715]
[121]
Verstappen, C.C.P.; Heimans, J.J.; Hoekman, K.; Postma, T.J. Neurotoxic complications of chemotherapy in patients with cancer: Clinical signs and optimal management. Drugs, 2003, 63(15), 1549-1563.
[http://dx.doi.org/10.2165/00003495-200363150-00003] [PMID: 12887262]
[122]
Linnebank, M.; Pels, H.; Kleczar, N.; Farmand, S.; Fliessbach, K.; Urbach, H.; Orlopp, K.; Klockgether, T.; Schmidt-Wolf, I.G.H.; Schlegel, U. MTX-induced white matter changes are associated with polymorphisms of methionine metabolism. Neurology, 2005, 64(5), 912-913.
[http://dx.doi.org/10.1212/01.WNL.0000152840.26156.74] [PMID: 15753437]
[123]
Linnebank, M.; Moskau, S.; Jürgens, A.; Simon, M.; Semmler, A.; Orlopp, K.; Glasmacher, A.; Bangard, C.; Vogt-Schaden, M.; Urbach, H.; Schmidt-Wolf, I.G.H.; Pels, H.; Schlegel, U. Association of genetic variants of methionine metabolism with methotrexate-induced CNS white matter changes in patients with primary CNS lymphoma. Neuro-oncol., 2009, 11(1), 2-8.
[http://dx.doi.org/10.1215/15228517-2008-082] [PMID: 18806228]
[124]
Drachtman, R.A.; Cole, P.D.; Golden, C.B.; James, S.J.; Melnyk, S.; Aisner, J.; Kamen, B.A. Dextromethorphan is effective in the treatment of subacute methotrexate neurotoxicity. Pediatr. Hematol. Oncol., 2002, 19(5), 319-327.
[http://dx.doi.org/10.1080/08880010290057336] [PMID: 12078863]
[125]
Becker, A.; Vezmar, S.; Linnebank, M.; Pels, H.; Bode, U.; Schlegel, U.; Jaehde, U. Marked elevation in homocysteine and homocysteine sulfinic acid in the cerebrospinal fluid of lymphoma patients receiving intensive treatment with methotrexate. Int. J. Clin. Pharmacol. Ther., 2007, 45(9), 504-515.
[http://dx.doi.org/10.5414/CPP45504] [PMID: 17907593]
[126]
Perazella, M.A. Onco-Nephrology. Clin. J. Am. Soc. Nephrol., 2012, 7(10), 1713-1721.
[http://dx.doi.org/10.2215/CJN.02780312] [PMID: 22879440]
[127]
Santos, M.L.C.; Brito, B.B.; Silva, F.A.F.; Botelho, A.C.S.; Melo, F.F. Nephrotoxicity in cancer treatment: An overview. World J. Clin. Oncol., 2020, 11(4), 190-204.
[http://dx.doi.org/10.5306/wjco.v11.i4.190] [PMID: 32355641]
[128]
Małyszko, J.; Kozłowska, K.; Kozłowski, L.; Małyszko, J. Nephrotoxicity of anticancer treatment. Nephrol. Dial. Transplant., 2017, 32(6), 924-936.
[PMID: 28339935]
[129]
Perazella, M.A.; Shirali, A.C. Nephrotoxicity of cancer immunotherapies: Past, present and future. J. Am. Soc. Nephrol., 2018, 29(8), 2039-2052.
[http://dx.doi.org/10.1681/ASN.2018050488] [PMID: 29959196]
[130]
Totzeck, M.; Schuler, M.; Stuschke, M.; Heusch, G.; Rassaf, T. Cardio-oncology - strategies for management of cancer-therapy related cardiovascular disease. Int. J. Cardiol., 2019, 280, 163-175.
[http://dx.doi.org/10.1016/j.ijcard.2019.01.038] [PMID: 30661849]
[131]
Stone, J.B.; DeAngelis, L.M. Cancer-treatment-induced neurotoxicity—focus on newer treatments. Nat. Rev. Clin. Oncol., 2016, 13(2), 92-105.
[http://dx.doi.org/10.1038/nrclinonc.2015.152] [PMID: 26391778]
[132]
Perazella, M.A.; Izzedine, H. New drug toxicities in the onco-nephrology world. Kidney Int., 2015, 87(5), 909-917.
[http://dx.doi.org/10.1038/ki.2015.30] [PMID: 25671763]
[133]
Choti, M.A. Chemotherapy-associated hepatotoxicity: Do we need to be concerned? Ann. Surg. Oncol., 2009, 16(9), 2391-2394.
[http://dx.doi.org/10.1245/s10434-009-0512-7] [PMID: 19554374]
[134]
Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of Hepatotoxicity. Toxicol. Sci., 2002, 65(2), 166-176.
[http://dx.doi.org/10.1093/toxsci/65.2.166] [PMID: 11812920]
[135]
Fontana, R.J. Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology, 2014, 146(4), 914-928.e1.
[http://dx.doi.org/10.1053/j.gastro.2013.12.032] [PMID: 24389305]
[136]
Hoofnagle, J.H.; Björnsson, E.S. Drug-induced liver injury—types and phenotypes. N. Engl. J. Med., 2019, 381(3), 264-273.
[http://dx.doi.org/10.1056/NEJMra1816149] [PMID: 31314970]
[137]
Björnsson, E. Hepatotoxicity by drugs: The most common implicated agents. Int. J. Mol. Sci., 2016, 17(2), 224.
[http://dx.doi.org/10.3390/ijms17020224] [PMID: 26861310]
[138]
Mudd, T.W.; Guddati, A.K. Management of hepatotoxicity of chemotherapy and targeted agents. Am. J. Cancer Res., 2021, 11(7), 3461-3474.
[PMID: 34354855]
[139]
Floyd, J.; Mirza, I.; Sachs, B.; Perry, M.C. Hepatotoxicity of Chemotherapy. Semin. Oncol., 2006, 33(1), 50-67.
[http://dx.doi.org/10.1053/j.seminoncol.2005.11.002] [PMID: 16473644]
[140]
Grigorian, A.; O’Brien, C.B. Hepatotoxicity secondary to chemotherapy. J. Clin. Transl. Hepatol., 2014, 2(2), 95-102.
[PMID: 26357620]
[141]
Periáñez-Párraga, L.; Martínez-López, I.; Ventayol-Bosch, P.; Puigventós-Latorre, F.; Delgado-Sánchez, O. Drug dosage recommendations in patients with chronic liver disease. Rev. Esp. Enferm. Dig., 2012, 104(4), 165-184.
[http://dx.doi.org/10.4321/S1130-01082012000400002] [PMID: 22537365]
[142]
Choi, S.H. WHO traditional medicine strategy and activities. “Standardization with evidence-based approaches”. J. Acupunct. Meridian Stud., 2008, 1(2), 153-154.
[http://dx.doi.org/10.1016/S2005-2901(09)60037-6] [PMID: 20633469]
[143]
Cho, HJ; Yoon, IS Pharmacokinetic interactions of herbs with cytochrome p450 and p-glycoprotein.es”. Evid Based Complement. Alternat. Med., 2015, 2015, 736431.
[http://dx.doi.org/10.1155/2015/736431]
[144]
Oyebode, O.; Kandala, N.B.; Chilton, P.J.; Lilford, R.J. Use of traditional medicine in middle-income countries: A WHO-SAGE study. Health Policy Plan., 2016, 31(8), 984-991.
[http://dx.doi.org/10.1093/heapol/czw022] [PMID: 27033366]
[145]
Asiimwe, J.B.; Nagendrappa, P.B.; Atukunda, E.C.; Kamatenesi, M.M.; Nambozi, G.; Tolo, C.U.; Ogwang, P.E.; Sarki, A.M. Prevalence of the use of herbal medicines among patients with cancer: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/9963038] [PMID: 34055029]
[146]
McGrowder, D.A.; Miller, F.G.; Nwokocha, C.R.; Anderson, M.S.; Wilson-Clarke, C.; Vaz, K.; Anderson-Jackson, L.; Brown, J. Medicinal herbs used in traditional management of breast cancer: Mechanisms of action. Medicines (Basel), 2020, 7(8), 47.
[http://dx.doi.org/10.3390/medicines7080047] [PMID: 32823812]
[147]
Damery, S.; Gratus, C.; Grieve, R.; Warmington, S.; Jones, J.; Routledge, P.; Greenfield, S.; Dowswell, G.; Sherriff, J.; Wilson, S. The use of herbal medicines by people with cancer: A cross-sectional survey. Br. J. Cancer, 2011, 104(6), 927-933.
[http://dx.doi.org/10.1038/bjc.2011.47] [PMID: 21364591]
[148]
Molassiotis, A.; Yung, H.P.; Yam, B.M.; Chan, F.Y.; Mok, T. The effectiveness of progressive muscle relaxation training in managing chemotherapy-induced nausea and vomiting in Chinese breast cancer patients: A randomised controlled trial. Support. Care Cancer, 2002, 10(3), 237-246.
[http://dx.doi.org/10.1007/s00520-001-0329-9] [PMID: 11904789]
[149]
Maimon, Y.; Samuels, N.; Cohen, Z.; Berger, R.; Rosenthal, D.S. Botanical formula LCS101: A multi-targeted approach to cancer care. Integr. Cancer Ther., 2018, 17(4), 1020-1026.
[http://dx.doi.org/10.1177/1534735418801528] [PMID: 30303021]
[150]
Cohen, Z.; Maimon, Y.; Yoeli-Lerner, M.; Yang, P.; Samuels, N.; Berger, R. Selective anticancer effects and protection from chemotherapy by the botanical compound LCS101: Implications for cancer treatment. Int. J. Oncol., 2015, 46(1), 308-316.
[http://dx.doi.org/10.3892/ijo.2014.2711] [PMID: 25333773]
[151]
Maimon, Y.; Karaush, V.; Yaal-Hahoshen, N.; Ben-Yosef, R.; Ron, I.; Vexler, A.; Lev-Ari, S. Effect of Chinese herbal therapy on breast cancer adenocarcinoma cell lines. J. Int. Med. Res., 2010, 38(6), 2033-2039.
[http://dx.doi.org/10.1177/147323001003800617] [PMID: 21227007]
[152]
Yaal-Hahoshen, N.; Maimon, Y.; Siegelmann-Danieli, N.; Lev-Ari, S.; Ron, I.G.; Sperber, F.; Samuels, N.; Shoham, J.; Merimsky, O. A prospective, controlled study of the botanical compound mixture LCS101 for chemotherapy-induced hematological complications in breast cancer. Oncologist, 2011, 16(9), 1197-1202.
[http://dx.doi.org/10.1634/theoncologist.2011-0150] [PMID: 21712486]
[153]
Kawai, H.; Saito, Y. Combination of Juzentaihoto and chemotherapy improves the prognosis of patients with postoperative recurrence of non‑small cell lung cancer. Mol. Clin. Oncol., 2020, 13(3), 13.
[http://dx.doi.org/10.3892/mco.2020.2083] [PMID: 32754327]
[154]
Testart-Paillet, D.; Girard, P.; You, B.; Freyer, G.; Pobel, C.; Tranchand, B. Contribution of modelling chemotherapy-induced hematological toxicity for clinical practice. Crit. Rev. Oncol. Hematol., 2007, 63(1), 1-11.
[http://dx.doi.org/10.1016/j.critrevonc.2007.01.005] [PMID: 17418588]
[155]
Kambhampati, S.P.; Mishra, M.K.; Mastorakos, P.; Oh, Y.; Lutty, G.A.; Kannan, R.M. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells. Eur. J. Pharm. Biopharm., 2015, 95(Pt B), 239-249.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.013] [PMID: 25701805]
[156]
Teschke, R.; Wolff, A.; Frenzel, C.; Eickhoff, A.; Schulze, J. Herbal traditional Chinese medicine and its evidence base in gastrointestinal disorders. World J. Gastroenterol., 2015, 21(15), 4466-4490.
[http://dx.doi.org/10.3748/wjg.v21.i15.4466] [PMID: 25914456]
[157]
Li, H; Ma, Q; Al, P; Zhang, HM; Li, M Treatment of chemotherapy-induced leucopenia in patients with malignant tumor by Chinese herbal medicine: A systematic review and meta-analysis of randomized clinical trials. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2015, 35(2), 157-66.
[158]
Kohguchi, M.; Kunikata, T.; Watanabe, H.; Kudo, N.; Shibuya, T.; Ishihara, T.; Iwaki, K.; Ikeda, M.; Fukuda, S.; Kurimoto, M. Immuno-potentiating effects of the antler-shaped fruiting body of Ganoderma lucidum (Rokkaku-Reishi). Biosci. Biotechnol. Biochem., 2004, 68(4), 881-887.
[http://dx.doi.org/10.1271/bbb.68.881] [PMID: 15118318]
[159]
Nonaka, Y.; Ishibashi, H.; Nakai, M.; Shibata, H.; Kiso, Y.; Abe, S. Soothing effect of Ganoderma lucidum antlered form on cyclophosphamide-induced adverse reaction. Gan To Kagaku Ryoho, 2005, 32(11), 1586-1588.
[PMID: 16315878]
[160]
Zee-Cheng, R.K. Shi-quan-da-bu-tang (ten significant tonic decoction), SQT. A potent Chinese biological response modifier in cancer immunotherapy, potentiation and detoxification of anticancer drugs. Methods Find. Exp. Clin. Pharmacol., 1992, 14(9), 725-736.
[PMID: 1294861]
[161]
Vayalil, P.K.; Kuttan, G.; Kuttan, R. Rasayanas: Evidence for the concept of prevention of diseases. Am. J. Chin. Med., 2002, 30(1), 155-171.
[http://dx.doi.org/10.1142/S0192415X02000168] [PMID: 12067090]
[162]
Vayalil, P.K.; Kuttan, G.; Kuttan, R. Protective effects of Rasayanas on cyclophosphamide- and radiation-induced damage. J. Altern. Complement. Med., 2002, 8(6), 787-796.
[http://dx.doi.org/10.1089/10755530260511801] [PMID: 12614532]
[163]
Menon, L.G.; Kuttan, R.; Kuttan, G. Effect of rasayanas in the inhibition of lung metastasis induced by B16F-10 melanoma cells. J. Exp. Clin. Cancer Res., 1997, 16(4), 365-368.
[PMID: 9505206]
[164]
Diasio, R.B.; Harris, B.E. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet., 1989, 16(4), 215-237.
[http://dx.doi.org/10.2165/00003088-198916040-00002] [PMID: 2656050]
[165]
Anand, A.J. Fluorouracil Cardiotoxicity. Ann. Pharmacother., 1994, 28(3), 374-378.
[http://dx.doi.org/10.1177/106002809402800314] [PMID: 8193429]
[166]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[167]
Sun, X.X.; Dai, M.S.; Lu, H. 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J. Biol. Chem., 2007, 282(11), 8052-8059.
[http://dx.doi.org/10.1074/jbc.M610621200] [PMID: 17242401]
[168]
Wigmore, P.M.; Mustafa, S.; El-Beltagy, M.; Lyons, L.; Umka, J.; Bennett, G. Effects of 5-FU. Adv Exp Med Biol., 2010, 678, 157-164.
[http://dx.doi.org/10.1007/978-1-4419-6306-2_20]
[169]
Steger, F.; Hautmann, M.G.; Kölbl, O. 5-FU-induced cardiac toxicity - an underestimated problem in radiooncology? Radiat. Oncol., 2012, 7(1), 212.
[http://dx.doi.org/10.1186/1748-717X-7-212] [PMID: 23241239]
[170]
Zhang, D.; Ma, J. Mitochondrial dynamics in rat heart induced by 5-fluorouracil. Med. Sci. Monit., 2018, 24, 6666-6672.
[http://dx.doi.org/10.12659/MSM.910537] [PMID: 30240386]
[171]
Shiga, T.; Hiraide, M. Cardiotoxicities of 5-fluorouracil and other fluoropyrimidines. Curr. Treat. Options Oncol., 2020, 21(4), 27.
[http://dx.doi.org/10.1007/s11864-020-0719-1] [PMID: 32266582]
[172]
Dasgeb, B.; Kornreich, D.; McGuinn, K.; Okon, L.; Brownell, I.; Sackett, D.L. Colchicine: An ancient drug with novel applications. Br. J. Dermatol., 2018, 178(2), 350-356.
[http://dx.doi.org/10.1111/bjd.15896] [PMID: 28832953]
[173]
Khanna, D.; Fitzgerald, J.D.; Khanna, P.P.; Bae, S.; Singh, M.K.; Neogi, T.; Pillinger, M.H.; Merill, J.; Lee, S.; Prakash, S.; Kaldas, M.; Gogia, M.; Perez-Ruiz, F.; Taylor, W.; Lioté, F.; Choi, H.; Singh, J.A.; Dalbeth, N.; Kaplan, S.; Niyyar, V.; Jones, D.; Yarows, S.A.; Roessler, B.; Kerr, G.; King, C.; Levy, G.; Furst, D.E.; Edwards, N.L.; Mandell, B.; Schumacher, H.R.; Robbins, M.; Wenger, N.; Terkeltaub, R. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res. (Hoboken), 2012, 64(10), 1431-1446.
[http://dx.doi.org/10.1002/acr.21772] [PMID: 23024028]
[174]
Caviston, J.P.; Holzbaur, E.L.F. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol., 2006, 16(10), 530-537.
[http://dx.doi.org/10.1016/j.tcb.2006.08.002] [PMID: 16938456]
[175]
Bakhta, O.; Blanchard, S.; Guihot, A.L.; Tamareille, S.; Mirebeau-Prunier, D.; Jeannin, P.; Prunier, F. Cardioprotective role of colchicine against inflammatory injury in a rat model of acute myocardial infarction. J. Cardiovasc. Pharmacol. Ther., 2018, 23(5), 446-455.
[http://dx.doi.org/10.1177/1074248418763611] [PMID: 29658326]
[176]
Forrat, R.; Sebbag, L.; Ferrera, R.; Hadour, G.; Canet, E.; Tabib, A.; de Lorgeril, M. Effect of colchicine on circulating and myocardial neutrophils and on infarct size in a canine model of ischemia and reperfusion. J. Cardiovasc. Pharmacol., 1996, 27(6), 876-883.
[http://dx.doi.org/10.1097/00005344-199606000-00016] [PMID: 8761856]
[177]
Couzin-Frankel, J. Anti-inflammatory prevents heart attacks; American Association for the Advancement of Science, 2017.
[http://dx.doi.org/10.1126/science.357.6354.855]
[178]
Safarpour, S; Safarpour, S; Pirzadeh, M; Moghadamnia, AA; Ebrahimpour, A; Shirafkan, F Colchicine ameliorates 5-fluorouracil-induced cardiotoxicity in rats. Oxid Med Cell Longev, 2022, 2022, 6194532.
[179]
Miltenburg, N.C.; Boogerd, W. Chemotherapy-induced neuropathy: A comprehensive survey. Cancer Treat. Rev., 2014, 40(7), 872-882.
[http://dx.doi.org/10.1016/j.ctrv.2014.04.004] [PMID: 24830939]
[180]
Jaggi, A.S.; Singh, N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology, 2012, 291(1-3), 1-9.
[http://dx.doi.org/10.1016/j.tox.2011.10.019] [PMID: 22079234]
[181]
Egan, M.; Burke, E.; Meskell, P.; MacNeela, P.; Dowling, M. Quality of life and resilience related to chemotherapy-induced peripheral neuropathy in patients post treatment with platinums and taxanes. J. Res. Nurs., 2015, 20(5), 385-398.
[http://dx.doi.org/10.1177/1744987115574296]
[182]
Wolf, S.; Barton, D.; Kottschade, L.; Grothey, A.; Loprinzi, C. Chemotherapy-induced peripheral neuropathy: Prevention and treatment strategies. Eur. J. Cancer, 2008, 44(11), 1507-1515.
[http://dx.doi.org/10.1016/j.ejca.2008.04.018] [PMID: 18571399]
[183]
Beijers, A.J.M.; Vreugdenhil, G.; Oerlemans, S.; Eurelings, M.; Minnema, M.C.; Eeltink, C.M.; van de Poll-Franse, L.V.; Mols, F. Chemotherapy-induced neuropathy in multiple myeloma: Influence on quality of life and development of a questionnaire to compose common toxicity criteria grading for use in daily clinical practice. Support. Care Cancer, 2016, 24(6), 2411-2420.
[http://dx.doi.org/10.1007/s00520-015-3032-y] [PMID: 26634561]
[184]
Smith, J.A.; Benbow, S.J. , 2015.
[185]
Hausheer, F.H.; Schilsky, R.L.; Bain, S.; Berghorn, E.J.; Lieberman, F. Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy.Seminars in oncology; Elsevier, 2006, pp. 15-49.
[http://dx.doi.org/10.1053/j.seminoncol.2005.12.010]
[186]
Grothey, A. Clinical management of oxaliplatin-associated neurotoxicity. Clin. Colorectal Cancer, 2005, 5(Suppl. 1), S38-S46.
[http://dx.doi.org/10.3816/CCC.2005.s.006] [PMID: 15871765]
[187]
Kushlaf, H.A. Emerging toxic neuropathies and myopathies. Neurol. Clin., 2011, 29(3), 679-687.
[http://dx.doi.org/10.1016/j.ncl.2011.05.009] [PMID: 21803218]
[188]
Kuncl, R.W.; George, E.B. Toxic neuropathies and myopathies. Curr. Opin. Neurol., 1993, 6(5), 695-704.
[http://dx.doi.org/10.1097/00019052-199310000-00004] [PMID: 8293140]
[189]
Flatters, S.J.L.; Xiao, W.H.; Bennett, G.J. Acetyl-l-carnitine prevents and reduces paclitaxel-induced painful peripheral neuropathy. Neurosci. Lett., 2006, 397(3), 219-223.
[http://dx.doi.org/10.1016/j.neulet.2005.12.013] [PMID: 16406309]
[190]
Cavaletti, G. Calcium and magnesium prophylaxis for oxaliplatin-related neurotoxicity: Is it a trade-off between drug efficacy and toxicity? Oncologist, 2011, 16(12), 1667-1668.
[http://dx.doi.org/10.1634/theoncologist.2011-0343] [PMID: 22128117]
[191]
Ta, L.E.; Schmelzer, J.D.; Bieber, A.J.; Loprinzi, C.L.; Sieck, G.C.; Brederson, J.D.; Low, P.A.; Windebank, A.J. A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy. PLoS One, 2013, 8(1), e54161.
[http://dx.doi.org/10.1371/journal.pone.0054161] [PMID: 23326593]
[192]
Wolf, R.C.; Sambataro, F.; Vasic, N.; Schönfeldt-Lecuona, C.; Ecker, D.; Landwehrmeyer, B. Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington’s disease. Exp. Neurol., 2008, 213(1), 137-144.
[http://dx.doi.org/10.1016/j.expneurol.2008.05.017] [PMID: 18588876]
[193]
Ceresa, C.; Cavaletti, G. Drug transporters in chemotherapy induced peripheral neurotoxicity: Current knowledge and clinical implications. Curr. Med. Chem., 2011, 18(3), 329-341.
[http://dx.doi.org/10.2174/092986711794839160] [PMID: 21143122]
[194]
Jordan, M. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2012, 2(1), 1-17.
[http://dx.doi.org/10.2174/1568011023354290] [PMID: 12678749]
[195]
Verstappen, C.C.P.; Koeppen, S.; Heimans, J.J.; Huijgens, P.C.; Scheulen, M.E.; Strumberg, D.; Kiburg, B.; Postma, T.J. Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology, 2005, 64(6), 1076-1077.
[http://dx.doi.org/10.1212/01.WNL.0000154642.45474.28] [PMID: 15781834]
[196]
Sharma, V.; Singh, I.; Chaudhary, P. Acorus calamus (The Healing Plant): A review on its medicinal potential, micropropagation and conservation. Nat. Prod. Res., 2014, 28(18), 1454-1466.
[http://dx.doi.org/10.1080/14786419.2014.915827] [PMID: 24824923]
[197]
Shah, P.; Deshmukh, P.B.; Joshi, S.V.; Ghag, M.; Kulkarni, Y.; Vyas, B.; Shah, D.R. Toxicity study of ethanolic extract of Acorus calamus rhizome. Int. J. Green Pharm., 2012, 6(1), 29.
[http://dx.doi.org/10.4103/0973-8258.97119]
[198]
Akram, M.; Akhtar, N.; Asif, H.M.; Shah, P.A.; Saeed, T.; Mahmood, A. Butea monosperma Lam.: A review. J. Med. Plants Res., 2011, 5, 3994-3996.
[199]
Madhavi, A. An overview of Butea monosperma (Flame of Forest). World J. Pharm. Pharm. Sci., 2013, 3, 307-319.
[200]
Rahn, E.J.; Makriyannis, A.; Hohmann, A.G. Activation of cannabinoid CB 1 and CB 2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats. Br. J. Pharmacol., 2007, 152(5), 765-777.
[http://dx.doi.org/10.1038/sj.bjp.0707333] [PMID: 17572696]
[201]
Nagarkatti, P.; Pandey, R.; Rieder, S.A.; Hegde, V.L.; Nagarkatti, M. Cannabinoids as novel anti-inflammatory drugs. Future Med. Chem., 2009, 1(7), 1333-1349.
[http://dx.doi.org/10.4155/fmc.09.93] [PMID: 20191092]
[202]
Rahn, E.J.; Hohmann, A.G. Cannabinoids as pharmacotherapies for neuropathic pain: From the bench to the bedside. Neurotherapeutics, 2009, 6(4), 713-737.
[http://dx.doi.org/10.1016/j.nurt.2009.08.002] [PMID: 19789075]
[203]
Isah, T. Rethinking Ginkgo biloba L.: Medicinal uses and conservation. Pharmacogn. Rev., 2015, 9(18), 140-148.
[http://dx.doi.org/10.4103/0973-7847.162137] [PMID: 26392712]
[204]
Pattanayak, P.; Behera, P.; Das, D.; Panda, S. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev., 2010, 4(7), 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[205]
Kelm, M.A.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine, 2000, 7(1), 7-13.
[http://dx.doi.org/10.1016/S0944-7113(00)80015-X] [PMID: 10782484]
[206]
Ramappa, V.; Aithal, G.P. Hepatotoxicity related to anti-tuberculosis drugs: Mechanisms and management. J. Clin. Exp. Hepatol., 2013, 3(1), 37-49.
[http://dx.doi.org/10.1016/j.jceh.2012.12.001] [PMID: 25755470]
[207]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[208]
Quintanilha, J.C.F.; de Sousa, V.M.; Visacri, M.B.; Amaral, L.S.; Santos, R.M.M.; Zambrano, T.; Salazar, L.A.; Moriel, P. Involvement of cytochrome P450 in cisplatin treatment: Implications for toxicity. Cancer Chemother. Pharmacol., 2017, 80(2), 223-233.
[http://dx.doi.org/10.1007/s00280-017-3358-x] [PMID: 28612092]
[209]
Lu, Y.; Cederbaum, A.I. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol. Sci., 2006, 89(2), 515-523.
[http://dx.doi.org/10.1093/toxsci/kfj031] [PMID: 16251482]
[210]
Kamble, P.R.; Bhiwgade, D.A. Cisplatin induced histological and ultrastructural alterations in liver tissue of rat. J. Cytol. Histol., 2011, 2(6), 128.
[http://dx.doi.org/10.4172/2157-7099.1000128]
[211]
Lu, Y.; Cederbaum, A.I. Cytochrome P450s and alcoholic liver disease. Curr. Pharm. Des., 2018, 24(14), 1502-1517.
[http://dx.doi.org/10.2174/1381612824666180410091511] [PMID: 29637855]
[212]
Pratibha, R.; Sameer, R.; Rataboli, P.V.; Bhiwgade, D.A.; Dhume, C.Y. Enzymatic studies of cisplatin induced oxidative stress in hepatic tissue of rats. Eur. J. Pharmacol., 2006, 532(3), 290-293.
[http://dx.doi.org/10.1016/j.ejphar.2006.01.007] [PMID: 16458885]
[213]
Singh, N.; Magotra, R.; Sharma, A.K.; Ahmed, M.; Khajuria, V. Effect of cisplatin on liver of male albino rats. J. Evol. Med. Dent. Sci., 2015, 4(52), 8993-8998.
[http://dx.doi.org/10.14260/jemds/2015/1305]
[214]
Abd Rashid, N.; Abd Halim, S.A.S.; Teoh, S.L.; Budin, S.B.; Hussan, F.; Adib Ridzuan, N.R.; Abdul Jalil, N.A. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed. Pharmacother., 2021, 144, 112328.
[http://dx.doi.org/10.1016/j.biopha.2021.112328] [PMID: 34653753]
[215]
Aeri, V.; Ilyas, U.; Katare, D.P.; Naseef, P. A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn. Rev., 2016, 10(19), 66-70.
[http://dx.doi.org/10.4103/0973-7847.176544] [PMID: 27041876]
[216]
Kim, Y.S.; Hwang, J.W.; Sung, S.H.; Jeon, Y.J.; Jeong, J.H.; Jeon, B.T.; Moon, S.H.; Park, P.J. Antioxidant activity and protective effect of extract of Celosia cristata L. flower on tert-butyl hydroperoxide-induced oxidative hepatotoxicity. Food Chem., 2015, 168, 572-579.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.106] [PMID: 25172750]
[217]
Sharifi-Rigi, A.; Heidarian, E.; Amini, S.A. Protective and anti-inflammatory effects of hydroalcoholic leaf extract of Origanum vulgare on oxidative stress, TNF-α gene expression and liver histological changes in paraquat-induced hepatotoxicity in rats. Arch. Physiol. Biochem., 2019, 125(1), 56-63.
[http://dx.doi.org/10.1080/13813455.2018.1437186] [PMID: 29425067]
[218]
Zhao, L.; Zhang, N.; Yang, D.; Yang, M.; Guo, X.; He, J.; Wu, W.; Ji, B.; Cheng, Q.; Zhou, F. Protective effects of five structurally diverse flavonoid subgroups against chronic alcohol-induced hepatic damage in a mouse model. Nutrients, 2018, 10(11), 1754.
[http://dx.doi.org/10.3390/nu10111754] [PMID: 30441755]
[219]
Hosseinzadeh, A.; Bahrampour Juybari, K.; Fatemi, M.J.; Kamarul, T.; Tekiyehmaroof, N. Protective effect of ginger (Zingiber officinale roscoe) extract against oxidative stress and mitochondrial apoptosis induced by interleukin-1β in cultured chondrocytes. Cells Tissues Organs, 2017, 204(5-6), 241-50.
[220]
Michael, O.E.; Titilayo, O.B.; Mohammed, A.U. Protective effect of ethanolic extract of Cucurbita maxima (PUMPKIN) leaf on acetaminophen-induced acute liver toxicity. J. Pharmacogn. Phytother., 2018, 10(8), 142-148.
[http://dx.doi.org/10.5897/JPP2018.0498]
[221]
Metri, K.; Bhargav, H.; Chowdhury, P.; Koka, P.S. Ayurveda for chemo-radiotherapy induced side effects in cancer patients. J. Stem Cells, 2013, 8(2), 115-129.
[PMID: 24698988]
[222]
Frassová, Z.; Rudá-Kučerová, J. Milk Thistle (Silybum Marianum) as a supportive phytotherapeutic agent in oncology. Klin. Onkol., 2017, 30(6), 426-432.
[http://dx.doi.org/10.14735/amko2017426] [PMID: 29271213]
[223]
Ito, T.; Urushima, H.; Sakaue, M.; Yukawa, S.; Honda, H.; Hirai, K.; Igura, T.; Hayashi, N.; Maeda, K.; Kitagawa, T.; Kondo, K. Reduction of adverse effects by a mushroom product, active hexose correlated compound (AHCC) in patients with advanced cancer during chemotherapy-the significance of the levels of HHV-6 DNA in saliva as a surrogate biomarker during chemotherapy. Nutr. Cancer, 2014, 66(3), 377-382.
[http://dx.doi.org/10.1080/01635581.2014.884232] [PMID: 24611562]
[224]
Man, Q.; Deng, Y.; Li, P.; Ma, J.; Yang, Z.; Yang, X.; Zhou, Y.; Yan, X. Licorice ameliorates cisplatin-induced hepatotoxicity through antiapoptosis, antioxidative stress, anti-inflammation, and acceleration of metabolism. Front. Pharmacol., 2020, 11, 563750.
[http://dx.doi.org/10.3389/fphar.2020.563750] [PMID: 33240085]
[225]
Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 2004, 65(9), 1199-1221.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.001] [PMID: 15184005]
[226]
Rohdewald, P. A review of the French maritime pine bark extract (Pycnogenol®), a herbal medication with a diverse clinical pharmacology. Int. J. Clin. Pharmacol. Ther., 2002, 40(4), 158-168.
[http://dx.doi.org/10.5414/CPP40158] [PMID: 11996210]
[227]
González-Juárez, D.E.; Escobedo-Moratilla, A.; Flores, J.; Hidalgo-Figueroa, S.; Martínez-Tagüeña, N.; Morales-Jiménez, J.; Muñiz-Ramírez, A.; Pastor-Palacios, G.; Pérez-Miranda, S.; Ramírez-Hernández, A.; Trujillo, J.; Bautista, E. A review of the Ephedra genus: Distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules, 2020, 25(14), 3283.
[http://dx.doi.org/10.3390/molecules25143283] [PMID: 32698308]
[228]
Hyuga, S.; Hyuga, M.; Oshima, N.; Maruyama, T.; Kamakura, H.; Yamashita, T.; Yoshimura, M.; Amakura, Y.; Hakamatsuka, T.; Odaguchi, H.; Goda, Y.; Hanawa, T. Ephedrine alkaloids-free Ephedra Herb extract: A safer alternative to ephedra with comparable analgesic, anticancer, and anti-influenza activities. J. Nat. Med., 2016, 70(3), 571-583.
[http://dx.doi.org/10.1007/s11418-016-0979-z] [PMID: 26943796]
[229]
Priyadarsini, K.I.; Maity, D.K.; Naik, G.H.; Kumar, M.S.; Unnikrishnan, M.K.; Satav, J.G.; Mohan, H. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med., 2003, 35(5), 475-484.
[http://dx.doi.org/10.1016/S0891-5849(03)00325-3] [PMID: 12927597]
[230]
Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci., 2008, 65(11), 1631-1652.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[231]
Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel), 2010, 2(11), 2490-2518.
[http://dx.doi.org/10.3390/toxins2112490] [PMID: 22069563]
[232]
Perazella, M.A.; Moeckel, G.W. Nephrotoxicity from chemotherapeutic agents: Clinical manifestations, pathobiology, and prevention/therapy. Seminars in nephrology; Elsevier, 2010, pp. 570-581.
[http://dx.doi.org/10.1016/j.semnephrol.2010.09.005]
[233]
Lameire, N. Nephrotoxicity of recent anti-cancer agents. Clin. Kidney J., 2014, 7(1), 11-22.
[http://dx.doi.org/10.1093/ckj/sft135] [PMID: 25859345]
[234]
Sadeghi, F.; Nematbakhsh, M.; Noori-Diziche, A.; Eshraghi-Jazi, F.; Talebi, A.; Nasri, H.; Mansouri, A.; Dehghani, A.; Saberi, S.; Shirdavani, S.; Ashrafi, F. Protective effect of pomegranate flower extract against gentamicin-induced renal toxicity in male rats. J. Renal Inj. Prev., 2015, 4(2), 45-50.
[PMID: 26060837]
[235]
Pourjabali, M.; Mohammadrezaei-Khorramabadi, R.; Abbaszadeh, S.; Naghdi, N.; Naji-Haddadi, S.; Bahmani, F. Medicinal plants used for hypertension. J Pharm Sci Res., 2017, 9(5), 537.
[236]
Jivad, N.; Bahmani, M.; Asadi-Samani, M. A review of the most important medicinal plants effective on wound healing on ethnobotany evidence of Iran. Pharm. Lett., 2016, 8(2), 353-357.
[237]
Kooti, W.; Hasanzadeh-Noohi, Z.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin. J. Nat. Med., 2016, 14(10), 732-745.
[http://dx.doi.org/10.1016/S1875-5364(16)30088-7] [PMID: 28236403]
[238]
Sani, M.R.M.; Asadi-Samani, M.; Rouhi-Boroujeni, H.; Banitalebi-Dehkordi, M. Phytopharmacology and phytotherapy of regulatory T cells: A new approach to treat multiple sclerosis. Pharm. Lett., 2016, 8(3), 215-220.
[239]
Rouhi-Boroujeni, H.; Asadi-Samani, M.; Moradi, M.T. A review of the medicinal plants effective on headache based on the ethnobotanical documents of Iran. Pharm. Lett., 2016, 8(3), 37-42.
[240]
Parsaei, P.; Bahmani, M.; Karimi, M.; Naghdi, N.; Asadi-Samani, M.; Rafieian-Kopaei, M. A review of analgesic medicinal plants in Iran. Pharm. Lett., 2016, 8(2), 43-51.
[241]
Parsaei, P.; Bahmani, M.; Naghdi, N.; Asadi-Samani, M.; Rafieian-Kopaei, M. The most important medicinal plants effective on constipation by the ethnobotanical documents in Iran: A review. Pharm. Lett., 2016, 8(2), 188-194.
[242]
Çayır, K.; Karadeniz, A.; Şimşek, N.; Yıldırım, S.; Karakuş, E.; Kara, A.; Akkoyun, H.T.; Şengül, E. Pomegranate seed extract attenuates chemotherapy-induced acute nephrotoxicity and hepatotoxicity in rats. J. Med. Food, 2011, 14(10), 1254-1262.
[http://dx.doi.org/10.1089/jmf.2010.0286] [PMID: 21548807]
[243]
Boroushaki, M.T.; Rajabian, A.; Farzadnia, M.; Hoseini, A.; Poorlashkari, M.; Taghavi, A.; Dolati, K.; Bazmandegan, G. Protective effect of pomegranate seed oil against cisplatin-induced nephrotoxicity in rat. Ren. Fail., 2015, 37(8), 1338-1343.
[http://dx.doi.org/10.3109/0886022X.2015.1073496] [PMID: 26288026]
[244]
Karwasra, R.; Kalra, P.; Gupta, Y.K.; Saini, D.; Kumar, A.; Singh, S. Antioxidant and anti-inflammatory potential of pomegranate rind extract to ameliorate cisplatin-induced acute kidney injury. Food Funct., 2016, 7(7), 3091-3101.
[http://dx.doi.org/10.1039/C6FO00188B] [PMID: 27273121]
[245]
Khan, S.A.; Priyamvada, S.; Khan, W.; Khan, S.; Farooq, N.; Yusufi, A.N.K. Studies on the protective effect of green tea against cisplatin induced nephrotoxicity. Pharmacol. Res., 2009, 60(5), 382-391.
[http://dx.doi.org/10.1016/j.phrs.2009.07.007] [PMID: 19647078]
[246]
Ko, J-L.; Tsai, C-H.; Liu, T-C.; Lin, M-Y.; Lin, H-L.; Ou, C-C. Differential effects of grape juice on gastric emptying and renal function from cisplatin-induced acute adverse toxicity. Hum. Exp. Toxicol., 2016, 35(8), 808-817.
[http://dx.doi.org/10.1177/0960327115607079] [PMID: 26429932]
[247]
Mazumder, P.B.; Devi, H.P. Methanolic Extract of Curcuma caesia Roxb. prevents the toxicity caused by Cyclophosphamide to bone marrow cells, liver and kidney of mice. Pharmacognosy Res., 2016, 8(1), 43-49.
[http://dx.doi.org/10.4103/0974-8490.171106] [PMID: 26941535]
[248]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[249]
Pfeiffer, P.; Köhne, C.H.; Qvortrup, C. The changing face of treatment for metastatic colorectal cancer. Expert Rev. Anticancer Ther., 2019, 19(1), 61-70.
[http://dx.doi.org/10.1080/14737140.2019.1543593] [PMID: 30381969]
[250]
Schmoll, H.J.; Van Cutsem, E.; Stein, A.; Valentini, V.; Glimelius, B.; Haustermans, K.; Nordlinger, B.; van de Velde, C.J.; Balmana, J.; Regula, J.; Nagtegaal, I.D.; Beets-Tan, R.G.; Arnold, D.; Ciardiello, F.; Hoff, P.; Kerr, D.; Köhne, C.H.; Labianca, R.; Price, T.; Scheithauer, W.; Sobrero, A.; Tabernero, J.; Aderka, D.; Barroso, S.; Bodoky, G.; Douillard, J.Y.; El Ghazaly, H.; Gallardo, J.; Garin, A.; Glynne-Jones, R.; Jordan, K.; Meshcheryakov, A.; Papamichail, D.; Pfeiffer, P.; Souglakos, I.; Turhal, S.; Cervantes, A. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann. Oncol., 2012, 23(10), 2479-2516.
[http://dx.doi.org/10.1093/annonc/mds236] [PMID: 23012255]
[251]
Lalla, R.V.; Bowen, J.; Barasch, A.; Elting, L.; Epstein, J.; Keefe, D.M.; McGuire, D.B.; Migliorati, C.; Nicolatou-Galitis, O.; Peterson, D.E.; Raber-Durlacher, J.E.; Sonis, S.T.; Elad, S. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer, 2014, 120(10), 1453-1461.
[http://dx.doi.org/10.1002/cncr.28592] [PMID: 24615748]
[252]
Boussios, S.; Pentheroudakis, G.; Katsanos, K.; Pavlidis, N. Systemic treatment-induced gastrointestinal toxicity: Incidence, clinical presentation and management. Ann. Gastroenterol., 2012, 25(2), 106-118.
[PMID: 24713845]
[253]
Andreyev, H.J.N.; Lalji, A.; Mohammed, K.; Muls, A.C.G.; Watkins, D.; Rao, S.; Starling, N.; Chau, I.; Cruse, S.; Pitkaaho, V.; Matthews, J.; Caley, L.; Pittordou, V.; Adams, C.; Wedlake, L. The FOCCUS study: A prospective evaluation of the frequency, severity and treatable causes of gastrointestinal symptoms during and after chemotherapy. Support. Care Cancer, 2021, 29(3), 1443-1453.
[http://dx.doi.org/10.1007/s00520-020-05610-x] [PMID: 32676853]
[254]
Liu, W.; Ge, T.; Pan, Z.; Leng, Y.; Lv, J.; Li, B. The effects of herbal medicine on epilepsy. Oncotarget, 2017, 8(29), 48385-48397.
[http://dx.doi.org/10.18632/oncotarget.16801] [PMID: 28423368]
[255]
Zhong, L.L.D.; Chen, H.Y.; Cho, W.C.S.; Meng, X.; Tong, Y. The efficacy of Chinese herbal medicine as an adjunctive therapy for colorectal cancer: A systematic review and meta-analysis. Complement. Ther. Med., 2012, 20(4), 240-252.
[http://dx.doi.org/10.1016/j.ctim.2012.02.004] [PMID: 22579437]
[256]
McCulloch, M.; Ly, H.; Broffman, M.; See, C.; Clemons, J.; Chang, R. Chinese herbal medicine and fluorouracil-based chemotherapy for colorectal cancer: A quality-adjusted meta-analysis of randomized controlled trials. Integr. Cancer Ther., 2016, 15(3), 285-307.
[http://dx.doi.org/10.1177/1534735416638738] [PMID: 27151587]
[257]
Lin, S.; An, X.; Guo, Y.; Gu, J.; Xie, T.; Wu, Q.; Sui, X. Meta-analysis of astragalus-containing traditional Chinese medicine combined with chemotherapy for colorectal cancer: Efficacy and safety to tumor response. Front. Oncol., 2019, 9, 749.
[http://dx.doi.org/10.3389/fonc.2019.00749] [PMID: 31456940]
[258]
Liu, S.; Zhang, K.; Hu, X. Comparative efficacy and safety of Chinese medicine injections combined with capecitabine and oxaliplatin chemotherapies in treatment of colorectal cancer: A bayesian network meta-analysis. Front. Pharmacol., 2022, 13, 1004259.
[http://dx.doi.org/10.3389/fphar.2022.1004259] [PMID: 36523501]
[259]
Motoo, Y.; Seki, T.; Tsutani, K. Traditional Japanese medicine, Kampo: Its history and current status. Chin. J. Integr. Med., 2011, 17(2), 85-87.
[http://dx.doi.org/10.1007/s11655-011-0653-y] [PMID: 21390572]
[260]
Hesketh, P.J. Chemotherapy-induced nausea and vomiting. N. Engl. J. Med., 2008, 358(23), 2482-2494.
[http://dx.doi.org/10.1056/NEJMra0706547] [PMID: 18525044]
[261]
Roila, F.; Herrstedt, J.; Aapro, M.; Gralla, R.J.; Einhorn, L.H.; Ballatori, E.; Bria, E.; Clark-Snow, R.A.; Espersen, B.T.; Feyer, P.; Grunberg, S.M.; Hesketh, P.J.; Jordan, K.; Kris, M.G.; Maranzano, E.; Molassiotis, A.; Morrow, G.; Olver, I.; Rapoport, B.L.; Rittenberg, C.; Saito, M.; Tonato, M.; Warr, D. Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: Results of the Perugia consensus conference. Ann. Oncol., 2010, 21(Suppl. 5), v232-v243.
[http://dx.doi.org/10.1093/annonc/mdq194] [PMID: 20555089]
[262]
De Vry, J.; Schreiber, R. Effects of selected serotonin 5-HT 1 and 5-HT 2 receptor agonists on feeding behavior: Possible mechanisms of action. Neurosci. Biobehav. Rev., 2000, 24(3), 341-353.
[http://dx.doi.org/10.1016/S0149-7634(99)00083-4] [PMID: 10781694]
[263]
Tatsuta, M.; Iishi, H. Effect of treatment with Liu-Jun-Zi-Tang (TJ-43) on gastric emptying and gastrointestinal symptoms in dyspeptic patients. Aliment. Pharmacol. Ther., 1993, 7(4), 459-462.
[http://dx.doi.org/10.1111/j.1365-2036.1993.tb00120.x] [PMID: 8218760]
[264]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[265]
Takeda, H.; Sadakane, C.; Hattori, T.; Katsurada, T.; Ohkawara, T.; Nagai, K.; Asaka, M. Rikkunshito, an herbal medicine, suppresses cisplatin-induced anorexia in rats via 5-HT2 receptor antagonism. Gastroenterology, 2008, 134(7), 2004-2013.
[http://dx.doi.org/10.1053/j.gastro.2008.02.078] [PMID: 18439428]
[266]
Yakabi, K.; Kurosawa, S.; Tamai, M.; Yuzurihara, M.; Nahata, M.; Ohno, S.; Ro, S.; Kato, S.; Aoyama, T.; Sakurada, T.; Takabayashi, H.; Hattori, T. Rikkunshito and 5-HT2C receptor antagonist improve cisplatin-induced anorexia via hypothalamic ghrelin interaction. Regul. Pept., 2010, 161(1-3), 97-105.
[http://dx.doi.org/10.1016/j.regpep.2010.02.003] [PMID: 20171995]
[267]
Kase, Y.; Hayakawa, T.; Aburada, M.; Komatsu, Y.; Kamataki, T. Preventive effects of Hange-shashin-to on irinotecan hydrochloride-caused diarrhea and its relevance to the colonic prostaglandin E2 and water absorption in the rat. Jpn. J. Pharmacol., 1997, 75(4), 407-413.
[http://dx.doi.org/10.1254/jjp.75.407] [PMID: 9469647]
[268]
Narita, M.; Nagai, E.; Hagiwara, H.; Aburada, M.; Yokoi, T.; Kamataki, T. Inhibition of β-glucuronidase by natural glucuronides of Kampo, medicines using glucuronide of SN-38 (7-ethyl-10-hydroxycamptothecin) as a substrate. Xenobiotica, 1993, 23(1), 5-10.
[http://dx.doi.org/10.3109/00498259309059356] [PMID: 8484262]
[269]
Takasuna, K.; Kasai, Y.; Kitano, Y.; Mori, K.; Kobayashi, R.; Hagiwara, T.; Kakihata, K.; Hirohashi, M.; Nomura, M.; Nagai, E.; Kamataki, T. Protective effects of kampo medicines and baicalin against intestinal toxicity of a new anticancer camptothecin derivative, irinotecan hydrochloride (CPT-11), in rats. Jpn. J. Cancer Res., 1995, 86(10), 978-984.
[http://dx.doi.org/10.1111/j.1349-7006.1995.tb03010.x] [PMID: 7493918]
[270]
Perazella, M.A. Drug use and nephrotoxicity in the intensive care unit. Kidney Int., 2012, 81(12), 1172-1178.
[http://dx.doi.org/10.1038/ki.2010.475] [PMID: 21124300]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy