Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Evaluation of Novel HLM Peptide Activity and Toxicity against Planktonic and Biofilm Bacteria: Comparison to Standard Antibiotics

Author(s): Majed M. Masadeh*, Haneen Alshogran, Mohammad Alsaggar, Salsabeel H. Sabi, Enaam M. Al Momany, Majd M. Masadeh, Nasr Alrabadi and Karem H. Alzoubi

Volume 25, Issue 10, 2024

Published on: 21 June, 2024

Page: [826 - 843] Pages: 18

DOI: 10.2174/0113892037291252240528110516

Price: $65

Abstract

Background: Antibiotic resistance is one of the main concerns of public health, and the whole world is trying to overcome such a challenge by finding novel therapeutic modalities and approaches. This study has applied the sequence hybridization approach to the original sequence of two cathelicidin natural parent peptides (BMAP-28 and LL-37) to design a novel HLM peptide with broad antimicrobial activity.

Methods: The physicochemical characteristics of the newly designed peptide were determined. As well, the new peptide’s antimicrobial activity (Minimum Inhibitory Concentration (MIC), Minimum Bacterial Eradication Concentration (MBEC), and antibiofilm activity) was tested on two control (Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922) and two resistant (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC BAA41, New Delhi metallo-beta- lactamase-1 Escherichia coli ATCC BAA-2452) bacterial strains. Furthermore, synergistic studies have been applied to HLM-hybridized peptides with five conventional antibiotics by checkerboard assays. Also, the toxicity of HLM-hybridized peptide was studied on Vero cell lines to obtain the IC50 value. Besides the percentage of hemolysis action, the peptide was tested in freshly heparinized blood.

Results: The MIC values for the HLM peptide were obtained as 20, 10, 20, and 20 μM, respectively. Also, the results showed no hemolysis action, with low to slightly moderate toxicity action against mammalian cells, with an IC50 value of 10.06. The Biomatik corporate labs, where HLM was manufactured, determined the stability results of the product by Mass Spectrophotometry (MS) and High-performance Liquid Chromatography (HPLC) methods. The HLM-hybridized peptide exhibited a range of synergistic to additive antimicrobial activities upon combination with five commercially available different antibiotics. It has demonstrated the biofilm-killing effects in the same concentration required to eradicate the control strains.

Conclusion: The results indicated that HLM-hybridized peptide displayed a broad-spectrum activity toward different bacterial strains in planktonic and biofilm forms. It showed synergistic or additive antimicrobial activity upon combining with commercially available different antibiotics.

[1]
Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. Mayo Clin. Proc., 2011, 86(2), 156-167.
[http://dx.doi.org/10.4065/mcp.2010.0639] [PMID: 21282489]
[2]
Mohamed, M.F.; Abdelkhalek, A.; Seleem, M.N. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci. Rep., 2016, 6(1), 29707.
[http://dx.doi.org/10.1038/srep29707] [PMID: 27405275]
[3]
Wright, G.D. Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends Microbiol., 2016, 24(11), 862-871.
[http://dx.doi.org/10.1016/j.tim.2016.06.009] [PMID: 27430191]
[4]
World Health Organization. Antibiotic resistance: Multi-country public awareness survey. 2015. Available from: https://iris.who.int/bitstream/handle/10665/194460/97892415?sequence=1
[5]
Buitimea, L.A.; Cárdenas, G.C.R.; Cervantes, G.J.A.; Escalera, L.J.A.; Ramírez, M.J.R. The demand for new antibiotics: Antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front. Microbiol., 2020, 11, 1669.
[http://dx.doi.org/10.3389/fmicb.2020.01669] [PMID: 32793156]
[6]
Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol., 2019, 10, 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[7]
Harris, T.L.; Worthington, R.J.; Melander, C. Potent small-molecule suppression of oxacillin resistance in methicillin-resistant Staphylococcus aureus. Angew. Chem. Int. Ed., 2012, 51(45), 11254-11257.
[http://dx.doi.org/10.1002/anie.201206911] [PMID: 23047322]
[8]
Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med., 2013, 3(4), a010306.
[http://dx.doi.org/10.1101/cshperspect.a010306] [PMID: 23545571]
[9]
Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol., 2013, 31(3), 177-184.
[http://dx.doi.org/10.1016/j.tibtech.2012.12.006] [PMID: 23333434]
[10]
Ho, P.L.; Ong, H.K.; Teo, J.; Ow, D.S.W.; Chao, S.H. HEXIM1 peptide exhibits antimicrobial activity against antibiotic resistant bacteria through guidance of cell penetrating peptide. Front. Microbiol., 2019, 10, 203.
[http://dx.doi.org/10.3389/fmicb.2019.00203] [PMID: 30800117]
[11]
Lee, P.C.; Chu, C.C.; Tsai, Y.J.; Chuang, Y.C.; Lung, F.D. Design, synthesis, and antimicrobial activities of novel functional peptides against Gram-positive and Gram-negative bacteria. Chem. Biol. Drug Des., 2019, 94(2), 1537-1544.
[http://dx.doi.org/10.1111/cbdd.13535] [PMID: 31059203]
[12]
Arakawa, Y. Epidemiology of drug-resistance and clinical microbiologists in the 21st century. Rinsho Byori, 2000, 2000, 1-8.
[PMID: 10804786]
[13]
Agrawal, A.; Rangarajan, N.; Weisshaar, J.C. Resistance of early stationary phase E. coli to membrane permeabilization by the antimicrobial peptide Cecropin A. Biochim. Biophys. Acta Biomembr., 2019, 1861(10), 182990.
[http://dx.doi.org/10.1016/j.bbamem.2019.05.012] [PMID: 31129116]
[14]
Song, R.; Jia, Z.; Shi, Q.; Wei, R.; Dong, S. Identification of bioactive peptides from half-fin anchovy (Setipinna taty) hydrolysates and further modification using Maillard reaction to improve antibacterial activities. J. Funct. Foods, 2019, 58, 161-170.
[http://dx.doi.org/10.1016/j.jff.2019.05.001]
[15]
Lear, S.; Cobb, S.L. Pep-Calc.com: A set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. J. Comput. Aided Mol. Des., 2016, 30(3), 271-277.
[http://dx.doi.org/10.1007/s10822-016-9902-7] [PMID: 26909892]
[16]
Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res., 2003, 31(13), 3784-3788.
[http://dx.doi.org/10.1093/nar/gkg563] [PMID: 12824418]
[17]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.e.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the expasy server. In: The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, 2005; pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[18]
Bachmair, A.; Finley, D.; Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science, 1986, 234(4773), 179-186.
[http://dx.doi.org/10.1126/science.3018930] [PMID: 3018930]
[19]
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88(6), 1895-1898.
[PMID: 7462208]
[20]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157(1), 105-132.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[21]
Anunanthini, P.; Manoj, V.M.; Padmanabhan, S.T.S.; Dhivya, S.; Narayan, J.A.; Appunu, C.; Sathishkumar, R. In silico characterisation and functional validation of chilling tolerant divergence 1 (COLD1) gene in monocots during abiotic stress. Funct. Plant Biol., 2019, 46(6), 524-532.
[http://dx.doi.org/10.1071/FP18189] [PMID: 30940337]
[22]
Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS One, 2012, 7(10), e45012.
[http://dx.doi.org/10.1371/journal.pone.0045012] [PMID: 23056189]
[23]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957.
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[24]
Splith, K.; Neundorf, I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa . Eur. Biophys. J., 2011, 40(4), 387-397.
[http://dx.doi.org/10.1007/s00249-011-0682-7] [PMID: 21336522]
[25]
Holton, T.A.; Pollastri, G.; Shields, D.C.; Mooney, C. CPPpred: Prediction of cell penetrating peptides. Bioinformatics, 2013, 29(23), 3094-3096.
[http://dx.doi.org/10.1093/bioinformatics/btt518] [PMID: 24064418]
[26]
Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics, 2008, 24(18), 2101-2102.
[http://dx.doi.org/10.1093/bioinformatics/btn392] [PMID: 18662927]
[27]
Schlax, P. Research Guides: Bioinformatics Tools; Springer, 2014.
[28]
Zhang, C.; Freddolino, P.L.; Zhang, Y. COFACTOR: Improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Res., 2017, 45(W1), W291-W299.
[http://dx.doi.org/10.1093/nar/gkx366] [PMID: 28472402]
[29]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[30]
Yang, J.; Roy, A.; Zhang, Y. Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 2013, 29(20), 2588-2595.
[http://dx.doi.org/10.1093/bioinformatics/btt447] [PMID: 23975762]
[31]
Ganten, D.; Ruckpaul, K. Encyclopedic reference of genomics and proteomics in molecular medicine Springer, 2006.
[32]
Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clsi, 2006, 26, M7-A7.
[33]
Koeth, L. M.; Fisher, D.J. M.; McCurdy, S. A reference broth microdilution method for dalbavancin in vitro susceptibility testing of bacteria that grow aerobically. J. Vis. Exp., 2015, 2015(103), 53028.
[34]
King, T.C.; Krogstad, D.J. Spectrophotometric assessment of dose-response curves for single antimicrobial agents and antimicrobial combinations. J. Infect. Dis., 1983, 147(4), 758-764.
[http://dx.doi.org/10.1093/infdis/147.4.758] [PMID: 6341479]
[35]
Al Tall, Y.; Abualhaijaa, A.; Alsaggar, M.; Almaaytah, A.; Masadeh, M.; Alzoubi, K.H. Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. Infect. Drug Resist., 2019, 12, 1035-1045.
[http://dx.doi.org/10.2147/IDR.S199473] [PMID: 31118709]
[36]
Yeaman, M.R.; Mitscher, L.A.; Baca, O.G. In vitro susceptibility of Coxiella burnetii to antibiotics, including several quinolones. Antimicrob. Agents Chemother., 1987, 31(7), 1079-1084.
[http://dx.doi.org/10.1128/AAC.31.7.1079] [PMID: 3662472]
[37]
Brennan-Krohn, T.; Smith, K.P.; Kirby, J.E. The poisoned well: Enhancing the predictive value of antimicrobial susceptibility testing in the era of multidrug resistance. J. Clin. Microbiol., 2017, 55(8), 2304-2308.
[http://dx.doi.org/10.1128/JCM.00511-17] [PMID: 28468856]
[38]
Leeson, L.J.; Nash, R.A.; Ritter, L. Stable dimethyl sulfoxide solutions of tetracycline antibiotics for parenteral use. US Patent 3546339A, 1970.
[39]
Mayrhofer, S.; Domig, K.J.; Mair, C.; Zitz, U.; Huys, G.; Kneifel, W. Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members. Appl. Environ. Microbiol., 2008, 74(12), 3745-3748.
[http://dx.doi.org/10.1128/AEM.02849-07] [PMID: 18441109]
[40]
Reimer, L.G.; Stratton, C.W.; Reller, L.B. Minimum inhibitory and bactericidal concentrations of 44 antimicrobial agents against three standard control strains in broth with and without human serum. Antimicrob. Agents Chemother., 1981, 19(6), 1050-1055.
[http://dx.doi.org/10.1128/AAC.19.6.1050] [PMID: 6791584]
[41]
Hsieh, M.H.; Yu, C.M.; Yu, V.L.; Chow, J.W. Synergy assessed by checkerboard a critical analysis. Diagn. Microbiol. Infect. Dis., 1993, 16(4), 343-349.
[http://dx.doi.org/10.1016/0732-8893(93)90087-N] [PMID: 8495592]
[42]
Garcia, L. S. Synergism testing: Broth microdilution checkerboard and broth macrodilution methods. In: Clinical Microbiology Procedures Handbook, 4th ed.; Wiley, 2010; 1-3, .
[43]
Farzana, A.; Shamsuzzaman, S.M. In vitro efficacy of synergistic antibiotic combinations in imipenem resistant Pseudomonas aeruginosa strains. Bangladesh J. Med. Microbiol., 2017, 9(1), 3-8.
[http://dx.doi.org/10.3329/bjmm.v9i1.31332]
[44]
McGinnis. Antibiotic in Laboratory Medicine; Williams, Antibiotic in Laboratory Medicine: Baltimore, 1996, pp. 176-211.
[45]
Dathe, M.; Schümann, M.; Wieprecht, T.; Winkler, A.; Beyermann, M.; Krause, E.; Matsuzaki, K.; Murase, O.; Bienert, M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry, 1996, 35(38), 12612-12622.
[http://dx.doi.org/10.1021/bi960835f] [PMID: 8823199]
[46]
Starr, C.G.; Wimley, W.C. Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim. Biophys. Acta Biomembr., 2017, 1859(12), 2319-2326.
[http://dx.doi.org/10.1016/j.bbamem.2017.09.008] [PMID: 28912099]
[47]
Nguyen, L.T.; Chau, J.K.; Perry, N.A.; de Boer, L.; Zaat, S.A.J.; Vogel, H.J. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One, 2010, 5(9), e12684.
[http://dx.doi.org/10.1371/journal.pone.0012684] [PMID: 20844765]
[48]
Chionis, K.; Krikorian, D.; Koukkou, A.I.; Daitsiotis, S.M.; Pomonis, P.E. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin. J. Pept. Sci., 2016, 22(11-12), 731-736.
[http://dx.doi.org/10.1002/psc.2939] [PMID: 27862650]
[49]
Onuma, Y.; Satake, M.; Ukena, T.; Roux, J.; Chanteau, S.; Rasolofonirina, N.; Ratsimaloto, M.; Naoki, H.; Yasumoto, T. Identification of putative palytoxin as the cause of clupeotoxism. Toxicon, 1999, 37(1), 55-65.
[http://dx.doi.org/10.1016/S0041-0101(98)00133-0] [PMID: 9920480]
[50]
Almaaytah, A.; Tarazi, S.; Abu-Alhaijaa, A.; Altall, Y.; Alshar’i, N.; Bodoor, K.; Al-Balas, Q. Enhanced antimicrobial activity of AamAP1-lysine, a novel synthetic peptide analog derived from the scorpion venom peptide AamAP1. Pharmaceuticals, 2014, 7(5), 502-516.
[http://dx.doi.org/10.3390/ph7050502] [PMID: 24776889]
[51]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[52]
Almaaytah, A.; Farajallah, A.; Abualhaijaa, A.; Al-Balas, Q. A3, a scorpion venom derived peptide analogue with potent antimicrobial and potential antibiofilm activity against clinical isolates of multi-drug resistant gram positive bacteria. Molecules, 2018, 23(7), 1603.
[http://dx.doi.org/10.3390/molecules23071603] [PMID: 30004427]
[53]
Sladowski, D.; Steer, S.J.; Clothier, R.H.; Balls, M. An improved MIT assay. J. Immunol. Methods, 1993, 157(1-2), 203-207.
[http://dx.doi.org/10.1016/0022-1759(93)90088-O] [PMID: 8423364]
[54]
Doolin, T.; Amir, H.M.; Duong, L.; Rosenzweig, R.; Urban, L.A.; Bosch, M.; Pol, A.; Gross, S.P.; Siryaporn, A. Mammalian histones facilitate antimicrobial synergy by disrupting the bacterial proton gradient and chromosome organization. Nat. Commun., 2020, 11(1), 3888.
[http://dx.doi.org/10.1038/s41467-020-17699-z] [PMID: 32753666]
[55]
Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol., 1999, 37(6), 1771-1776.
[http://dx.doi.org/10.1128/JCM.37.6.1771-1776.1999] [PMID: 10325322]
[56]
Yasir, M.; Willcox, M.; Dutta, D. Action of antimicrobial peptides against bacterial biofilms. Materials, 2018, 11(12), 2468.
[http://dx.doi.org/10.3390/ma11122468] [PMID: 30563067]
[57]
Macià, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect., 2014, 20(10), 981-990.
[http://dx.doi.org/10.1111/1469-0691.12651] [PMID: 24766583]
[58]
Allkja, J.; Bjarnsholt, T.; Coenye, T.; Cos, P.; Fallarero, A.; Harrison, J.J.; Lopes, S.P.; Oliver, A.; Pereira, M.O.; Ramage, G.; Shirtliff, M.E.; Stoodley, P.; Webb, J.S.; Zaat, S.A.J.; Goeres, D.M.; Azevedo, N.F. Minimum information guideline for spectrophotometric and fluorometric methods to assess biofilm formation in microplates. Biofilm, 2020, 2, 100010.
[http://dx.doi.org/10.1016/j.bioflm.2019.100010] [PMID: 33447797]
[59]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science, 1999, 284(5418), 1318-1322.
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[60]
Wade, H.M.; Darling, L.E.O.; Elmore, D.E. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization. Biochim. Biophys. Acta Biomembr., 2019, 1861(10), 182980.
[http://dx.doi.org/10.1016/j.bbamem.2019.05.002] [PMID: 31067436]
[61]
Skerlavaj, B.; Gennaro, R.; Bagella, L.; Merluzzi, L.; Risso, A.; Zanetti, M. Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J. Biol. Chem., 1996, 271(45), 28375-28381.
[http://dx.doi.org/10.1074/jbc.271.45.28375] [PMID: 8910461]
[62]
Aoki, W.; Ueda, M. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals, 2013, 6(8), 1055-1081.
[http://dx.doi.org/10.3390/ph6081055] [PMID: 24276381]
[63]
Guermeur, Y.; Geourjon, C.; Gallinari, P.; Deléage, G. Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics, 1999, 15(5), 413-421.
[http://dx.doi.org/10.1093/bioinformatics/15.5.413] [PMID: 10366661]
[64]
Combet, C.; Blanchet, C.; Geourjon, C.; Deléage, G. NPS@: Network protein sequence analysis. Trends Biochem. Sci., 2000, 25(3), 147-150.
[http://dx.doi.org/10.1016/S0968-0004(99)01540-6] [PMID: 10694887]
[65]
Haynes, W. CRC Handbook of Chemistry and Physics; , 2012. 94.
[66]
Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: Versatile biological properties. Int. J. Pept., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/675391] [PMID: 23935642]
[67]
Palermo, E.F.; Kuroda, K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl. Microbiol. Biotechnol., 2010, 87(5), 1605-1615.
[http://dx.doi.org/10.1007/s00253-010-2687-z] [PMID: 20563718]
[68]
Kishi, I.R.N.; Machado, S.D.; Singulani, J.L.; dos Santos, C.T.; Almeida, F.A.M.; Cilli, E.M.; Astúa, F.J.; Picchi, S.C.; Machado, M.A. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One, 2018, 13(9), e0203451.
[http://dx.doi.org/10.1371/journal.pone.0203451] [PMID: 30192822]
[69]
Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic α helical antimicrobial peptides. Eur. J. Biochem., 2001, 268(21), 5589-5600.
[http://dx.doi.org/10.1046/j.1432-1033.2001.02494.x] [PMID: 11683882]
[70]
Uematsu, N.; Matsuzaki, K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: A model peptide study. Biophys. J., 2000, 79(4), 2075-2083.
[http://dx.doi.org/10.1016/S0006-3495(00)76455-1] [PMID: 11023911]
[71]
Di Somma, A.; Moretta, A.; Canè, C.; Cirillo, A.; Duilio, A. Antimicrobial and antibiofilm peptides. Biomolecules, 2020, 10(4), 652.
[http://dx.doi.org/10.3390/biom10040652] [PMID: 32340301]
[72]
Brogden, K.A.; Nordholm, G.; Ackermann, M. Antimicrobial activity of cathelicidins BMAP28, SMAP28, SMAP29, and PMAP23 against Pasteurella multocida is more broad-spectrum than host species specific. Vet. Microbiol., 2007, 119(1), 76-81.
[http://dx.doi.org/10.1016/j.vetmic.2006.08.005] [PMID: 16997510]
[73]
Andreev, K.; Martynowycz, M.W.; Huang, M.L.; Kuzmenko, I.; Bu, W.; Kirshenbaum, K.; Gidalevitz, D. Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochim. Biophys. Acta Biomembr., 2018, 1860(6), 1414-1423.
[http://dx.doi.org/10.1016/j.bbamem.2018.03.021] [PMID: 29621496]
[74]
Ashok, A.; Brijesha, N.; Aparna, H.S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. Eur. J. Med. Chem., 2019, 180, 99-110.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.009] [PMID: 31301567]
[75]
Fellows, M.D.; O’Donovan, M.R. Cytotoxicity in cultured mammalian cells is a function of the method used to estimate it. Mutagenesis, 2007, 22(4), 275-280.
[http://dx.doi.org/10.1093/mutage/gem013] [PMID: 17456508]
[76]
Wang, Y.; Jin, S.; Fu, H.; Qiao, H.; Sun, S.; Zhang, W.; Jiang, S.; Gong, Y.; Xiong, Y.; Wu, Y. Molecular cloning, expression pattern analysis, and in situ hybridization of a transformer-2 gene in the oriental freshwater prawn, Macrobrachium nipponense (de Haan, 1849). 3 Biotech, 2019, 9(6), 205.
[77]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1), W174-W181.
[http://dx.doi.org/10.1093/nar/gkv342] [PMID: 25883148]
[78]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[79]
Reva, B.A.; Finkelstein, A.V.; Skolnick, J. What is the probability of a chance prediction of a protein structure with an rmsd of 6 å? Fold. Des., 1998, 3(2), 141-147.
[http://dx.doi.org/10.1016/S1359-0278(98)00019-4] [PMID: 9565758]
[80]
EUCAST Definitive Document E.Def 1.2, May 2000: Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect., 2000, 6(9), 503-508.
[http://dx.doi.org/10.1046/j.1469-0691.2000.00149.x] [PMID: 11168186]
[81]
Zhou, Y.; Yang, B.; Ren, X.; Liu, Z.; Deng, Z.; Chen, L.; Deng, Y.; Zhang, L.M.; Yang, L. Hyperbranched cationic amylopectin derivatives for gene delivery. Biomaterials, 2012, 33(18), 4731-4740.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.014] [PMID: 22445252]
[82]
Niyonsaba, F.; Ushio, H.; Hara, M.; Yokoi, H.; Tominaga, M.; Takamori, K.; Kajiwara, N.; Saito, H.; Nagaoka, I.; Ogawa, H.; Okumura, K. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J. Immunol., 2010, 184(7), 3526-3534.
[http://dx.doi.org/10.4049/jimmunol.0900712] [PMID: 20190140]
[83]
Ramesh, S.; Govender, T.; Kruger, H.G.; de la Torre, B.G.; Albericio, F. Short antimicrobial peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J. Pept. Sci., 2016, 22(7), 438-451.
[http://dx.doi.org/10.1002/psc.2894] [PMID: 27352996]
[84]
Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 2017, 133, 117-138.
[http://dx.doi.org/10.1016/j.bcp.2016.09.018] [PMID: 27663838]
[85]
Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[86]
Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[87]
Almaaytah, A.; Alnaamneh, A.; Abualhaijaa, A.; Alshari’, N.; Al-Balas, Q. in vitro synergistic activities of the hybrid antimicrobial peptide MelitAP-27 in combination with conventional antibiotics against planktonic and biofilm forming bacteria. Int. J. Pept. Res. Ther., 2016, 22(4), 497-504.
[http://dx.doi.org/10.1007/s10989-016-9530-z]
[88]
Rao, X.J.; Yu, X.Q. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Dev. Comp. Immunol., 2010, 34(10), 1119-1128.
[http://dx.doi.org/10.1016/j.dci.2010.06.007] [PMID: 20600279]
[89]
Hollmann, A.; Martínez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffía, P.C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids Surf. B Biointerfaces, 2016, 141, 528-536.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.003] [PMID: 26896660]
[90]
Agadi, N.; Vasudevan, S.; Kumar, A. Structural insight into the mechanism of action of antimicrobial peptide BMAP-28(1–18) and its analogue mutBMAP18. J. Struct. Biol., 2018, 204(3), 435-448.
[http://dx.doi.org/10.1016/j.jsb.2018.10.003] [PMID: 30336202]
[91]
Tomasinsig, L.; De Conti, G.; Skerlavaj, B.; Piccinini, R.; Mazzilli, M.; D’Este, F.; Tossi, A.; Zanetti, M. Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect. Immun., 2010, 78(4), 1781-1788.
[http://dx.doi.org/10.1128/IAI.01090-09] [PMID: 20100862]
[92]
Frohm, M.; Agerberth, B.; Ahangari, G.; Bäckdahl, S.M.; Lidén, S.; Wigzell, H.; Gudmundsson, G.H. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem., 1997, 272(24), 15258-15263.
[http://dx.doi.org/10.1074/jbc.272.24.15258] [PMID: 9182550]
[93]
Kim, S.; Quan, R.; Lee, S.J.; Lee, H.K.; Choi, J.K. Antibacterial activity of recombinant hCAP18/LL37 protein secreted from Pichia pastoris. J. Microbiol., 2009, 47(3), 358-362.
[http://dx.doi.org/10.1007/s12275-009-0131-9] [PMID: 19557354]
[94]
Travis, S.M.; Anderson, N.N.; Forsyth, W.R.; Espiritu, C.; Conway, B.D.; Greenberg, E.P.; McCray, P.B., Jr; Lehrer, R.I.; Welsh, M.J.; Tack, B.F. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect. Immun., 2000, 68(5), 2748-2755.
[http://dx.doi.org/10.1128/IAI.68.5.2748-2755.2000] [PMID: 10768969]
[95]
Wang, G.; Epand, R.F.; Mishra, B.; Lushnikova, T.; Thomas, V.C.; Bayles, K.W.; Epand, R.M. Decoding the functional roles of cationic side chains of the major antimicrobial region of human cathelicidin LL-37. Antimicrob. Agents Chemother., 2012, 56(2), 845-856.
[http://dx.doi.org/10.1128/AAC.05637-11] [PMID: 22083479]
[96]
Rex, S. A Pro→Ala substitution in melittin affects self-association, membrane binding and pore-formation kinetics due to changes in structural and electrostatic properties. Biophys. Chem., 2000, 85(2-3), 209-228.
[http://dx.doi.org/10.1016/S0301-4622(00)00121-6] [PMID: 10961508]
[97]
Gaddy, J.A.; Tomaras, A.P.; Actis, L.A. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun., 2009, 77(8), 3150-3160.
[http://dx.doi.org/10.1128/IAI.00096-09] [PMID: 19470746]
[98]
Huang, H.W. Action of antimicrobial peptides: Two-state model. Biochemistry, 2000, 39(29), 8347-8352.
[http://dx.doi.org/10.1021/bi000946l] [PMID: 10913240]
[99]
Chai, H.; Allen, W.E.; Hicks, R.P. Synthetic antimicrobial peptides exhibit two different binding mechanisms to the lipopolysaccharides isolated from Pseudomonas aeruginosa and Klebsiella pneumoniae. Int. J. Med. Chem., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/809283] [PMID: 25610647]
[100]
Moffatt, J.H.; Harper, M.; Mansell, A.; Crane, B.; Fitzsimons, T.C.; Nation, R.L.; Li, J.; Adler, B.; Boyce, J.D. Lipopolysaccharide-deficient acinetobacter baumannii shows altered signaling through host toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect. Immun., 2013, 81(3), 684-689.
[http://dx.doi.org/10.1128/IAI.01362-12] [PMID: 23250952]
[101]
Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[102]
Juba, M.L.; Porter, D.K.; Williams, E.H.; Rodriguez, C.A.; Barksdale, S.M.; Bishop, B.M. Helical cationic antimicrobial peptide length and its impact on membrane disruption. Biochim. Biophys. Acta Biomembr., 2015, 1848(5), 1081-1091.
[http://dx.doi.org/10.1016/j.bbamem.2015.01.007] [PMID: 25660753]
[103]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[104]
Regmi, S.; Choi, Y.S.; Choi, Y.H.; Kim, Y.K.; Cho, S.S.; Yoo, J.C.; Suh, J.W. Antimicrobial peptide from Bacillus subtilis CSB138: characterization, killing kinetics, and synergistic potency. Int. Microbiol., 2017, 20(1), 43-53.
[PMID: 28581021]
[105]
Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35(4), 322-332.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011] [PMID: 20149602]
[106]
Bornstein, E. Eradication of Staphylococcus aureus and MRSA in the nares: A historical perspective of the ecological niche, with suggestions for future therapy considerations. Adv. Microbiol., 2017, 7(6), 420-449.
[http://dx.doi.org/10.4236/aim.2017.76034]
[107]
Kubo, M.; Ohshima, Y.; Irie, F.; Kikuchi, M.; Sawai, J. Disinfection treatment of heated scallop-shell powder on biofilm of Escherichia coli ATCC 25922 surrogated for E. coli O157:H7. J. Biomater. Nanobiotechnol., 2013, 4(4), 10-19.
[108]
Belanger, C.R.; Mansour, S.C.; Pletzer, D.; Hancock, R.E.W. Alternative strategies for the study and treatment of clinical bacterial biofilms. Emerg. Top. Life Sci., 2017, 1(1), 41-53.
[http://dx.doi.org/10.1042/ETLS20160020] [PMID: 33525815]
[109]
Pirrone, V.; Thakkar, N.; Jacobson, J.M.; Wigdahl, B.; Krebs, F.C. Combinatorial approaches to the prevention and treatment of HIV-1 infection. Antimicrob. Agents Chemother., 2011, 55(5), 1831-1842.
[http://dx.doi.org/10.1128/AAC.00976-10] [PMID: 21343462]
[110]
Baronia, A.; Ahmed, A.; Gurjar, M.; Baronia, A.K. Current concepts in combination antibiotic therapy for critically ill patients. Indian J. Crit. Care Med., 2014, 18(5), 310-314.
[http://dx.doi.org/10.4103/0972-5229.132495] [PMID: 24914260]
[111]
Pemovska, T.; Bigenzahn, J.W.; Furga, S.G. Recent advances in combinatorial drug screening and synergy scoring. Curr. Opin. Pharmacol., 2018, 42, 102-110.
[http://dx.doi.org/10.1016/j.coph.2018.07.008] [PMID: 30193150]
[112]
Bi, X.; Wang, C.; Ma, L.; Sun, Y.; Shang, D. Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. J. Appl. Microbiol., 2013, 115(3), 663-672.
[http://dx.doi.org/10.1111/jam.12262] [PMID: 23710779]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy