Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Advancements in the Synthesis of Triazolopyrimidines

Author(s): Sushma Singh, Raman Lakhia, Sidhant Yadav, Poonam Devi, Karmvati Yadav, Vishwas Chaudhri and Rashmi Pundeer*

Volume 28, Issue 20, 2024

Published on: 24 June, 2024

Page: [1567 - 1578] Pages: 12

DOI: 10.2174/0113852728313437240607095009

Price: $65

Abstract

The triazolopyrimidine scaffold indeed holds a prominent place in medicinal chemistry due to its versatile pharmacological properties. Researchers have explored the scaffold and its derivatives for various therapeutic applications. The unique structure of triazolopyrimidine has made it a valuable template for designing medicinally active molecules. The literature is full of studies showcasing the synthesis and biological activities of compounds containing the triazolopyrimidine ring, either fused or coupled with other heterocycles. The aim of this review is to provide a comprehensive and general summary of the recent advancements in the synthesis of triazolopyrimidine derivatives (Year 2021 to present).

[1]
Neda, I.; Kaukorat, T.; Schmutzler, R. Verbindungen mit dem 1,3,2 benzodiazaphosphorinan 4 on grundgerüst: synthese von neuartigen n,n′,n′ trimethylethylendiaminsubstituierten derivaten mit drei und vierfach koordiniertem phosphor. Phosphorus Sulfur Silicon Relat. Elem., 1993, 80(1-4), 241-250.
[http://dx.doi.org/10.1080/10426509308036896]
[2]
Neda, I.; Fischer, A.; Jones, P.G.; Schmutzler, R. Verbindungen mit dem 1,3,2 benzodiazaphosphorinan 4 on grundgerüst: synthese von neuartigen, n,n dimethyl amino und bis 2 chlorethylamino-substituierten derivaten mit drei, vier und fünffach koordiniertem phosphor. Phosphorus Sulfur Silicon Relat. Elem., 1993, 78(1-4), 271-287.
[http://dx.doi.org/10.1080/10426509308032443]
[3]
Farkens, M.; Neda, I.; Fischer, A.; Jones, P.G.; Schmutzler, R. ChemInform abstract: Chemistry of the 1,3,5 Triaza 2 phosphinane 4,6 diones. Part 4. Hydrolysis of and thermal elimination from 1,3,5 Triaza 2λ4 phosphinimide 4,6 diones and 1,3,5 Triaza 1,4 dioxa 5λ5 phosphaspiro(4.5)decane 7,9 diones. ChemInform 1993, 24(45), chin.199345249..
[http://dx.doi.org/10.1002/chin.199345249]
[4]
Kadyrov, A.; Neda, I.; Kaukorat, T.; Sonnenburg, R.; Fischer, A.; Jones, P.G.; Schmutzler, R. Neue phospholen und phosphepin derivate aus λ3 phosphorverbindungen und hexafluoraceton oder perfluorierten α diketonen. Chem. Ber., 1996, 129(6), 725-732.
[http://dx.doi.org/10.1002/cber.19961290620]
[5]
Maftei, C.V.; Fodor, E.; Jones, P.G.; Daniliuc, C.G.; Franz, M.H.; Kelter, G.; Fiebig, H.H.; Tamm, M.; Neda, I. Novel 1,2,4-oxadiazoles and trifluoromethylpyridines related to natural products: synthesis, structural analysis and investigation of their antitumor activity. Tetrahedron, 2016, 72(9), 1185-1199.
[http://dx.doi.org/10.1016/j.tet.2016.01.011]
[6]
Maftei, E.; Maftei, C.V.; Jones, P.G.; Freytag, M.; Franz, M.H.; Kelter, G.; Fiebig, H.H.; Tamm, M.; Neda, I. Trifluoromethylpyridine-substituted N-heterocyclic carbenes related to natural products: synthesis, structure, and potential antitumor activity of some corresponding gold(I), rhodium(I), and iridium(I) complexes. Helv. Chim. Acta, 2016, 99(6), 469-481.
[http://dx.doi.org/10.1002/hlca.201500529]
[7]
Maftei, C.V.; Fodor, E.; Jones, P.G.; Franz, M.H.; Kelter, G.; Fiebig, H.; Neda, I. Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties. Beilstein J. Org. Chem., 2013, 9, 2202-2215.
[http://dx.doi.org/10.3762/bjoc.9.259] [PMID: 24222789]
[8]
Malik, M.A.; Dar, O.A.; Gull, P.; Wani, M.Y.; Hashmi, A.A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm, 2018, 9(3), 409-436.
[http://dx.doi.org/10.1039/C7MD00526A] [PMID: 30108933]
[9]
Khose, V.; John, M.; Pandey, A.; Borovkov, V.; Karnik, A. Chiral heterocycle-based receptors for enantioselective recognition. Symmetry (Basel), 2018, 10(2), 34.
[http://dx.doi.org/10.3390/sym10020034]
[10]
Sharma, M.; Pandey, V.; Poli, G.; Tuccinardi, T.; Lolli, M.L.; Vyas, V.K. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 1: triazolopyrimidine, isoxazolopyrimidine and pyrrole-based (DSM) compounds. Bioorg. Chem., 2024, 146, 107249.
[http://dx.doi.org/10.1016/j.bioorg.2024.107249] [PMID: 38493638]
[11]
Myers, S.H.; Poppi, L.; Rinaldi, F.; Veronesi, M.; Ciamarone, A.; Previtali, V.; Bagnolini, G.; Schipani, F.; Ortega Martínez, J.A.; Girotto, S.; Di Stefano, G.; Farabegoli, F.; Walsh, N.; De Franco, F.; Roberti, M.; Cavalli, A. An 19F NMR fragment-based approach for the discovery and development of BRCA2-RAD51 inhibitors to pursuit synthetic lethality in combination with PARP inhibition in pancreatic cancer. Eur. J. Med. Chem., 2024, 265, 116114.
[http://dx.doi.org/10.1016/j.ejmech.2023.116114] [PMID: 38194775]
[12]
Mousavi, H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int. J. Biol. Macromol., 2021, 186, 1003-1166.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.123] [PMID: 34174311]
[13]
Mohite, P.; Nahar, D.; Pawara, R.; Alqahtani, T.; Eldin, S.M.; Mukherje, N.; Rahman Mohammad Said Al-Tawaha, A.; Iqbal, R.; Bawazeer, S.; Ali, I. Triazolopyridine, a leitmotif of synthetic methods and pharmacological attributes: An extensive review. Arab. J. Chem., 2023, 16(10), 105181.
[http://dx.doi.org/10.1016/j.arabjc.2023.105181]
[14]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[15]
Feitosa, L.M.; Franca, R.R.F.; Ferreira, M.L.G.; Aguiar, A.C.C.; de Souza, G.E.; Maluf, S.E.C.; de Souza, J.O.; Zapata, L.; Duarte, D.; Morais, I.; Nogueira, F.; Nonato, M.C.; Pinheiro, L.C.S.; Guido, R.V.C.; Boechat, N. Discovery of new piperaquine hybrid analogs linked by triazolopyrimidine and pyrazolopyrimidine scaffolds with antiplasmodial and transmission blocking activities. Eur. J. Med. Chem., 2024, 267, 116163.
[http://dx.doi.org/10.1016/j.ejmech.2024.116163] [PMID: 38290351]
[16]
Abu-Hashem, A.A.; Al-Hussain, S.A. The synthesis, antimicrobial activity, and molecular docking of new 1, 2, 4-triazole, 1, 2, 4-triazepine, quinoline, and pyrimidine scaffolds condensed to naturally occurring furochromones. Pharmaceuticals (Basel), 2022, 15(10), 1232.
[http://dx.doi.org/10.3390/ph15101232] [PMID: 36297343]
[17]
Abdelhamid, A.E.; Khattab, R.R.; Swelam, S.A.; Soliman, A.M.; Abd El-Moez, S.I.; Belasy, S.F.; El-Sayed, A.A. Antimicrobial evaluation of composite films based on polyvinyl alcohol/triazolopyrimidenes/selenium nanoparticles. Egyptian Pharmaceutical Journal, 2024, 23(1), 35-45.
[http://dx.doi.org/10.4103/epj.epj_172_23]
[18]
Abdelkhalek, A.S.; Attia, M.S.; Kamal, M.A. Triazolopyrimidine derivatives: An updated review on recent advances in synthesis, biological activities and drug delivery aspects. Curr. Med. Chem., 2023, 30, 1-24.
[PMID: 36852819]
[19]
Pundeer, R.; Singh, S.; Yadav, S.; Minakshi, M. Green synthesis of pyrazoles: recent developments in aqueous methods. SynOpen, 2023, 7(3), 297-312.
[http://dx.doi.org/10.1055/a-2123-8102]
[20]
Singh, S.; Prakash, R.; Dua, N.; Sharma, C.; Pundeer, R. Some new pyrazolyl pyrazolones and cyanopyrazolyl acrylates: Design, synthesis and biological evaluation. ChemistrySelect, 2019, 4(23), 6849-6853.
[http://dx.doi.org/10.1002/slct.201900118]
[21]
Fischer, G. 1,2,4-Triazolo[1,5-a]pyrimidines. In: Advances in Heterocyclic Chemistry; Elsevier, , 1993; 57, pp. 81-138.
[http://dx.doi.org/10.1016/S0065-2725(08)60887-9]
[22]
Fischer, G. Recent progress in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. In: Advances in Heterocyclic Chemistry; Elsevier, , 2007; 95, pp. 143-219.
[http://dx.doi.org/10.1016/S0065-2725(07)95003-5]
[23]
Fischer, G. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry In: Advances in Heterocyclic Chemistry; Elsevier 2019, 128, 1-101.
[http://dx.doi.org/10.1016/bs.aihch.2018.10.002]
[24]
Edrees, M.M.; Farghaly, T.A. Synthesis and antitumor activity of benzo[6″,7″]cyclohepta[1″,2″:4′,5′]pyrido[2′,3′-d][1,2,4]triazolo[4,3-a]pyrimidin-5-ones. Arab. J. Chem., 2017, 10, S1613-S1618.
[http://dx.doi.org/10.1016/j.arabjc.2013.06.002]
[25]
El Ashry, E.S.H.; Awad, L.F.; Teleb, M.; Ibrahim, N.A.; Abu-Serie, M.M.; Abd Al Moaty, M.N. Structure-based design and optimization of pyrimidine- and 1,2,4-triazolo[4,3-a]pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. Bioorg. Chem., 2020, 96, 103616.
[http://dx.doi.org/10.1016/j.bioorg.2020.103616] [PMID: 32032847]
[26]
Horchani, M.; Hajlaoui, A.; Harrath, A.H.; Mansour, L.; Ben Jannet, H.; Romdhane, A. New pyrazolo-triazolo-pyrimidine derivatives as antibacterial agents: Design and synthesis, molecular docking and DFT studies. J. Mol. Struct., 2020, 1199, 127007.
[http://dx.doi.org/10.1016/j.molstruc.2019.127007]
[27]
Bülow, C.; Haas, K. Synthetische versuche zur darstellung von derivaten des heterokondensierten, heterocyclischen 1.3‐triazo‐7.0′‐pyrimidins. Ber. Dtsch. Chem. Ges., 1909, 42(4), 4638-4644.
[http://dx.doi.org/10.1002/cber.19090420468]
[28]
Tenor, E.; Ludwig, R. Drug chemical studies of the s-triazolo-1.5-a-pyrimidine series. Die Pharmazie, 1971, 534-539.
[29]
Füller, H.; Hauschild, F.; Modersohn, D.; Thomas, E. Pharmacology of 6-methyl-7-diethylamino-s-triazolo-(1, 5-a) pyrimidine (Trapymin, Rocornal), a new compound with vasodilative effects. Die Pharmazie, 1971, 26(9), 554-562.
[30]
Watanabe, I.; Okumura, Y.; Nagashima, K.; Kofune, M.; Ohkubo, K.; Mano, H.; Sonoda, K.; Kasamaki, Y.; Hirayama, A. Effects of the antianginal drug trapidil on atrioventricular conduction disturbances during acute myocardial ischemia. Int. Heart J., 2012, 53(3), 187-192.
[http://dx.doi.org/10.1536/ihj.53.187] [PMID: 22790688]
[31]
Li, H.; Tatlock, J.; Linton, A.; Gonzalez, J.; Jewell, T.; Patel, L.; Ludlum, S.; Drowns, M.; Rahavendran, S.V.; Skor, H.; Hunter, R.; Shi, S.T.; Herlihy, K.J.; Parge, H.; Hickey, M.; Yu, X.; Chau, F.; Nonomiya, J.; Lewis, C. Discovery of (R)-6-Cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-((5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)methyl)-4-hydroxy-5,6-dihyd-ropyran-2-one (PF-00868554) as a potent and orally available hepatitis C] virus polymerase inhibitor. J. Med. Chem., 2009, 52(5), 1255-1258.
[http://dx.doi.org/10.1021/jm8014537] [PMID: 19209845]
[32]
Singer, R.A.; Ragan, J.A.; Bowles, P.; Chisowa, E.; Conway, B.G.; Cordi, E.M.; Leeman, K.R.; Letendre, L.J.; Sieser, J.E.; Sluggett, G.W.; Stanchina, C.L.; Strohmeyer, H.; Blunt, J.; Taylor, S.; Byrne, C.; Lynch, D.; Mullane, S.; O’Sullivan, M.M.; Whelan, M. Synthesis of filibuvir. part I. Diastereoselective preparation of a β-hydroxy alkynyl oxazolidinone and conversion to a 6,6-disubstituted 2H-pyranone. Org. Process Res. Dev., 2014, 18(1), 26-35.
[http://dx.doi.org/10.1021/op4002356]
[33]
Fandzloch, M.; Augustyniak, A.W.; Dobrzańska, L.; Jędrzejewski, T.; Sitkowski, J.; Wypij, M.; Golińska, P. First dinuclear rhodium(II) complexes with triazolopyrimidines and the prospect of their potential biological use. J. Inorg. Biochem., 2020, 210, 111072.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111072] [PMID: 32563102]
[34]
Ruta, L.L.; Farcasanu, I.C.; Bacalum, M.; Răileanu, M.; Rostas, A.M.; Daniliuc, C.; Chifiriuc, M.C.; Măruțescu, L.; Popa, M.; Badea, M.; Iorgulescu, E.E.; Olar, R. Biological activity of triazolopyrimidine copper(II) complexes modulated by an auxiliary N-N-chelating heterocycle ligands. Molecules, 2021, 26(22), 6772.
[http://dx.doi.org/10.3390/molecules26226772] [PMID: 34833864]
[35]
Han, L.R.; Cheng, L.; Hu, D.S.; Chen, Q.W.; Han, L.; Xu, T.M.; Liu, X.H.; Wu, N.J. Design, synthesis and biological activities of 1,2, 4‐triazolo[1,5‐a]pyrimidine‐7‐amine derivatives bearing 1,2, 4‐oxadiazole motif. J. Heterocycl. Chem., 2023, 60(2), 241-251.
[http://dx.doi.org/10.1002/jhet.4576]
[36]
Low, Y.S.; Garcia, M.D.; Lonhienne, T.; Fraser, J.A.; Schenk, G.; Guddat, L.W. Triazolopyrimidine herbicides are potent inhibitors of Aspergillus fumigatus acetohydroxyacid synthase and potential antifungal drug leads. Sci. Rep., 2021, 11(1), 21055.
[http://dx.doi.org/10.1038/s41598-021-00349-9] [PMID: 34702838]
[37]
Saundane, A.R.; Halu, A.; Kirankumar, N.M. Synthesis and biological evaluation of some novel indole analogues containing triazolopyrimidine moiety. Monatsh. Chem., 2017, 148(8), 1497-1511.
[http://dx.doi.org/10.1007/s00706-017-1957-1]
[38]
Gadara, S.A.; Ladva, K.D. Solid phase synthesis and antimicrobial activity of novel triazolo[1,5-a]pyrimidine derivatives. Asian J. Chem., 2020, 32(9), 2298-2302.
[http://dx.doi.org/10.14233/ajchem.2020.22793]
[39]
Renyu, Q.; Yuchao, L.; Kandegama, W.M.W.W.; Qiong, C.; Guangfu, Y. Recent applications of triazolopyrimidine-based bioactive compounds in medicinal and agrochemical chemistry. Mini Rev. Med. Chem., 2018, 18(9), 781-793.
[http://dx.doi.org/10.2174/1389557517666171101112850]
[40]
Ibrahim, Z.Y.; Uzairu, A.; Shallangwa, G.; Abechi, S. In-silico design of aryl and aralkyl amine-based triazolopyrimidine derivatives with enhanced activity against resistant Plasmodium falciparum. Chemistry Africa, 2021, 4(1), 137-148.
[http://dx.doi.org/10.1007/s42250-020-00199-4]
[41]
Chowdhary, S. Shalini; Mosnier, J.; Fonta, I.; Pradines, B.; Cele, N.; Seboletswe, P.; Singh, P.; Kumar, V. Synthesis, Anti-plasmodial activities, and mechanistic insights of 4-aminoquinoline-triazolopyrimidine hybrids. ACS Med. Chem. Lett., 2022, 13(7), 1068-1076.
[http://dx.doi.org/10.1021/acsmedchemlett.2c00078] [PMID: 35859870]
[42]
Phillips, M.A.; Gujjar, R.; Malmquist, N.A.; White, J.; El Mazouni, F.; Baldwin, J.; Rathod, P.K. Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J. Med. Chem., 2008, 51(12), 3649-3653.
[http://dx.doi.org/10.1021/jm8001026] [PMID: 18522386]
[43]
Gujjar, R.; Marwaha, A.; El Mazouni, F.; White, J.; White, K.L.; Creason, S.; Shackleford, D.M.; Baldwin, J.; Charman, W.N.; Buckner, F.S.; Charman, S.; Rathod, P.K.; Phillips, M.A. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J. Med. Chem., 2009, 52(7), 1864-1872.
[http://dx.doi.org/10.1021/jm801343r] [PMID: 19296651]
[44]
Gigante, A.; Gómez-SanJuan, A.; Delang, L.; Li, C.; Bueno, O.; Gamo, A.M.; Priego, E.M.; Camarasa, M.J.; Jochmans, D.; Leyssen, P.; Decroly, E.; Coutard, B.; Querat, G.; Neyts, J.; Pérez-Pérez, M.J. Antiviral activity of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones against chikungunya virus targeting the viral capping nsP1. Antiviral Res., 2017, 144, 216-222.
[http://dx.doi.org/10.1016/j.antiviral.2017.06.003] [PMID: 28619679]
[45]
Baklykov, A.V.; Rusinov, G.L.; Artem’ev, G.A.; Kopchuk, D.S.; Zyryanov, G.V.; Rusinov, V.L.; Charushin, V.N. Synthesis of 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one - a semi-product of the synthesis of antiviral drug triazide® in the conditions of microwave excitation. AIP Conf. Proc., , 2019; 2063, p. 040005.
[http://dx.doi.org/10.1063/1.5087337]
[46]
Huang, B.; Kang, D.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Design, synthesis, and biological evaluation of piperidinyl‐substituted [1,2,4]triazolo[1,5‐a]pyrimidine derivatives as potential anti‐HIV‐1 agents with reduced cytotoxicity. Chem. Biol. Drug Des., 2021, 97(1), 67-76.
[http://dx.doi.org/10.1111/cbdd.13760] [PMID: 32725669]
[47]
Pinheiro, S.; Pinheiro, E.M.C.; Muri, E.M.F.; Pessôa, J.C.; Cadorini, M.A.; Greco, S.J. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs. Med. Chem. Res., 2020, 29(10), 1751-1776.
[http://dx.doi.org/10.1007/s00044-020-02609-1]
[48]
Ozbek, E.N.; Istanbullu, H.; Kızrak, U.; Alan Albayrak, E.; Sevin, G.; Yetik-Anacak, G. The effects of novel triazolopyrimidine derivatives on H2S production in lung and vascular tonus in aorta. Pharmacology, 2023, 108(6), 530-539.
[http://dx.doi.org/10.1159/000533419] [PMID: 37696255]
[49]
Said, S.A.; Amr, A.E.G.E.; Sabry, N.M.; Abdalla, M.M. Analgesic, anticonvulsant and anti-inflammatory activities of some synthesized benzodiazipine, triazolopyrimidine and bis-imide derivatives. Eur. J. Med. Chem., 2009, 44(12), 4787-4792.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.013] [PMID: 19682771]
[50]
Yu, G.X.; Hu, Y.; Zhang, W.X.; Tian, X.Y.; Zhang, S.Y.; Zhang, Y.; Yuan, S.; Song, J. Design, synthesis and biological evaluation of [1,2,4]triazolo[1,5-a]pyrimidine Indole derivatives against gastric cancer cells MGC-803 via the suppression of ERK signaling pathway. Molecules, 2022, 27(15), 4996.
[http://dx.doi.org/10.3390/molecules27154996] [PMID: 35956943]
[51]
Kohandel, O.; Sheikhi-Mohammareh, S.; Oroojalian, F.; Memariani, T.; Mague, J.; Shiri, A. A Dimroth rearrangement approach for the synthesis of selenopheno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidines with cytotoxic activity on breast cancer cells. Mol. Divers., 2022, 26(3), 1621-1633.
[http://dx.doi.org/10.1007/s11030-021-10290-8] [PMID: 34357512]
[52]
Wiśniewska, J.; Fandzloch, M.; Łakomska, I. The reduction of ruthenium(III) complexes with triazolopyrimidine ligands by ascorbic acid and mechanistic insight into their action in anticancer therapy. Inorg. Chim. Acta, 2019, 484, 305-310.
[http://dx.doi.org/10.1016/j.ica.2018.09.051]
[53]
Sáez-Calvo, G.; Sharma, A.; Balaguer, F.A.; Barasoain, I.; Rodríguez-Salarichs, J.; Olieric, N.; Muñoz-Hernández, H.; Berbís, M.Á.; Wendeborn, S.; Peñalva, M.A.; Matesanz, R.; Canales, Á.; Prota, A.E.; Jímenez-Barbero, J.; Andreu, J.M.; Lamberth, C.; Steinmetz, M.O.; Díaz, J.F. Triazolopyrimidines are microtubule-stabilizing agents that bind the vinca inhibitor site of tubulin. Cell Chem. Biol., 2017, 24(6), 737-750.e6.
[http://dx.doi.org/10.1016/j.chembiol.2017.05.016] [PMID: 28579361]
[54]
Hassan, G.S.; El-Sherbeny, M.A.; El-Ashmawy, M.B.; Bayomi, S.M.; Maarouf, A.R.; Badria, F.A. Synthesis and antitumor testing of certain new fused triazolopyrimidine and triazoloquinazoline derivatives. Arab. J. Chem., 2017, 10, S1345-S1355.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.002]
[55]
Mokariya, J.A.; Rajani, D.P.; Patel, M.P. 1,2,4‐Triazole and benzimidazole fused dihydropyrimidine derivatives: Design, green synthesis, antibacterial, antitubercular, and antimalarial activities. Arch. Pharm. (Weinheim), 2023, 356(4), 2200545.
[http://dx.doi.org/10.1002/ardp.202200545] [PMID: 36534897]
[56]
Umar, T.; Gusain, S.; Raza, M.K.; Shalini, S.; Kumar, J.; Tiwari, M.; Hoda, N. Naphthalene-triazolopyrimidine hybrid compounds as potential multifunctional anti-Alzheimer’s agents. Bioorg. Med. Chem., 2019, 27(14), 3156-3166.
[http://dx.doi.org/10.1016/j.bmc.2019.06.004] [PMID: 31176571]
[57]
Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.064] [PMID: 28478343]
[58]
Shaw, S.A.; Vokits, B.P.; Dilger, A.K.; Viet, A.; Clark, C.G.; Abell, L.M.; Locke, G.A.; Duke, G.; Kopcho, L.M.; Dongre, A.; Gao, J.; Krishnakumar, A.; Jusuf, S.; Khan, J.; Spronk, S.A.; Basso, M.D.; Zhao, L.; Cantor, G.H.; Onorato, J.M.; Wexler, R.R.; Duclos, F.; Kick, E.K. Discovery and structure activity relationships of 7-benzyl triazolopyridines as stable, selective, and reversible inhibitors of myeloperoxidase. Bioorg. Med. Chem., 2020, 28(22), 115723.
[http://dx.doi.org/10.1016/j.bmc.2020.115723] [PMID: 33007547]
[59]
Chen, C.N.; Chen, Q.; Liu, Y.C.; Zhu, X.L.; Niu, C.W.; Xi, Z.; Yang, G.F. Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor. Bioorg. Med. Chem., 2010, 18(14), 4897-4904.
[http://dx.doi.org/10.1016/j.bmc.2010.06.015] [PMID: 20598554]
[60]
Liu, Y-C.; Qu, R-Y.; Chen, Q.; Yang, J.-F.; Cong-Wei, N.; Zhen, X.; Yang, G.F. Triazolopyrimidines as a new herbicidal lead for combating weed resistance associated with acetohydroxyacid synthase mutation. J. Agric. Food Chem., 64(24), 4845-4857.
[http://dx.doi.org/10.1021/acs.jafc.6b00720]
[61]
Oukoloff, K.; Lucero, B.; Francisco, K.R.; Brunden, K.R.; Ballatore, C. 1,2,4-Triazolo[1,5-a]pyrimidines in drug design. Eur. J. Med. Chem., 2019, 165, 332-346.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.027] [PMID: 30703745]
[62]
Méndez-Arriaga, J.M.; Oyarzabal, I.; Escolano, G.; Rodríguez-Diéguez, A.; Sánchez-Moreno, M.; Salas, J.M. In vitro leishmanicidal and trypanocidal evaluation and magnetic properties of 7-amino-1,2,4-triazolo[1,5-a]pyrimidine Cu(II) complexes. J. Inorg. Biochem., 2018, 180, 26-32.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.027] [PMID: 29227923]
[63]
Méndez-Arriaga, J.M.; Rodríguez-Diéguez, A.; Sánchez-Moreno, M. In vitro leishmanicidal activity of copper (II) 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine complex and analogous transition metal series. Polyhedron, 2020, 176, 114272.
[http://dx.doi.org/10.1016/j.poly.2019.114272]
[64]
Łakomska, I.; Fandzloch, M. Application of 1,2,4-triazolo[1,5-a]pyrimidines for the design of coordination compounds with interesting structures and new biological properties. Coord. Chem. Rev., 2016, 327-328, 221-241.
[http://dx.doi.org/10.1016/j.ccr.2016.04.014]
[65]
Jr, R.O.R.; Lampen, J.O.; English, J.P.; Cole, Q.P.; Jr, J.R.V. Studies in chemotherapy. VIII. Methionine and purine antagonists and their relation to the sulfonamides. J. Am. Chem. Soc., 67(2), 290-294.
[http://dx.doi.org/10.1021/ja01218a043]
[66]
Singh, P.K.; Choudhary, S.; Kashyap, A.; Verma, H.; Kapil, S.; Kumar, M.; Arora, M.; Silakari, O. An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades. Bioorg. Chem., 2019, 88, 102919.
[http://dx.doi.org/10.1016/j.bioorg.2019.102919] [PMID: 31026721]
[67]
Salem, M.A.; Behalo, M.S.; Khidre, R.E. Recent trend in the chemistry of triazolopyrimidines and their applications. Mini Rev. Org. Chem., 2021, 18(8), 1134-1149.
[http://dx.doi.org/10.2174/1570193X18666210203155358]
[68]
Ragab, S.S.; Ibrahim, N.E.; Abdel-Aziz, M.S.; Elrashedy, A.A.; Allayeh, A.K. Synthesis, biological activity, and molecular dynamic studies of new triazolopyrimidine derivatives. Results Chem., 2023, 6, 101163.
[http://dx.doi.org/10.1016/j.rechem.2023.101163]
[69]
Hibot, A.; Oumessaoud, A.; Hafid, A.; Khouili, M.; Pujol, M.D. Different synthetic methods for the preparation of triazolopyrimidines and their biological profile. ChemistrySelect, 2023, 8(23), e202301654.
[http://dx.doi.org/10.1002/slct.202301654]
[70]
Acker, D.; Castle, J. Notes - A convenient laboratory synthesis of certain 6-hydroxypurines and 7-hydroxy-v-triazolo [d]pyrimidines. J. Org. Chem., 1958, 23(12), 2010-2011.
[http://dx.doi.org/10.1021/jo01106a616]
[71]
Polikarchuk, V.A.; Chertova, Y.V.; Potapov, A.Y.; Ledenyova, I.V.; Kosheleva, Y.A.; Krysin, M.Y.; Kozadyorov, O.A.; Shatalov, G.V.; Vandyshev, D.Y.; Shikhaliev, K.S.; Prabhakar, C. Novel variants of the multicomponent reaction for the synthesis of 1,2,4-triazolo[1,5-a]pyrimidines and pyrido[3,4-e][1,2,4]triazolo[1,5-a]pyrimidines. Chem. Heterocycl. Compd., 2020, 56(8), 1054-1061.
[http://dx.doi.org/10.1007/s10593-020-02773-7]
[72]
Mohamed, M.A.A.; Bekhit, A.A.; Abd Allah, O.A.; Kadry, A.M.; Ibrahim, T.M.; Bekhit, S.A.; Amagase, K.; El-Saghier, A.M.M. Synthesis and antimicrobial activity of some novel 1,2-dihydro-[1,2,4]triazolo[1,5-a]pyrimidines bearing amino acid moiety. RSC Advances, 2021, 11(5), 2905-2916.
[http://dx.doi.org/10.1039/D0RA08189B] [PMID: 35424245]
[73]
Desenko, S.M.; Gorobets, M.Y.; Lipson, V.V.; Sakhno, Y.I.; Chebanov, V.A. Dihydroazolopyrimidines: Past, present and perspectives in synthesis, green chemistry and drug discovery. Chem. Rec., 2023, e202300244.
[http://dx.doi.org/10.1002/tcr.202300244] [PMID: 37668291]
[74]
Chebanov, V.A.; Desenko, S.M.; Lipson, V.V.; Gorobets, N.Y. Multicomponent‐switched reactions in synthesis of heterocycles. In: Multicomponent Reactions towards Heterocycles; John Wiley Sons, 2021.
[http://dx.doi.org/10.1002/9783527832439.ch8]
[75]
Sutherland, D.R.; Tennant, G. The chemistry of polyazaheterocyclic compounds. Part V. The synthesis and reactivity of the v-triazolo[3,4-a]pyrimidine ring system. J. Chem. Soc. C, 1971, (0), 2156-2162.
[http://dx.doi.org/10.1039/j39710002156]
[76]
Benson, F.R.; Savell, W.L. The chemistry of the vicinal triazoles. Chem. Rev., 1950, 46(1), 1-68.
[http://dx.doi.org/10.1021/cr60143a001]
[77]
Shaabani, A.; Seyyedhamzeh, M.; Ganji, N.; Hamidzad Sangachin, M.; Armaghan, M. One-pot four-component synthesis of highly substituted [1,2,4]triazolo[1,5-a]pyrimidines. Mol. Divers., 2015, 19(4), 709-715.
[http://dx.doi.org/10.1007/s11030-015-9604-4]
[78]
Tamatam, R.; Kim, S.H.; Shin, D. Transition-metal-catalyzed synthesis of quinazolines: A review. Front Chem., 2023, 11, 1140562.
[http://dx.doi.org/10.3389/fchem.2023.1140562] [PMID: 37007059]
[79]
Jena, S.; Chanda, K. Copper catalyzed synthesis of heterocyclic molecules via C-N and C-O bond formation under microwaves: A mini-review. ACS Omega, 2023, 8(26), 23240-23256.
[http://dx.doi.org/10.1021/acsomega.3c02041] [PMID: 37426233]
[80]
Chang, Y.; Xie, C.; Liu, H.; Huang, S.; Wang, P.; Qin, W.; Yan, H. Organocatalytic atroposelective construction of axially chiral N, N- and N, S-1,2-azoles through novel ring formation approach. Nat. Commun., 2022, 13(1), 1933.
[http://dx.doi.org/10.1038/s41467-022-29557-1] [PMID: 35410417]
[81]
Hezarcheshmeh, N.K.; Godarzbod, F.; Abdullah, M.N.; Hossaini, Z. Green preparation of new pyrimidine triazole derivatives via one-pot multicomponent reactions of guanidine. Mol. Divers., 2024, 28(1), 217-228.
[http://dx.doi.org/10.1007/s11030-023-10754-z] [PMID: 37943418]
[82]
Badrey, M.G.; Gomha, S.M.; Zaki, M.E.A.; Farag, B.; El-Reedy, A.A.M. Cyanauric chloride as a key precursor and a core component for three-armed triazolopyrimidines: Recent finding about SARs and docking analyses. Results in Chemistry, 2024, 7, 101337.
[http://dx.doi.org/10.1016/j.rechem.2024.101337]
[83]
Frizzo, C.P.; Scapin, E.; Marzari, M.R.B.; München, T.S.; Zanatta, N.; Bonacorso, H.G.; Buriol, L.; Martins, M.A.P. Ultrasound irradiation promotes the synthesis of new 1,2,4-triazolo[1,5-a]pyrimidine. Ultrason. Sonochem., 2014, 21(3), 958-962.
[http://dx.doi.org/10.1016/j.ultsonch.2013.12.007]
[84]
El-mahdy M, K.; M El-kazak, A. A simple synthesis and antimicrobial activity of some new 1,2,4-triazolopyrimidine derivatives. Heterocycles, 2021, 102(4), 731.
[http://dx.doi.org/10.3987/COM-21-14409]
[85]
Kamal, R.; Kumar, R.; Kumar, V.; Bhardwaj, J.K.; Saraf, P.; Kumar, A.; Pandit, K.; Kaur, S.; Chetti, P.; Beura, S. Diacetoxy iodobenzene mediated regioselective synthesis and characterization of novel [1,2,4]triazolo[4,3-a]pyrimidines: apoptosis inducer, antiproliferative activities and molecular docking studies. J. Biomol. Struct. Dyn., 2021, 39(12), 4398-4414.
[http://dx.doi.org/10.1080/07391102.2020.1777900] [PMID: 32552396]
[86]
Soni, R.; Aneja, D.K.; Sihag, M.; Rani, N.; Kinger, M. On water synthesis of 3-aryl-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidines using iodobenzene diacetate. Lett. Org. Chem., 2023, 20(5), 401-406.
[http://dx.doi.org/10.2174/1570178620666221025160300]
[87]
Darapour, Z.; Shiri, A. Synthesis of new derivatives of Alkylselanyl[1,2,4]triazolo[4,3‐a]pyrimidine as selenium‐containing heterocyclic system. J. Heterocycl. Chem., 2023, 60(6), 1047-1057.
[http://dx.doi.org/10.1002/jhet.4650]
[88]
Aliwaini, S.; Abu Thaher, B.; Al-Masri, I.; Shurrab, N.; El-Kurdi, S.; Schollmeyer, D.; Qeshta, B.; Ghunaim, M.; Csuk, R.; Laufer, S.; Kaiser, L.; Deigner, H.P. Design, synthesis and biological evaluation of novel pyrazolo[1,2,4]triazolopyrimidine derivatives as potential anticancer agents. Molecules, 2021, 26(13), 4065.
[http://dx.doi.org/10.3390/molecules26134065] [PMID: 34279406]
[89]
Muhammad, Z.A.; Farghaly, T.A.; Althagafi, I.; Al-Hussain, S.A.; Zaki, M.E.A.; Harras, M.F. Synthesis of antimicrobial azoloazines and molecular docking for inhibiting COVID‐19. J. Heterocycl. Chem., 2021, 58(6), 1286-1301.
[http://dx.doi.org/10.1002/jhet.4257] [PMID: 34230687]
[90]
Pogaku, V.; Krishnan, R.; Basavoju, S. Synthesis and biological evaluation of new benzo[d][1,2,3]triazol-1-yl-pyrazole-based dihydro-[1,2,4]triazolo[4,3-a]pyrimidines as potent antidiabetic, anticancer and antioxidant agents. Res. Chem. Intermed., 2021, 47(2), 551-571.
[http://dx.doi.org/10.1007/s11164-020-04285-7]
[91]
Tang, M.L.; Wen, Z.H.; Wang, J.H.; Wang, M.L.; Zhang, H.; Liu, X.H.; Jin, L.; Chang, J. Discovery of pyridone-substituted triazolopyrimidine dual A2A/A1AR antagonists for the treatment of ischemic stroke. ACS Med. Chem. Lett., 2022, 13(3), 436-442.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00599] [PMID: 35295085]
[92]
Chinnam, A.K.; Staples, R.J.; Shreeve, J.M. Synthesis and energetic properties of trifluoromethyl-substituted 2-nitro-[1,2,4]triazolo[1,5-a]pyrimidine derivatives. J. Fluor. Chem., 2021, 245, 109743.
[http://dx.doi.org/10.1016/j.jfluchem.2021.109743]
[93]
Pismataro, M.C.; Felicetti, T.; Bertagnin, C.; Nizi, M.G.; Bonomini, A.; Barreca, M.L.; Cecchetti, V.; Jochmans, D.; De Jonghe, S.; Neyts, J.; Loregian, A.; Tabarrini, O.; Massari, S. 1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. Eur. J. Med. Chem., 2021, 221, 113494.
[http://dx.doi.org/10.1016/j.ejmech.2021.113494] [PMID: 33962311]
[94]
Song, M.; Zhao, W.; Zhu, Y.; Liu, W.; Deng, X.; Huang, Y. Design, synthesis, and evaluation of anticonvulsant activities of new triazolopyrimidine derivatives. Front Chem., 2022, 10, 925281.
[http://dx.doi.org/10.3389/fchem.2022.925281] [PMID: 35815216]
[95]
Oliva, P.; Romagnoli, R.; Cacciari, B.; Manfredini, S.; Padroni, C.; Brancale, A.; Ferla, S.; Hamel, E.; Corallo, D.; Aveic, S.; Milan, N.; Mariotto, E.; Viola, G.; Bortolozzi, R. Synthesis and biological evaluation of highly active 7-anilino triazolopyrimidines as potent antimicrotubule agents. Pharmaceutics, 2022, 14(6), 1191.
[http://dx.doi.org/10.3390/pharmaceutics14061191] [PMID: 35745764]
[96]
Fedotov, V.V.; Savateev, K.V.; Ulomsky, E.N.; Drokin, R.A.; Slepukhin, P.A.; Rusinov, V.L. 2-Furyl-6-nitro-1,2,4-triazolo[1,5-a]pyrimidin-7-one. Molbank, 2023, 2023(1), M1563.
[http://dx.doi.org/10.3390/M1563]
[97]
Huo, X.; Ma, Y.; Chen, Z.; Yuan, L.; Zheng, X.; Li, X. Fengting; Liang; You, W.; Zhao, P. One‐pot, multi‐component synthesis of novel 2‐amino‐[1,2,4]triazolo[1,5‐a]pyrimidine‐6‐carboxamide derivatives as antiproliferative agents. ChemistrySelect, 2021, 6(18), 4562-4565.
[http://dx.doi.org/10.1002/slct.202100985]
[98]
Bayazeed, A.A.; Alnoman, R.B. Synthesis of polyheterocyclic ring systems included triazolo[1,5-a]pyrimidine as antioxidant agents. Polycycl. Aromat. Compd., 2022, 42(3), 735-748.
[http://dx.doi.org/10.1080/10406638.2020.1750042]
[99]
Mohamed, H.S.; Amin, N.H.; El-Saadi, M.T.; Abdel-Rahman, H.M. Design, synthesis, biological assessment, and in-silico studies of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors. Bioorg. Chem., 2022, 121, 105687.
[http://dx.doi.org/10.1016/j.bioorg.2022.105687] [PMID: 35196595]
[100]
Romagnoli, R.; Oliva, P.; Prencipe, F.; Manfredini, S.; Budassi, F.; Brancale, A.; Ferla, S.; Hamel, E.; Corallo, D.; Aveic, S.; Manfreda, L.; Mariotto, E.; Bortolozzi, R.; Viola, G. Design, synthesis and biological investigation of 2-anilino triazolopyrimidines as tubulin polymerization inhibitors with anticancer activities. Pharmaceuticals (Basel), 2022, 15(8), 1031.
[http://dx.doi.org/10.3390/ph15081031] [PMID: 36015179]
[101]
Karami, S.; Bayat, M.; Nasri, S.; Mirzaei, F. A three-component cyclocondensation reaction for the synthesis of new triazolo[1,5-a]pyrimidine scaffolds using 3-aminotriazole, aldehydes and ketene N,S-acetal. Mol. Divers., 2021, 25(4), 2053-2062.
[http://dx.doi.org/10.1007/s11030-020-10096-0] [PMID: 32388702]
[102]
Lyapustin, D.N.; Ulomsky, E.N.; Balyakin, I.A.; Shchepochkin, A.V.; Rusinov, V.L.; Chupakhin, O.N. Oxidative aromatization of 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines: synthetic possibilities and limitations, mechanism of destruction, and the theoretical and experimental substantiation. Molecules, 2021, 26(16), 4719.
[http://dx.doi.org/10.3390/molecules26164719] [PMID: 34443304]
[103]
Khattab, R.; Swelm, S.; Khalil, A.; Elsayed Abdelhamid, A.; Soliman, A.; El-Sayed, A. Novel sono-synthesized triazole derivatives conjugated with selenium nanoparticles for cancer treatment. Egypt. J. Chem., 2021, 64(8), 4675-4688.
[http://dx.doi.org/10.21608/ejchem.2021.81154.4018]
[104]
Datta, K.; Mitra, B.; Sharma, B.S.; Ghosh, P. One‐pot three‐component solvent‐free tandem annulations for synthesis of tetrazolo[1,2‐a]pyrimidine and [1,2,4]triazolo[1,5‐a]pyrimidine. ChemistrySelect, 2022, 7(7), e202103-e202602.
[http://dx.doi.org/10.1002/slct.202103602]
[105]
Ben Hassen, M.; Msalbi, D.; Jismy, B.; Elghali, F.; Aifa, S.; Allouchi, H.; Abarbri, M.; Chabchoub, F. Three component one-pot synthesis and antiproliferative activity of new [1,2,4]Triazolo[4,3-a]pyrimidines. Molecules, 2023, 28(9), 3917.
[http://dx.doi.org/10.3390/molecules28093917] [PMID: 37175327]
[106]
Nasirmahale, L.N.; Shirini, F.; Bayat, Y.; Mazloumi, M. Solvent-free synthesis of imidazo[1,2-a]pyrimidine-3-carbonitriles and 1,2,4-triazolo[4,3-a]pyrimidines under the catalytic performance of TiO2-[bip]-NH2+ C(NO2)3- as a novel nanocatalyst. J. Mol. Struct., 2023, 1272, 134210.
[http://dx.doi.org/10.1016/j.molstruc.2022.134210]
[107]
Nazari, S.; Zabihzadeh, M.; Shirini, F.; Tajik, H. A Dicationic molten salt catalyzed synthesis of 1,2,4-triazolopyrimidine, quinazolinone and biscoumarin derivatives under green conditions. Polycycl. Aromat. Compd., 2023, 43(2), 1524-1535.
[http://dx.doi.org/10.1080/10406638.2022.2030765]
[108]
Reniers, F.; Anthonissen, S.; Van Meervelt, L.; Dehaen, W. Three-step synthetic pathway toward fully decorated [1,2,3]triazolo[4,5-d]pyrimidine (8-azapurine) derivatives. Org. Lett., 2023, 25(16), 2820-2824.
[http://dx.doi.org/10.1021/acs.orglett.3c00729] [PMID: 37067154]
[109]
Savateev, K.V.; Slepukhin, P.A.; Kotovskaya, S.K.; Charushin, V.N.; Rusinov, V.L.; Chupakhin, O.N. Atom-efficient synthesis of hybrid molecules combining fragments of triazolopyrimidines and 3-ethoxycarbonyl-1-ethyl-6-fluoroquinolin-4(1H)-one through 1,2,3-triazole linker. Chem. Heterocycl. Compd., 2021, 57(2), 143-153.
[http://dx.doi.org/10.1007/s10593-021-02886-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy