Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Current Insights in Murine Models for Breast Cancer: Present, Past and Future

Author(s): Mansi Jain and Anjana Goel*

Volume 30, Issue 29, 2024

Published on: 21 June, 2024

Page: [2267 - 2275] Pages: 9

DOI: 10.2174/0113816128306053240604074142

Price: $65

Abstract

Breast cancer is an intricate disease that is increasing at a fast pace, and numerous heterogeneities within it further make it difficult to investigate. We have always used animal models to understand cancer pathology and create an in vivo microenvironment that closely resembles human cancer. They are considered an indispensable part of any clinical investigation regarding cancer. Animal models have a high potency in identifying the relevant biomarkers and genetic pathways involved in the course of disease prognosis. Researchers have previously explored a variety of organisms, including Drosophila melanogaster, zebrafish, and guinea pigs, to analyse breast cancer, but murine models have proven the most comprehensive due to their homologous nature with human chromosomes, easy availability, simple gene editing, and high adaptability. The available models have their pros and cons, and it depends on the researcher to select the one most relevant to their research question. Chemically induced models are cost-effective and simple to create. Transplantation models such as allografts and xenografts can mimic the human breast cancer environment reliably. Genetically engineered mouse models (GEMMs) help to underpin the genetic alterations involved and test novel immunotherapies. Virus-mediated models and gene knockout models have also provided new findings regarding breast cancer progression and metastasis. These mouse models have also enabled the visualization of breast cancer metastases. It is also imperative to consider the cost-effectiveness of these models. Despite loopholes, mouse models have evolved and are required for disease analysis.

Next »
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med 2017; 4: 227.
[http://dx.doi.org/10.3389/fmed.2017.00227] [PMID: 29276709]
[4]
Polyak K. Heterogeneity in breast cancer. J Clin Invest 2011; 121(10): 3786-8.
[http://dx.doi.org/10.1172/JCI60534] [PMID: 21965334]
[5]
Lüönd F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer 2021; 125(2): 164-75.
[http://dx.doi.org/10.1038/s41416-021-01328-7] [PMID: 33824479]
[6]
Guo L, Kong D, Liu J, et al. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023; 12(1): 3.
[http://dx.doi.org/10.1186/s40164-022-00363-1] [PMID: 36624542]
[7]
Denayer T, Stöhr T, Roy MV. Animal models in translational medicine: Validation and prediction. Eur J Mol Clin Med 2014; 2(1): 5-11.
[http://dx.doi.org/10.1016/j.nhtm.2014.08.001]
[8]
Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. Breast cancer in young women: An overview. Updates Surg 2017; 69(3): 313-7.
[http://dx.doi.org/10.1007/s13304-017-0424-1] [PMID: 28260181]
[9]
Li Z, Zheng W, Wang H, et al. Application of animal models in cancer research: Recent progress and future prospects. Cancer Manag Res 2021; 13: 2455-75.
[http://dx.doi.org/10.2147/CMAR.S302565] [PMID: 33758544]
[10]
Mendes N, Dias Carvalho P, Martins F, et al. Animal models to study cancer and its microenvironment. Adv Exp Med Biol 2020; 1219: 389-401.
[http://dx.doi.org/10.1007/978-3-030-34025-4_20] [PMID: 32130710]
[11]
Zeng L, Li W, Chen CS. Breast cancer animal models and applications. Zool Res 2020; 41(5): 477-94.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2020.095] [PMID: 32629551]
[12]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[13]
Ruggeri BA, Camp F, Miknyoczki S. Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol 2014; 87(1): 150-61.
[http://dx.doi.org/10.1016/j.bcp.2013.06.020] [PMID: 23817077]
[14]
Cagan RL, Zon LI, White RM. Modeling cancer with flies and fish. Dev Cell 2019; 49(3): 317-24.
[http://dx.doi.org/10.1016/j.devcel.2019.04.013] [PMID: 31063751]
[15]
Kucinska M, Murias M, Nowak-Sliwinska P. Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non- mammalian in vivo models for photodynamic therapy. Mutat Res Rev Mutat Res 2017; 773: 242-62.
[http://dx.doi.org/10.1016/j.mrrev.2016.09.002] [PMID: 28927532]
[16]
Hason M, Bartůněk P. Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. Genes 2019; 10(11): 935.
[http://dx.doi.org/10.3390/genes10110935] [PMID: 31731811]
[17]
Choi TY, Choi TI, Lee YR, Choe SK, Kim CH. Zebrafish as an animal model for biomedical research. Exp Mol Med 2021; 53(3): 310-7.
[http://dx.doi.org/10.1038/s12276-021-00571-5] [PMID: 33649498]
[18]
Drabsch Y, He S, Zhang L, Snaar-Jagalska BE, ten Dijke P. Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res 2013; 15(6): R106.
[http://dx.doi.org/10.1186/bcr3573] [PMID: 24196484]
[19]
Mondal P, Bailey KL, Cartwright SB, Band V, Carlson MA. Large animal models of breast cancer. Front Oncol 2022; 12: 788038.
[http://dx.doi.org/10.3389/fonc.2022.788038] [PMID: 35186735]
[20]
Jagadesan S, Mondal P, Carlson MA, Guda C. Evaluation of five mammalian models for human disease research using genomic and bioinformatic approaches. Biomedicines 2023; 11(8): 2197.
[http://dx.doi.org/10.3390/biomedicines11082197] [PMID: 37626695]
[21]
de Jong M, Maina T. Of mice and humans: Are they the same?-Implications in cancer translational research. J Nucl Med 2010; 51(4): 501-4.
[http://dx.doi.org/10.2967/jnumed.109.065706] [PMID: 20237033]
[22]
Breschi A, Gingeras TR, Guigó R. Comparative transcriptomics in human and mouse. Nat Rev Genet 2017; 18(7): 425-40.
[http://dx.doi.org/10.1038/nrg.2017.19] [PMID: 28479595]
[23]
Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420(6915): 520-62.
[http://dx.doi.org/10.1038/nature01262] [PMID: 12466850]
[24]
Liu Y, Yin T, Feng Y, et al. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant Imaging Med Surg 2015; 5(5): 708-29.
[PMID: 26682141]
[25]
Brennecke P, Arlt MJE, Campanile C, et al. CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice. Clin Exp Metastasis 2014; 31(3): 339-49.
[http://dx.doi.org/10.1007/s10585-013-9632-3] [PMID: 24390633]
[26]
House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol 2014; 4: 26.
[http://dx.doi.org/10.3389/fonc.2014.00026] [PMID: 24592355]
[27]
Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov 2014; 4(9): 998-1013.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0001] [PMID: 25185190]
[28]
Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 2017; 9(2): 137-53.
[http://dx.doi.org/10.15252/emmm.201606857] [PMID: 28028012]
[29]
Hanahan D, Wagner EF, Palmiter RD. The origins of oncomice: A history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 2007; 21(18): 2258-70.
[http://dx.doi.org/10.1101/gad.1583307] [PMID: 17875663]
[30]
Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: Progress, promise and challenges. Nat Rev Immunol 2012; 12(11): 786-98.
[http://dx.doi.org/10.1038/nri3311] [PMID: 23059428]
[31]
Chuprin J, Buettner H, Seedhom MO, et al. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20(3): 192-206.
[http://dx.doi.org/10.1038/s41571-022-00721-2] [PMID: 36635480]
[32]
Onaciu A, Munteanu R, Munteanu VC, et al. Spontaneous and induced animal models for cancer research. Diagnostics (Basel) 2020; 10(9): 660.
[http://dx.doi.org/10.3390/diagnostics10090660] [PMID: 32878340]
[33]
Costa E, Ferreira-Gonçalves T, Chasqueira G, Cabrita AS, Figueiredo IV, Reis CP. Experimental models as refined translational tools for breast cancer research. Sci Pharm 2020; 88(3): 32.
[http://dx.doi.org/10.3390/scipharm88030032]
[34]
Long Y, Xie B, Shen HC, Wen D. Translation potential and challenges of in vitro and murine models in cancer clinic. Cells 2022; 11(23): 3868.
[http://dx.doi.org/10.3390/cells11233868] [PMID: 36497126]
[35]
Connolly KA, Fitzgerald B, Damo M, Joshi NS. Novel mouse models for cancer immunology. Annu Rev Cancer Biol 2022; 6(1): 269-91.
[http://dx.doi.org/10.1146/annurev-cancerbio-070620-105523] [PMID: 36875867]
[36]
Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol 2020; 13(1): 4.
[http://dx.doi.org/10.1186/s13045-019-0829-z] [PMID: 31910904]
[37]
Manning HC, Buck JR, Cook RS. Mouse models of breast cancer: Platforms for discovering precision imaging diagnostics and future cancer medicine. J Nucl Med 2016; 57(Suppl 1) (Suppl. 1): 60S-8S.
[http://dx.doi.org/10.2967/jnumed.115.157917] [PMID: 26834104]
[38]
DeRose YS, Gligorich KM, Wang G, et al. Patient-derived models of human breast cancer: Protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol 2013; Chapter 14: Unit 14.23.
[http://dx.doi.org/10.1002/0471141755.ph1423s60] [PMID: 23456611]
[39]
Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Mouse tumor models for advanced cancer immunotherapy. Int J Mol Sci 2020; 21(11): 4118.
[http://dx.doi.org/10.3390/ijms21114118] [PMID: 32526987]
[40]
Kaplan-Lefko PJ, Chen TM, Ittmann MM, et al. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate 2003; 55(3): 219-37.
[http://dx.doi.org/10.1002/pros.10215] [PMID: 12692788]
[41]
Begley DA, Krupke DM, Sundberg JP, et al. The Mouse Models of Human Cancer database (MMHCdb). Dis Model Mech 2023; 16(4): dmm050001.
[http://dx.doi.org/10.1242/dmm.050001] [PMID: 36967676]
[42]
Kerdelhué B, Forest C, Coumoul X. Dimethyl-Benz(a)anthracene: A mammary carcinogen and a neuroendocrine disruptor. Biochim Open 2016; 3: 49-55.
[http://dx.doi.org/10.1016/j.biopen.2016.09.003] [PMID: 29450131]
[43]
Sewduth RN, Georgelou K. Relevance of carcinogen-induced preclinical cancer models. J Xenobiot 2024; 14(1): 96-109.
[http://dx.doi.org/10.3390/jox14010006] [PMID: 38249103]
[44]
Steele VE, Lubet RA. The use of animal models for cancer chemoprevention drug development. Semin Oncol 2010; 37(4): 327-38.
[http://dx.doi.org/10.1053/j.seminoncol.2010.05.010] [PMID: 20816503]
[45]
Miller JL, Bartlett AP, Harman RM, Majhi PD, Jerry DJ, Van de Walle GR. Induced mammary cancer in rat models: Pathogenesis, genetics, and relevance to female breast cancer. J Mammary Gland Biol Neoplasia 2022; 27(2): 185-210.
[http://dx.doi.org/10.1007/s10911-022-09522-w] [PMID: 35904679]
[46]
Jaganathan H, Gage J, Leonard F, et al. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep 2014; 4(1): 6468.
[http://dx.doi.org/10.1038/srep06468] [PMID: 25270048]
[47]
Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 2016; 4: 12.
[http://dx.doi.org/10.3389/fbioe.2016.00012] [PMID: 26904541]
[48]
Subia B, Dahiya UR, Mishra S, et al. Breast tumor-on-chip models: From disease modeling to personalized drug screening. J Control Release 2021; 331: 103-20.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.057] [PMID: 33417986]
[49]
Tsai HF, Trubelja A, Shen AQ, Bao G. Tumour-on-a-chip: Microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface 2017; 14(131): 20170137.
[http://dx.doi.org/10.1098/rsif.2017.0137] [PMID: 28637915]
[50]
Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021; 173: 306-30.
[http://dx.doi.org/10.1016/j.addr.2021.03.018] [PMID: 33798642]
[51]
Welsh J. Animal models for studying prevention and treatment of breast cancer. Animal models for the study of human disease. Academic Press 2013; pp. 997-1018.
[http://dx.doi.org/10.1016/B978-0-12-415894-8.00040-3]
[52]
Hallett RM, Kondratyev MK, Giacomelli AO, et al. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One 2012; 7(3): e33976.
[http://dx.doi.org/10.1371/journal.pone.0033976] [PMID: 22470504]
[53]
Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse models for cancer immunotherapy research. Cancer Discov 2018; 8(11): 1358-65.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0044] [PMID: 30309862]
[54]
Bazm MA, Naseri L, Khazaei M. Methods of inducing breast cancer in animal models: A systematic review. World Cancer Res J 2018; 5(4): e1182.
[55]
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res 2011; 13(4): 215.
[http://dx.doi.org/10.1186/bcr2889] [PMID: 21884641]
[56]
Cho SY, Kang W, Han JY, et al. An integrative approach to precision cancer medicine using patient-derived xenografts. Mol Cells 2016; 39(2): 77-86.
[http://dx.doi.org/10.14348/molcells.2016.2350] [PMID: 26831452]
[57]
Murayama T, Gotoh N. Patient-derived xenograft models of breast cancer and their application. Cells 2019; 8(6): 621.
[http://dx.doi.org/10.3390/cells8060621] [PMID: 31226846]
[58]
Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In vivo modeling of human breast cancer using cell line and patient-derived xenografts. J Mammary Gland Biol Neoplasia 2022; 27(2): 211-30.
[http://dx.doi.org/10.1007/s10911-022-09520-y] [PMID: 35697909]
[59]
Whittle  JR, Lewis  MT, Lindeman  GJ, Visvader  JE.    Patient- derived xenograft models of breast cancer and their predictive power. Breast Cancer Res 2015; 17(1): 17.
[http://dx.doi.org/10.1186/s13058-015-0523-1] [PMID: 25849559]
[60]
Chia K, Freelander A, Kumar S, et al. Estrogen receptor positive breast cancer patient–derived xenograft models in translational research. Curr Opin Endocr Metab Res 2020; 15: 31-6.
[http://dx.doi.org/10.1016/j.coemr.2020.10.004]
[61]
Mattar M, McCarthy CR, Kulick AR, Qeriqi B, Guzman S, de Stanchina E. Establishing and maintaining an extensive library of patient-derived xenograft models. Front Oncol 2018; 8: 19.
[http://dx.doi.org/10.3389/fonc.2018.00019] [PMID: 29515970]
[62]
Dobrolecki LE, Airhart SD, Alferez DG, et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev 2016; 35(4): 547-73.
[http://dx.doi.org/10.1007/s10555-016-9653-x] [PMID: 28025748]
[63]
Zhang X, Lewis MT. Establishment of patient-derived xenograft (PDX) models of human breast cancer. Curr Protoc Mouse Biol 2013; 3(1): 21-9.
[http://dx.doi.org/10.1002/9780470942390.mo120140] [PMID: 26069021]
[64]
Singhal SS, Garg R, Mohanty A, et al. Recent advancement in breast cancer research: Insights from model organisms-mouse models to zebrafish. Cancers 2023; 15(11): 2961.
[http://dx.doi.org/10.3390/cancers15112961] [PMID: 37296923]
[65]
Rashid OM, Takabe K. Animal models for exploring the pharmacokinetics of breast cancer therapies. Expert Opin Drug Metab Toxicol 2015; 11(2): 221-30.
[http://dx.doi.org/10.1517/17425255.2015.983073] [PMID: 25416501]
[66]
Vandamme T. Use of rodents as models of human diseases. J Pharm Bioallied Sci 2014; 6(1): 2-9.
[http://dx.doi.org/10.4103/0975-7406.124301] [PMID: 24459397]
[67]
Park MK, Lee CH, Lee H. Mouse models of breast cancer in preclinical research. Lab Anim Res 2018; 34(4): 160-5.
[http://dx.doi.org/10.5625/lar.2018.34.4.160] [PMID: 30671101]
[68]
Taneja P, Frazier DP, Kendig RD, et al. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn 2009; 9(5): 423-40.
[http://dx.doi.org/10.1586/erm.09.31] [PMID: 19580428]
[69]
Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med 2022; 20(1): 206.
[http://dx.doi.org/10.1186/s12967-022-03405-8] [PMID: 35538576]
[70]
Regua AT, Arrigo A, Doheny D, Wong GL, Lo HW. Transgenic mouse models of breast cancer. Cancer Lett 2021; 516: 73-83.
[http://dx.doi.org/10.1016/j.canlet.2021.05.027] [PMID: 34090924]
[71]
Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: A maze of opportunities and challenges. Cell 2015; 163(1): 39-53.
[http://dx.doi.org/10.1016/j.cell.2015.08.068] [PMID: 26406370]
[72]
Hill W, Caswell DR, Swanton C. Capturing cancer evolution using genetically engineered mouse models (GEMMs). Trends Cell Biol 2021; 31(12): 1007-18.
[http://dx.doi.org/10.1016/j.tcb.2021.07.003] [PMID: 34400045]
[73]
Du Z, Li Y. RCAS-TVA in the mammary gland: An in vivo oncogene screen and a high fidelity model for breast transformation? Cell Cycle 2007; 6(7): 823-6.
[http://dx.doi.org/10.4161/cc.6.7.4074] [PMID: 17377492]
[74]
Reddy JP, Li Y. The RCAS-TVA system for introduction of oncogenes into selected somatic mammary epithelial cells in vivo. J Mammary Gland Biol Neoplasia 2009; 14(4): 405-9.
[http://dx.doi.org/10.1007/s10911-009-9157-1] [PMID: 19936988]
[75]
Meraz IM, Majidi M, Meng F, et al. An improved patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunol Res 2019; 7(8): 1267-79.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0874] [PMID: 31186248]
[76]
Lin S, Huang G, Cheng L, et al. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. MAbs 2018; 10(8): 1301-11.
[http://dx.doi.org/10.1080/19420862.2018.1518948] [PMID: 30204048]
[77]
Kim IS, Baek SH. Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 2010; 394(3): 443-7.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.070] [PMID: 20230796]
[78]
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331(6024): 1559-64.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[79]
Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. Breast Cancer Res 2006; 8(4): 212.
[http://dx.doi.org/10.1186/bcr1530] [PMID: 16887003]
[80]
Chakrabarti R, Kang Y. Transplantable mouse tumor models of breast cancer metastasis. Methods Mol Biol 2015; 1267: 367-80.
[http://dx.doi.org/10.1007/978-1-4939-2297-0_18] [PMID: 25636479]
[81]
Roarty K, Echeverria GV. Laboratory models for investigating breast cancer therapy resistance and metastasis. Front Oncol 2021; 11: 645698.
[http://dx.doi.org/10.3389/fonc.2021.645698] [PMID: 33777805]
[82]
Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 1997; 15(3): 272-306.
[http://dx.doi.org/10.1023/A:1018477516367] [PMID: 9174129]
[83]
Fidler IJ, Nicolson GL. Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 1976; 57(5): 1199-202.
[http://dx.doi.org/10.1093/jnci/57.5.1199] [PMID: 1003551]
[84]
Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52(6): 1399-405.
[PMID: 1540948]
[85]
Gawrzak S, Rinaldi L, Gregorio S, et al. Publisher correction: MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat Cell Biol 2018; 20(8): 990.
[http://dx.doi.org/10.1038/s41556-018-0052-0] [PMID: 29674681]
[86]
Pavlovic M, Arnal-Estapé A, Rojo F, et al. Enhanced MAF oncogene expression and breast cancer bone metastasis. J Natl Cancer Inst 2015; 107(12): djv256.
[http://dx.doi.org/10.1093/jnci/djv256] [PMID: 26376684]
[87]
Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436(7050): 518-24.
[http://dx.doi.org/10.1038/nature03799] [PMID: 16049480]
[88]
Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis 2004; 26(3): 513-23.
[http://dx.doi.org/10.1093/carcin/bgh261] [PMID: 15358632]
[89]
Bos PD, Zhang XHF, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459(7249): 1005-9.
[http://dx.doi.org/10.1038/nature08021] [PMID: 19421193]
[90]
Yang Y, Yang HH, Hu Y, et al. Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget 2017; 8(19): 30621-43.
[http://dx.doi.org/10.18632/oncotarget.15695] [PMID: 28430642]
[91]
Gómez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: Progress and prospects. Dis Model Mech 2017; 10(9): 1061-74.
[http://dx.doi.org/10.1242/dmm.030403] [PMID: 28883015]
[92]
Hiroshima Y, Maawy A, Zhang Y, et al. Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy. Oncotarget 2016; 7(44): 71696-702.
[http://dx.doi.org/10.18632/oncotarget.12322] [PMID: 27765934]
[93]
Julien S, Merino-Trigo A, Lacroix L, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res 2012; 18(19): 5314-28.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0372] [PMID: 22825584]
[94]
Puig I, Chicote I, Tenbaum SP, et al. A personalized preclinical model to evaluate the metastatic potential of patient-derived colon cancer initiating cells. Clin Cancer Res 2013; 19(24): 6787-801.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1740] [PMID: 24170545]
[95]
Cogels MM, Rouas R, Ghanem GE, et al. Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. Front Oncol 2021; 11: 784947.
[http://dx.doi.org/10.3389/fonc.2021.784947] [PMID: 34869042]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy