Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Design of Artificial C-Peptides as Potential Anti-HIV-1 Inhibitors Based on 6-HB Formation Mechanism

Author(s): Hui Luo, Yan Zhao, Yuheng Ma, Guodong Liang*, Lu Ga* and Zhao Meng*

Volume 31, Issue 6, 2024

Published on: 21 June, 2024

Page: [447 - 457] Pages: 11

DOI: 10.2174/0109298665312274240530060233

Abstract

Background: The six-helix bundle (6-HB) is a core structure formed during the membrane fusion process of viruses with the Class I envelope proteins. Peptide inhibitors, including the marketed Enfuvirtide, blocking the membrane fusion to exert inhibitory activity were designed based on the heptads repeat interactions in 6-HB. However, the drawbacks of Enfuvirtide, such as drug resistance and short half-life in vivo, have been confirmed in clinical applications. Therefore, novel design strategies are pivotal in the development of next-generation peptide-based fusion inhibitors.

Objective: The de novo design of α-helical peptides against MERS-CoV and IAVs has successfully expedited the development of fusion inhibitors. The reported sequences were completely nonhomologous with natural peptides, which can provide some inspirations for the antiviral design against other pathogenic viruses with class I fusion proteins. Here, we design a series of artificial C-peptides based on the similar mechanism of 6-HB formation and general rules of heptads repeat interaction.

Methods: The inhibitory activity of peptides against HIV-1 was assessed by HIV-1 Env-mediated cell-cell fusion assays. Interaction between artificial C-peptides and target peptides was evaluated by circular dichroism, polyacrylamide gel electrophoresis, size-exclusion chromatography, and sedimentation velocity analysis. Molecular docking studies were performed by using Schrödinger molecular modelling software.

Results: The best-performing artificial C-peptide, 1SR, was highly active against HIV-1 env-mediated cell-cell fusion. 1SR binds to the gp41 NHR region, assembling polymer to prevent endogenous 6-HB formation.

Conclusion: We have found an artificial C-lipopeptide lead compound with inhibitory activity against HIV-1. Also, this paper enriched both N- and C-teminal heptads repeat interaction rules in 6-HB and provided an effective idea for next-generation peptide-based fusion inhibitors against HIV-1.

Graphical Abstract

[1]
Yan, C.; Niu, Y.; Wang, X. Blood transcriptome analysis revealed the crosstalk between COVID-19 and HIV. Front. Immunol., 2022, 13, 1008653.
[http://dx.doi.org/10.3389/fimmu.2022.1008653] [PMID: 36389792]
[2]
Lu, D.Y.; Wu, H.Y.; Yarla, N.S.; Xu, B.; Ding, J.; Lu, T.R. HAART in HIV/AIDS treatments: Future trends. Infect. Disord. Drug Targets, 2018, 18(1), 15-22.
[http://dx.doi.org/10.2174/1871526517666170505122800] [PMID: 28474549]
[3]
Vercauteren, J.; Theys, K.; Carvalho, A.P.; Valadas, E.; Duque, L.M.; Teófilo, E.; Faria, T.; Faria, D.; Vera, J.; Aguas, M.J.; Peres, S.; Mansinho, K.; Vandamme, A.M.; Camacho, R.J.; Mansinho, K.; Claudia Miranda, A.; Aldir, I.; Ventura, F.; Nina, J.; Borges, F.; Valadas, E.; Doroana, M.; Antunes, F.; Joao Aleixo, M.; Joao Aguas, M.; Botas, J.; Branco, T.; Vera, J.; Vaz Pinto, I.; Pocas, J.; Sa, J.; Duque, L.; Diniz, A.; Mineiro, A.; Gomes, F.; Santos, C.; Faria, D.; Fonseca, P.; Proenca, P.; Tavares, L.; Guerreiro, C.; Narciso, J.; Faria, T.; Teofilo, E.; Pinheiro, S.; Germano, I.; Caixas, U.; Faria, N.; Paula Reis, A.; Bentes Jesus, M.; Amaro, G.; Roxo, F.; Abreu, R.; Neves, I. The demise of multidrug-resistant HIV-1: The national time trend in Portugal. J. Antimicrob. Chemother., 2013, 68(4), 911-914.
[http://dx.doi.org/10.1093/jac/dks470] [PMID: 23228933]
[4]
Agniswamy, J.; Kneller, D.W.; Ghosh, A.K.; Weber, I.T.; Novel, H. Novel HIV PR inhibitors with C4-substituted bis-THF and bis-fluoro-benzyl target the two active site mutations of highly drug resistant mutant PRS17. Biochem. Biophys. Res. Commun., 2021, 566, 30-35.
[http://dx.doi.org/10.1016/j.bbrc.2021.05.094] [PMID: 34111669]
[5]
Miyamoto, F.; Kodama, E.N. Development of small molecule HIV-1 fusion inhibitors: Linking biology to chemistry. Curr. Pharm. Des., 2013, 19(10), 1827-1834.
[http://dx.doi.org/10.2174/1381612811319100007] [PMID: 23092276]
[6]
Lazzarin, A. Enfuvirtide: The first HIV fusion inhibitor. Expert Opin. Pharmacother., 2005, 6(3), 453-464.
[http://dx.doi.org/10.1517/14656566.6.3.453] [PMID: 15794736]
[7]
Liu, S.; Jing, W.; Cheung, B.; Lu, H.; Sun, J.; Yan, X.; Niu, J.; Farmar, J.; Wu, S.; Jiang, S. HIV gp41 C-terminal heptad repeat contains multifunctional domains. Relation to mechanisms of action of anti-HIV peptides. J. Biol. Chem., 2007, 282(13), 9612-9620.
[http://dx.doi.org/10.1074/jbc.M609148200] [PMID: 17276993]
[8]
Monteiro, A.; Yu, K.O.A.; Hicar, M.D. Peptide-based fusion inhibitors for preventing the six-helix bundle formation of class I fusion proteins: HIV and beyond. Curr. HIV Res., 2021, 19(6), 465-475.
[http://dx.doi.org/10.2174/1570162X19666210908115231] [PMID: 34503415]
[9]
Xiao, T.; Cai, Y.; Chen, B. HIV-1 entry and membrane fusion inhibitors. Viruses, 2021, 13(5), 735.
[http://dx.doi.org/10.3390/v13050735] [PMID: 33922579]
[10]
Na, H.; Liang, G.; Lai, W. Isopeptide bond bundling superhelix for designing antivirals against enveloped viruses with class I fusion proteins: A review. Curr. Pharm. Biotechnol., 2023, 24(14), 1774-1783.
[http://dx.doi.org/10.2174/1389201024666230330083640] [PMID: 37005549]
[11]
Pu, J.; Zhou, J.T.; Liu, P.; Yu, F.; He, X.; Lu, L.; Jiang, S. Viral entry inhibitors targeting six-helical bundle core against highly pathogenic enveloped viruses with class I fusion proteins. Curr. Med. Chem., 2022, 29(4), 700-718.
[http://dx.doi.org/10.2174/0929867328666210511015808] [PMID: 33992055]
[12]
Jing, S.; Zhao, Q.; Debnath, A. Peptide and non-peptide HIV fusion inhibitors. Curr. Pharm. Des., 2002, 8(8), 563-580.
[http://dx.doi.org/10.2174/1381612024607180] [PMID: 11945159]
[13]
He, L.; Wang, C.; Zhang, Y.; Chong, H.; Hu, X.; Li, D.; Xing, H.; He, Y.; Shao, Y.; Hong, K.; Ma, L. Broad-spectrum anti-HIV activity and high drug resistance barrier of lipopeptide HIV fusion inhibitor LP-19. Front. Immunol., 2023, 14, 1199938.
[http://dx.doi.org/10.3389/fimmu.2023.1199938] [PMID: 37256122]
[14]
Hu, Y.; Yu, W.; Geng, X.; Zhu, Y.; Chong, H.; He, Y. In vitro selection and characterization of HIV-1 variants with increased resistance to LP-40, enfuvirtide-based lipopeptide inhibitor. Int. J. Mol. Sci., 2022, 23(12), 6638.
[http://dx.doi.org/10.3390/ijms23126638] [PMID: 35743078]
[15]
Su, S.; Rasquinha, G.; Du, L.; Wang, Q.; Xu, W.; Li, W.; Lu, L.; Jiang, S. A peptide-based HIV-1 fusion inhibitor with two tail-anchors and palmitic acid exhibits substantially improved in vitro and ex vivo anti-hiv-1 activity and prolonged in vivo half-life. Molecules, 2019, 24(6), 1134.
[http://dx.doi.org/10.3390/molecules24061134] [PMID: 30901967]
[16]
Wang, C.; Zhao, L.; Xia, S.; Zhang, T.; Cao, R.; Liang, G.; Li, Y.; Meng, G.; Wang, W.; Shi, W.; Zhong, W.; Jiang, S.; Liu, K. De novo design of α-helical lipopeptides targeting viral fusion proteins: A promising strategy for relatively broad-spectrum antiviral drug discovery. J. Med. Chem., 2018, 61(19), 8734-8745.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00890] [PMID: 30192544]
[17]
Lu, L.; Liu, Q.; Zhu, Y.; Chan, K.H.; Qin, L.; Li, Y.; Wang, Q.; Chan, J.F.W.; Du, L.; Yu, F.; Ma, C.; Ye, S.; Yuen, K.Y.; Zhang, R.; Jiang, S. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun., 2014, 5(1), 3067.
[http://dx.doi.org/10.1038/ncomms4067] [PMID: 24473083]
[18]
Qiu, Z.; Chong, H.; Yao, X.; Su, Y.; Cui, S.; He, Y. Identification and characterization of a subpocket on the N-trimer of HIV-1 Gp41. AIDS, 2015, 29(9), 1015-1024.
[http://dx.doi.org/10.1097/QAD.0000000000000683] [PMID: 26125136]
[19]
Nishikawa, H.; Nakamura, S.; Kodama, E.; Ito, S.; Kajiwara, K.; Izumi, K.; Sakagami, Y.; Oishi, S.; Ohkubo, T.; Kobayashi, Y.; Otaka, A.; Fujii, N.; Matsuoka, M. Electrostatically constrained α-helical peptide inhibits replication of HIV-1 resistant to enfuvirtide. Int. J. Biochem. Cell Biol., 2009, 41(4), 891-899.
[http://dx.doi.org/10.1016/j.biocel.2008.08.039] [PMID: 18834950]
[20]
Baker, E.G.; Bartlett, G.J.; Crump, M.P.; Sessions, R.B.; Linden, N.; Faul, C.F.J.; Woolfson, D.N. Local and macroscopic electrostatic interactions in single α-helices. Nat. Chem. Biol., 2015, 11(3), 221-228.
[http://dx.doi.org/10.1038/nchembio.1739] [PMID: 25664692]
[21]
Zheng, B.; Wang, K.; Lu, L.; Yu, F.; Cheng, M.; Jiang, S.; Liu, K.; Cai, L. Hydrophobic mutations in buried polar residues enhance HIV-1 gp41 N-terminal heptad repeat–C-terminal heptad repeat interactions and C-peptides’ anti-HIV activity. AIDS, 2014, 28(9), 1251-1260.
[http://dx.doi.org/10.1097/QAD.0000000000000255] [PMID: 24625369]
[22]
Chan, D.C.; Chutkowski, C.T.; Kim, P.S. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15613-15617.
[http://dx.doi.org/10.1073/pnas.95.26.15613] [PMID: 9861018]
[23]
Wexler-Cohen, Y.; Shai, Y. Demonstrating the C‐terminal boundary of the HIV 1 fusion conformation in a dynamic ongoing fusion process and implication for fusion inhibition. FASEB J., 2007, 21(13), 3677-3684.
[http://dx.doi.org/10.1096/fj.07-8582com] [PMID: 17575260]
[24]
Atwood, J.L.; Steed, J.W. Encyclopedia of Supramolecular Chemistry, 1st ed; CRC Press: Boca Raton, 2004.
[25]
Wang, C.; Xia, S.; Wang, X.; Li, Y.; Wang, H.; Xiang, R.; Jiang, Q.; Lan, Q.; Liang, R.; Li, Q.; Huo, S.; Lu, L.; Wang, Q.; Yu, F.; Liu, K.; Jiang, S. Supercoiling structure-based design of a trimeric coiled-coil peptide with high potency against HIV-1 and human β-coronavirus infection. J. Med. Chem., 2022, 65(4), 2809-2819.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00258] [PMID: 33929200]
[26]
Chan, D.C.; Fass, D.; Berger, J.M.; Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997, 89(2), 263-273.
[http://dx.doi.org/10.1016/S0092-8674(00)80205-6] [PMID: 9108481]
[27]
Liang, G.; Wang, H.; Chong, H.; Cheng, S.; Jiang, X.; He, Y.; Wang, C.; Liu, K. An effective conjugation strategy for designing short peptide-based HIV-1 fusion inhibitors. Org. Biomol. Chem., 2016, 14(33), 7875-7882.
[http://dx.doi.org/10.1039/C6OB01334A] [PMID: 27454320]
[28]
Wang, C.; Li, X.; Yu, F.; Lu, L.; Jiang, X.; Xu, X.; Wang, H.; Lai, W.; Zhang, T.; Zhang, Z.; Ye, L.; Jiang, S.; Liu, K. Site-specific isopeptide bridge tethering of chimeric gp41 n-terminal heptad repeat helical trimers for the treatment of HIV-1 infection. Sci. Rep., 2016, 6(1), 32161.
[http://dx.doi.org/10.1038/srep32161] [PMID: 27562370]
[29]
Xing, L.; Xu, X.; Xu, W.; Liu, Z.; Shen, X.; Zhou, J.; Xu, L.; Pu, J.; Yang, C.; Huang, Y.; Lu, L.; Jiang, S.; Liu, S. A five-helix-based Sars-coV-2 fusion inhibitor targeting heptad repeat 2 domain against Sars-coV-2 and its variants of concern. Viruses, 2022, 14(3), 597.
[http://dx.doi.org/10.3390/v14030597] [PMID: 35337003]
[30]
Hollmann, A.; Matos, P.M.; Augusto, M.T.; Castanho, M.A.R.B.; Santos, N.C.; Santos, N.C. Conjugation of cholesterol to HIV-1 fusion inhibitor C34 increases peptide-membrane interactions potentiating its action. PLoS One, 2013, 8(4), e60302.
[http://dx.doi.org/10.1371/journal.pone.0060302] [PMID: 23565220]
[31]
He, Y.; Liu, S.; Jing, W.; Lu, H.; Cai, D.; Chin, D.J.; Debnath, A.K.; Kirchhoff, F.; Jiang, S. Conserved residue Lys574 in the cavity of HIV-1 Gp41 coiled-coil domain is critical for six-helix bundle stability and virus entry. J. Biol. Chem., 2007, 282(35), 25631-25639.
[http://dx.doi.org/10.1074/jbc.M703781200] [PMID: 17616522]
[32]
He, Y.; Liu, S.; Li, J.; Lu, H.; Qi, Z.; Liu, Z.; Debnath, A.K.; Jiang, S. Conserved salt bridge between the N- and C-terminal heptad repeat regions of the human immunodeficiency virus type 1 gp41 core structure is critical for virus entry and inhibition. J. Virol., 2008, 82(22), 11129-11139.
[http://dx.doi.org/10.1128/JVI.01060-08] [PMID: 18768964]
[33]
Xu, L.; Wang, C.; Xu, W.; Xing, L.; Zhou, J.; Pu, J.; Fu, M.; Lu, L.; Jiang, S.; Wang, Q. A dePEGylated lipopeptide-based pan-coronavirus fusion inhibitor exhibits potent and broad-spectrum Anti-HIV-1 activity without eliciting anti-peg antibodies. Int. J. Mol. Sci., 2023, 24(11), 9779.
[http://dx.doi.org/10.3390/ijms24119779] [PMID: 37298729]

© 2024 Bentham Science Publishers | Privacy Policy