Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Bio-Printing of Materials for Bone Tissue Engineering

In Press, (this is not the final "Version of Record"). Available online 21 June, 2024
Author(s): Taha Jafari, Seyed Morteza Naghib* and M.R. Mozafari
Published on: 21 June, 2024

DOI: 10.2174/0113852728312464240529050217

Price: $95

Abstract

The complicated internal mechanical and structural qualities of normal bone tissue still prevent the development of effective therapeutic procedures for major bone lesions. It is still difficult to use tissue engineering to return damaged bones back to how they were originally intended. Due to recent advances in 3D printing, together with the introduction of new materials and technological assistance, the basis for BTE has been established. Biological 3D biomaterials have cells inside them, which allows for the creation of structures that mimic real tissues. Microextrusion, inkjet, and laser-assisted bioprinting are the three primary methods used in 3D bioprinting manufacturing. Hydrogels packed with cells, growth hormones, and bioactive ceramics are among the bioinks utilized in bone bioprinting. With the use of magnetic resonance imaging or computed tomography scanning, 3D printing offers substantial benefits for tailored treatment by enabling the creation of scaffolds with the right structural qualities, form, and dimensions. Three-dimensional (3D) bioprinting is a cutting-edge technique that has been utilized recently to create multicellular, biomimetic tissues with layers upon layers of intricate tissue microenvironment printing. We approached the use of hydrogels with great strength in 3D printing for BTE with an emphasis on first providing a thorough study about the development of 3D printing, printing techniques, and ink selection in this review. A brief prediction on how 3D printing would advance in the future was made.

[1]
Kim, I.S.; Yang, W.S.; Kim, C.H. Physiological properties, functions, and trends in the matrix metalloproteinase inhibitors in inflammation-mediated human diseases. Curr. Med. Chem., 2023, 30(18), 2075-2112.
[http://dx.doi.org/10.2174/0929867329666220823112731] [PMID: 36017851]
[2]
Farooq, S.; Munawar, M.A.; Ngaini, Z. Mono-metallic, bi-metallic and tri-metallic biogenic nanoparticles derived from garlic and ginger with their applications. Curr. Org. Chem., 2023, 27(14), 1202-1214.
[http://dx.doi.org/10.2174/1385272827666230915103130]
[3]
Sharma, S.; Singh, K.; Singh, S. Synthetic strategies for quinoline based derivatives as potential bioactive heterocycles. Curr. Org. Synth., 2023, 20(6), 606-629.
[http://dx.doi.org/10.2174/1570179420666221004143910] [PMID: 36200204]
[4]
Shahrajabian, M.H.; Kuang, Y.; Cui, H.; Fu, L.; Sun, W. Metabolic changes of active components of important medicinal plants on the basis of traditional chinese medicine under different environmental stresses. Curr. Org. Chem., 2023, 27(9), 782-806.
[http://dx.doi.org/10.2174/1385272827666230807150910]
[5]
Hussen, N.H.; Hasan, A.H.; Muhammed, G.O.; Yassin, A.Y.; Salih, R.R.; Esmail, P.A.; Alanazi, M.M.; Jamalis, J. Anthracycline in medicinal chemistry: mechanism of cardiotoxicity, preventive and treatment strategies. Curr. Org. Chem., 2023, 27(4), 363-377.
[http://dx.doi.org/10.2174/1385272827666230423144150]
[6]
Sharma, A.S. Salahuddin; Mazumder, A.; Kumar, R.; Datt, V.; Shabana, K.; Tyagi, S.; Yar, M.S.; Ahsan, M.J. Recent updates on synthesis, biological activity, and structure-activity relationship of 1,3,4-oxadiazole-quinoline hybrids: A review. Curr. Org. Synth., 2023, 20(7), 758-787.
[http://dx.doi.org/10.2174/1570179420666221004142659] [PMID: 36200203]
[7]
Kalar, P.L.; Agrawal, S.; Kushwaha, S.; Gayen, S.; Das, K. Recent developments on synthesis of organofluorine compounds using green approaches. Curr. Org. Chem., 2023, 27(3), 190-205.
[http://dx.doi.org/10.2174/1385272827666230516100739]
[8]
Marrella, A.; Lee, T.Y.; Lee, D.H.; Karuthedom, S.; Syla, D.; Chawla, A.; Khademhosseini, A.; Jang, H.L. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater. Today, 2018, 21(4), 362-376.
[http://dx.doi.org/10.1016/j.mattod.2017.10.005] [PMID: 30100812]
[9]
Zhang, T.; Wei, Q.; Zhou, H.; Jing, Z.; Liu, X.; Zheng, Y.; Cai, H.; Wei, F.; Jiang, L.; Yu, M.; Cheng, Y.; Fan, D.; Zhou, W.; Lin, X.; Leng, H.; Li, J.; Li, X.; Wang, C.; Tian, Y.; Liu, Z. Three-dimensional-printed individualized porous implants: A new “implant-bone” interface fusion concept for large bone defect treatment. Bioact. Mater., 2021, 6(11), 3659-3670.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.030] [PMID: 33898870]
[10]
Nie, L.; Chen, D.; Suo, J.; Zou, P.; Feng, S.; Yang, Q.; Yang, S.; Ye, S. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Colloids Surf. B Biointerfaces, 2012, 100, 169-176.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.046] [PMID: 22766294]
[11]
Zhang, Z.; Jia, B.; Yang, H.; Han, Y.; Wu, Q.; Dai, K.; Zheng, Y. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies. Bioact. Mater., 2021, 6(11), 3999-4013.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.045] [PMID: 33997489]
[12]
Vukajlovic, D.; Parker, J.; Bretcanu, O.; Novakovic, K. Chitosan based polymer/bioglass composites for tissue engineering applications. Mater. Sci. Eng. C, 2019, 96, 955-967.
[http://dx.doi.org/10.1016/j.msec.2018.12.026] [PMID: 30606607]
[13]
Jodati, H.; Yılmaz, B.; Evis, Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceram. Int., 2020, 46(10), 15725-15739.
[http://dx.doi.org/10.1016/j.ceramint.2020.03.192]
[14]
Singh, A.K.; Sundram, S.; Malviya, R. Human-derived biomaterials for biomedical and tissue engineering applications. Curr. Pharm. Des., 2023, 29(8), 584-603.
[http://dx.doi.org/10.2174/1381612829666230320103412] [PMID: 36959154]
[15]
Malviya, R.; Singh, A.K. Graft copolymers of polysaccharide: synthesis methodology and biomedical applications in tissue engineering. Curr. Pharm. Biotechnol., 2023, 24(4), 510-531.
[http://dx.doi.org/10.2174/1389201023666220815091806] [PMID: 36043716]
[16]
Lin, X.; Gong, X.; Ruan, Q.; Xu, W.; Zhang, C.; Zhao, K. Antimicrobial application of chitosan derivatives and their nanocomposites. Curr. Med. Chem., 2023, 30(15), 1736-1755.
[http://dx.doi.org/10.2174/0929867329666220803114729] [PMID: 35927801]
[17]
Pourhaghgouy, M.; Zamanian, A.; Shahrezaee, M.; Masouleh, M.P. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Mater. Sci. Eng. C, 2016, 58, 180-186.
[http://dx.doi.org/10.1016/j.msec.2015.07.065] [PMID: 26478301]
[18]
Kankariya, Y.; Chatterjee, B. Biomedical application of chitosan and chitosan derivatives: A comprehensive review. Curr. Pharm. Des., 2023, 29(17), 1311-1325.
[http://dx.doi.org/10.2174/1381612829666230524153002] [PMID: 37226781]
[19]
Tang, Z.; Tan, Y.; Chen, H.; Wan, Y. Benzoxazine: A privileged scaffold in medicinal chemistry. Curr. Med. Chem., 2023, 30(4), 372-389.
[http://dx.doi.org/10.2174/0929867329666220705140846] [PMID: 35792127]
[20]
Swanson, W.B.; Zhang, Z.; Xiu, K.; Gong, T.; Eberle, M.; Wang, Z.; Ma, P.X. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation. Acta Biomater., 2020, 118, 215-232.
[http://dx.doi.org/10.1016/j.actbio.2020.09.052] [PMID: 33065285]
[21]
Shi, R.; Huang, Y.; Ma, C.; Wu, C.; Tian, W. Current advances for bone regeneration based on tissue engineering strategies. Front. Med., 2019, 13(2), 160-188.
[http://dx.doi.org/10.1007/s11684-018-0629-9] [PMID: 30047029]
[22]
Ratheesh, G.; Vaquette, C.; Xiao, Y. Patient‐specific bone particles bioprinting for bone tissue engineering. Adv. Healthc. Mater., 2020, 9(23), 2001323.
[http://dx.doi.org/10.1002/adhm.202001323] [PMID: 33166078]
[23]
Lin, K.F.; He, S.; Song, Y.; Wang, C.M.; Gao, Y.; Li, J.Q.; Tang, P.; Wang, Z.; Bi, L.; Pei, G.X. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration. ACS Appl. Mater. Interfaces, 2016, 8(11), 6905-6916.
[http://dx.doi.org/10.1021/acsami.6b00815] [PMID: 26930140]
[24]
Jose, M.; Thomas, V.; Johnson, K.; Dean, D.; Nyairo, E. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomater., 2009, 5(1), 305-315.
[http://dx.doi.org/10.1016/j.actbio.2008.07.019] [PMID: 18778977]
[25]
Cámara-Torres, M.; Duarte, S.; Sinha, R.; Egizabal, A.; Álvarez, N.; Bastianini, M.; Sisani, M.; Scopece, P.; Scatto, M.; Bonetto, A.; Marcomini, A.; Sanchez, A.; Patelli, A.; Mota, C.; Moroni, L. 3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration. Bioact. Mater., 2021, 6(4), 1073-1082.
[http://dx.doi.org/10.1016/j.bioactmat.2020.09.031] [PMID: 33102947]
[26]
Schatkoski, V.M.; Larissa do Amaral Montanheiro, T.; Canuto de Menezes, B.R.; Pereira, R.M.; Rodrigues, K.F.; Ribas, R.G.; Morais da Silva, D.; Thim, G.P. Current advances concerning the most cited metal ions doped bioceramics and silicate-based bioactive glasses for bone tissue engineering. Ceram. Int., 2021, 47(3), 2999-3012.
[http://dx.doi.org/10.1016/j.ceramint.2020.09.213]
[27]
Nakano, T. Control of crystallographic orientation by metal additive manufacturing process of β-type Ti alloys based on the bone tissue anisotropy. MATEC Web Conf., 2020, 321-11.
[http://dx.doi.org/10.1051/matecconf/202032105002]
[28]
Xiong, Y.Z.; Gao, R.N.; Zhang, H.; Dong, L.L.; Li, J.T.; Li, X. Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications. J. Mech. Behav. Biomed. Mater., 2020, 104, 103673.
[http://dx.doi.org/10.1016/j.jmbbm.2020.103673] [PMID: 32174429]
[29]
Zhang, H.; Huang, H.; Hao, G.; Zhang, Y.; Ding, H.; Fan, Z.; Sun, L. 3D printing hydrogel scaffolds with nanohydroxyapatite gradient to effectively repair osteochondral defects in rats. Adv. Funct. Mater., 2021, 31(1), 2006697.
[http://dx.doi.org/10.1002/adfm.202006697]
[30]
Zhai, X.; Ma, Y.; Hou, C.; Gao, F.; Zhang, Y.; Ruan, C.; Pan, H.; Lu, W.W.; Liu, W. 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater. Sci. Eng., 2017, 3(6), 1109-1118.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00224] [PMID: 33429585]
[31]
Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 2016, 83, 127-141.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.012] [PMID: 26773669]
[32]
Bai, L.; Zhao, Y.; Chen, P.; Zhang, X.; Huang, X.; Du, Z.; Crawford, R.; Yao, X.; Tang, B.; Hang, R.; Xiao, Y. Targeting early healing phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration. Small, 2021, 17(4), 2006287.
[http://dx.doi.org/10.1002/smll.202006287] [PMID: 33377275]
[33]
Bai, L.; Liu, Y.; Du, Z.; Weng, Z.; Yao, W.; Zhang, X.; Huang, X.; Yao, X.; Crawford, R.; Hang, R.; Huang, D.; Tang, B.; Xiao, Y. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater., 2018, 76, 344-358.
[http://dx.doi.org/10.1016/j.actbio.2018.06.023] [PMID: 29908975]
[34]
Koons, G.L.; Diba, M.; Mikos, A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater., 2020, 5(8), 584-603.
[http://dx.doi.org/10.1038/s41578-020-0204-2]
[35]
Wang, Y.; Huang, X.; Zhang, X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun., 2021, 12(1), 1291.
[http://dx.doi.org/10.1038/s41467-021-21577-7] [PMID: 33637743]
[36]
Hua, M.; Wu, S.; Ma, Y.; Zhao, Y.; Chen, Z.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X.; He, X. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature, 2021, 590(7847), 594-599.
[http://dx.doi.org/10.1038/s41586-021-03212-z] [PMID: 33627812]
[37]
Erukhimovich, I.; Olvera de la Cruz, M. Phase equilibrium and charge fractionation in polyelectrolyte solutions. J. Polym. Sci. Polym. Phys., 2007, 45(21), 3003-3009.
[http://dx.doi.org/10.1002/polb.21300]
[38]
Hirsch, M.; Charlet, A.; Amstad, E. 3D printing of strong and tough double network granular hydrogels. Adv. Funct. Mater., 2021, 31(5), 2005929.
[http://dx.doi.org/10.1002/adfm.202005929]
[39]
Singh, B.N.; Veeresh, V.; Mallick, S.P.; Jain, Y.; Sinha, S.; Rastogi, A.; Srivastava, P. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int. J. Biol. Macromol., 2019, 133, 817-830.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.107] [PMID: 31002908]
[40]
Rahmanian, M. seyfoori, A.; Dehghan, M.M.; Eini, L.; Naghib, S.M.; Gholami, H.; Farzad Mohajeri, S.; Mamaghani, K.R.; Majidzadeh-A, K. Multifunctional gelatin-tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: In vitro and in vivo studies. J. Taiwan Inst. Chem. Eng., 2019, 101, 214-220.
[http://dx.doi.org/10.1016/j.jtice.2019.04.028]
[41]
Kalantari, E.; Naghib, S.M.; Iravani, N.J.; Esmaeili, R.; Naimi-Jamal, M.R.; Mozafari, M. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO4) for biomedical application: Synthesis, characterization, and biological studies. Mater. Sci. Eng. C, 2019, 105, 109912.
[http://dx.doi.org/10.1016/j.msec.2019.109912] [PMID: 31546348]
[42]
Kalantari, E.; Naghib, S.M.; Naimi-Jamal, M.R.; Aliahmadi, A.; Iravani, N.J.; Mozafari, M. Nanostructured monticellite for tissue engineering applications - Part I: Microstructural and physicochemical characteristics. Ceram. Int., 2018, 44(11), 12731-12738.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.076]
[43]
Kalantari, E.; Naghib, S.M.; Iravani, N.J.; Aliahmadi, A.; Naimi-Jamal, M.R.; Mozafari, M. Nanostructured monticellite for tissue engineering applications - Part II: Molecular and biological characteristics. Ceram. Int., 2018, 44(12), 14704-14711.
[http://dx.doi.org/10.1016/j.ceramint.2018.05.098]
[44]
Yao, H.; Kang, J.; Li, W.; Liu, J.; Xie, R.; Wang, Y.; Liu, S.; Wang, D.A.; Ren, L. Novel β -TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair. Biomed. Mater., 2017, 13(1), 015012.
[http://dx.doi.org/10.1088/1748-605X/aa8541] [PMID: 28792423]
[45]
Nahanmoghadam, A.; Asemani, M.; Goodarzi, V.; Ebrahimi-Barough, S. Design and fabrication of bone tissue scaffolds based on PCL/PHBV CONTAINING hydroxyapatite nanoparticles: Dual‐leaching technique. J. Biomed. Mater. Res. A, 2021, 109(6), 981-993.
[http://dx.doi.org/10.1002/jbm.a.37087] [PMID: 33448637]
[46]
Lan, W.; Zhang, X.; Xu, M.; Zhao, L.; Huang, D.; Wei, X.; Chen, W. Carbon nanotube reinforced polyvinyl alcohol/biphasic calcium phosphate scaffold for bone tissue engineering. RSC Advances, 2019, 9(67), 38998-39010.
[http://dx.doi.org/10.1039/C9RA08569F] [PMID: 35540653]
[47]
Kazimierczak, P.; Benko, A.; Palka, K.; Canal, C.; Kolodynska, D.; Przekora, A. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. J. Mater. Sci. Technol., 2020, 43, 52-63.
[http://dx.doi.org/10.1016/j.jmst.2020.01.006]
[48]
Manavitehrani, I.; Le, T.Y.L.; Daly, S.; Wang, Y.; Maitz, P.K.; Schindeler, A.; Dehghani, F. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Mater. Sci. Eng. C, 2019, 96, 824-830.
[http://dx.doi.org/10.1016/j.msec.2018.11.088] [PMID: 30606596]
[49]
Han, X.; Sun, M.; Chen, B.; Saiding, Q.; Zhang, J.; Song, H.; Deng, L.; Wang, P.; Gong, W.; Cui, W. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact. Mater., 2021, 6(6), 1639-1652.
[http://dx.doi.org/10.1016/j.bioactmat.2020.11.019] [PMID: 33313444]
[50]
Bandyopadhyay, A.; Mitra, I.; Bose, S. 3D printing for bone regeneration. Curr. Osteoporos. Rep., 2020, 18(5), 505-514.
[http://dx.doi.org/10.1007/s11914-020-00606-2] [PMID: 32748324]
[51]
Bendtsen, S.T.; Quinnell, S.P.; Wei, M. Development of a novel alginate‐polyvinyl alcohol‐hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J. Biomed. Mater. Res. A, 2017, 105(5), 1457-1468.
[http://dx.doi.org/10.1002/jbm.a.36036] [PMID: 28187519]
[52]
Wang, C.; Huang, W.; Zhou, Y.; He, L.; He, Z.; Chen, Z.; He, X.; Tian, S.; Liao, J.; Lu, B.; Wei, Y.; Wang, M. 3D printing of bone tissue engineering scaffolds. Bioact. Mater., 2020, 5(1), 82-91.
[http://dx.doi.org/10.1016/j.bioactmat.2020.01.004] [PMID: 31956737]
[53]
Maroulakos, M.; Kamperos, G.; Tayebi, L.; Halazonetis, D.; Ren, Y. Applications of 3D printing on craniofacial bone repair: A systematic review. J. Dent., 2019, 80, 1-14.
[http://dx.doi.org/10.1016/j.jdent.2018.11.004] [PMID: 30439546]
[54]
Lipian, M.; Kulak, M.; Stepien, M. Fast track integration of computational methods with experiments in small wind turbine development. Energies, 2019, 12(9), 1625.
[http://dx.doi.org/10.3390/en12091625]
[55]
Zuo, H.; Liu, Z.; Zhang, L.; Liu, G.; Ouyang, X.; Guan, Q.; Wu, Q.; You, Z. Self-healing materials enable free-standing seamless large-scale 3D printing. Sci. China Mater., 2021, 64(7), 1791-1800.
[http://dx.doi.org/10.1007/s40843-020-1603-y]
[56]
Pasricha, A.; Greeninger, R. Exploration of 3D printing to create zero-waste sustainable fashion notions and jewelry. Fashion and Textiles, 2018, 5(1), 30.
[http://dx.doi.org/10.1186/s40691-018-0152-2]
[57]
Yang, Y.; Zhang, Q.; Xu, T.; Zhang, H.; Zhang, M.; Lu, L.; Hao, Y.; Fuh, J.H.; Zhao, X. Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Biomaterials, 2020, 263, 120378.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120378] [PMID: 32932140]
[58]
Tay, Y.W.D.; Panda, B.; Paul, S.C.; Noor Mohamed, N.A.; Tan, M.J.; Leong, K.F. 3D printing trends in building and construction industry: a review. Virtual Phys. Prototyp., 2017, 12(3), 261-276.
[http://dx.doi.org/10.1080/17452759.2017.1326724]
[59]
Daly, A.C.; Cunniffe, G.M.; Sathy, B.N.; Jeon, O.; Alsberg, E.; Kelly, D.J. 3D bioprinting of developmentally inspired templates for whole bone organ engineering. Adv. Healthc. Mater., 2016, 5(18), 2353-2362.
[http://dx.doi.org/10.1002/adhm.201600182] [PMID: 27281607]
[60]
Palmieri, V. 3D-printed graphene for bone reconstruction. 2D Materials, 2020, 7(2), 022004.
[http://dx.doi.org/10.1088/2053-1583/ab6a5d]
[61]
Feng, Z.; Li, Y.; Hao, L.; Yang, Y.; Tang, T.; Tang, D.; Xiong, W. Graphene-reinforced biodegradable resin composites for stereolithographic 3D printing of bone structure scaffolds. J. Nanomater., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/9710264]
[62]
Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive manufacturing of polymer materials: Progress, promise and challenges. Polymers (Basel), 2021, 13(5), 753.
[http://dx.doi.org/10.3390/polym13050753] [PMID: 33670934]
[63]
Xi, L.; Zhang, Y.; Gupta, H.; Terrill, N.; Wang, P.; Zhao, T.; Fang, D. A multiscale study of structural and compositional changes in a natural nanocomposite: Osteoporotic bone with chronic endogenous steroid excess. Bone, 2021, 143, 115666.
[http://dx.doi.org/10.1016/j.bone.2020.115666] [PMID: 33007528]
[64]
Midha, S.; Dalela, M.; Sybil, D.; Patra, P.; Mohanty, S. Advances in threedimensional bioprinting of bone: Progress and challenges. J. Tissue Eng. Regen. Med., 2019, 13(6), term.2847.
[http://dx.doi.org/10.1002/term.2847 ] [PMID: 30812062]
[65]
Tang, A.; Ji, J.; Li, J.; Liu, W.; Wang, J.; Sun, Q.; Li, Q. Nanocellulose/pegda aerogels with tunable poisson’s ratio fabricated by stereolithography for mouse bone marrow mesenchymal stem cell culture. Nanomaterials (Basel), 2021, 11(3), 603.
[http://dx.doi.org/10.3390/nano11030603] [PMID: 33670932]
[66]
van Bochove, B.; Grijpma, D.W. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications. J. Biomater. Sci. Polym. Ed., 2019, 30(2), 77-106.
[http://dx.doi.org/10.1080/09205063.2018.1553105] [PMID: 30497347]
[67]
Wei, Y.; Zhao, D.; Cao, Q.; Wang, J.; Wu, Y.; Yuan, B.; Li, X.; Chen, X.; Zhou, Y.; Yang, X.; Zhu, X.; Tu, C.; Zhang, X. Stereolithography-based additive manufacturing of high-performance osteoinductive calcium phosphate ceramics by a digital light-processing system. ACS Biomater. Sci. Eng., 2020, 6(3), 1787-1797.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01663] [PMID: 33455401]
[68]
Chen, Y.; Furukawa, T.; Ibi, T.; Noda, Y.; Maruo, S. Multi-scale micro-stereolithography using optical fibers with a photocurable ceramic slurry. Opt. Mater. Express, 2021, 11(1), 105-114.
[http://dx.doi.org/10.1364/OME.404217]
[69]
Zhou, L.Y.; Fu, J.; He, Y. A review of 3D printing technologies for soft polymer materials. Adv. Funct. Mater., 2020, 30(28), 2000187.
[http://dx.doi.org/10.1002/adfm.202000187]
[70]
Heinrich, M.A.; Liu, W.; Jimenez, A.; Yang, J.; Akpek, A.; Liu, X.; Pi, Q.; Mu, X.; Hu, N.; Schiffelers, R.M.; Prakash, J.; Xie, J.; Zhang, Y.S. 3D bioprinting: from benches to translational applications. Small, 2019, 15(23), 1805510.
[http://dx.doi.org/10.1002/smll.201805510] [PMID: 31033203]
[71]
Anandakrishnan, N.; Ye, H.; Guo, Z.; Chen, Z.; Mentkowski, K.I.; Lang, J.K.; Rajabian, N.; Andreadis, S.T.; Ma, Z.; Spernyak, J.A.; Lovell, J.F.; Wang, D.; Xia, J.; Zhou, C.; Zhao, R. Fast stereolithography printing of large‐scale biocompatible hydrogel models. Adv. Healthc. Mater., 2021, 10(10), 2002103.
[http://dx.doi.org/10.1002/adhm.202002103] [PMID: 33586366]
[72]
Safonov, A.; Maltsev, E.; Chugunov, S.; Tikhonov, A.; Konev, S.; Evlashin, S.; Popov, D.; Pasko, A.; Akhatov, I. Design and fabrication of complex-shaped ceramic bone implants via 3d printing based on laser stereolithography. Appl. Sci. (Basel), 2020, 10(20), 7138.
[http://dx.doi.org/10.3390/app10207138]
[73]
Le Guéhennec, L. Van hede, D.; Plougonven, E.; Nolens, G.; Verlée, B.; De Pauw, M.C.; Lambert, F. In vitro and in vivo biocompatibility of calcium‐phosphate scaffolds three‐dimensional printed by stereolithography for bone regeneration. J. Biomed. Mater. Res. A, 2020, 108(3), 412-425.
[http://dx.doi.org/10.1002/jbm.a.36823] [PMID: 31654476]
[74]
Amler, A.K.; Dinkelborg, P.H.; Schlauch, D.; Spinnen, J.; Stich, S.; Lauster, R.; Sittinger, M.; Nahles, S.; Heiland, M.; Kloke, L.; Rendenbach, C.; Beck-Broichsitter, B.; Dehne, T. Comparison of the translational potential of human mesenchymal progenitor cells from different bone entities for autologous 3D bioprinted bone grafts. Int. J. Mol. Sci., 2021, 22(2), 796.
[http://dx.doi.org/10.3390/ijms22020796] [PMID: 33466904]
[75]
Thavasiappan, K. Design, analysis, fabrication and testing of PC porous scaffolds using rapid prototyping in clinical applications. Biomedicine , 2019, 39(2), 339-345.
[76]
Lan, W.; Huang, X.; Huang, D.; Wei, X.; Chen, W. Progress in 3D printing for bone tissue engineering: a review. J. Mater. Sci., 2022, 57(27), 12685-12709.
[http://dx.doi.org/10.1007/s10853-022-07361-y]
[77]
Distler, T.; Fournier, N.; Grünewald, A.; Polley, C.; Seitz, H.; Detsch, R.; Boccaccini, A.R. Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization. Front. Bioeng. Biotechnol., 2020, 8, 552.
[http://dx.doi.org/10.3389/fbioe.2020.00552] [PMID: 32671025]
[78]
Anada, T.; Pan, C.C.; Stahl, A.; Mori, S.; Fukuda, J.; Suzuki, O.; Yang, Y. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int. J. Mol. Sci., 2019, 20(5), 1096.
[http://dx.doi.org/10.3390/ijms20051096] [PMID: 30836606]
[79]
Chimene, D.; Kaunas, R.; Gaharwar, A.K. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Adv. Mater., 2020, 32(1), 1902026.
[http://dx.doi.org/10.1002/adma.201902026] [PMID: 31599073]
[80]
Tromans, G. Automotive applications. In: Rapid manufacturing: an industrial revolution for the digital age; John Wiley and Sons, 2006, pp. 211-219.
[81]
Truby, R.L.; Lewis, J.A. Printing soft matter in three dimensions. Nature, 2016, 540(7633), 371-378.
[http://dx.doi.org/10.1038/nature21003] [PMID: 27974748]
[82]
Nadgorny, M.; Ameli, A. Functional polymers and nanocomposites for 3D printing of smart structures and devices. ACS Appl. Mater. Interfaces, 2018, 10(21), 17489-17507.
[http://dx.doi.org/10.1021/acsami.8b01786] [PMID: 29742896]
[83]
Yang, K.; Grant, J.C.; Lamey, P.; Joshi-Imre, A.; Lund, B.R.; Smaldone, R.A.; Voit, W. Diels-Alder reversible thermoset 3D printing: Isotropic thermoset polymers via fused filament fabrication. Adv. Funct. Mater., 2017, 27(24), 1700318.
[http://dx.doi.org/10.1002/adfm.201700318]
[84]
Nowicki, M.A.; Castro, N.J.; Plesniak, M.W.; Zhang, L.G. 3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology, 2016, 27(41), 414001.
[http://dx.doi.org/10.1088/0957-4484/27/41/414001] [PMID: 27606933]
[85]
Alizadeh-Osgouei, M.; Li, Y.; Vahid, A.; Ataee, A.; Wen, C. High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications. Smart Materials in Medicine, 2021, 2, 15-25.
[http://dx.doi.org/10.1016/j.smaim.2020.10.003]
[86]
Chen, G.; Chen, N.; Wang, Q. Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering. Compos. Sci. Technol., 2019, 172, 17-28.
[http://dx.doi.org/10.1016/j.compscitech.2019.01.004]
[87]
Yang, C.; Li, J.; Zhu, C.; Zhang, Q.; Yu, J.; Wang, J.; Wang, Q.; Tang, J.; Zhou, H.; Shen, H. Advanced antibacterial activity of biocompatible tantalum nanofilm via enhanced local innate immunity. Acta Biomater., 2019, 89, 403-418.
[http://dx.doi.org/10.1016/j.actbio.2019.03.027] [PMID: 30880236]
[88]
Nulty, J.; Freeman, F.E.; Browe, D.C.; Burdis, R.; Ahern, D.P.; Pitacco, P.; Lee, Y.B.; Alsberg, E.; Kelly, D.J. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater., 2021, 126, 154-169.
[http://dx.doi.org/10.1016/j.actbio.2021.03.003] [PMID: 33705989]
[89]
Ojansivu, M.; Rashad, A.; Ahlinder, A.; Massera, J.; Mishra, A.; Syverud, K.; Finne-Wistrand, A.; Miettinen, S.; Mustafa, K. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Biofabrication, 2019, 11(3), 035010.
[http://dx.doi.org/10.1088/1758-5090/ab0692] [PMID: 30754034]
[90]
Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D.H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv., 2016, 34(4), 422-434.
[http://dx.doi.org/10.1016/j.biotechadv.2015.12.011] [PMID: 26724184]
[91]
Xiong, Z.; Liu, W.; Qian, H.; Lei, T.; He, X.; Hu, Y.; Lei, P. Tantalum nanoparticles reinforced PCL scaffolds using direct 3D printing for bone tissue engineering. Front. Mater., 2021, 8, 609779.
[http://dx.doi.org/10.3389/fmats.2021.609779]
[92]
Okafor-Muo, O.L.; Hassanin, H.; Kayyali, R.; ElShaer, A. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities. J. Pharm. Sci., 2020, 109(12), 3535-3550.
[http://dx.doi.org/10.1016/j.xphs.2020.08.029] [PMID: 32976900]
[93]
Lv, C.F. The fabrication of tissue engineering scaffolds by inkjet printing technology. MSF, 2018, 934, 129-133.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.934.129]
[94]
Rajzer, I.; Rom, M.; Menaszek, E.; Pasierb, P. Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering. Mater. Lett., 2015, 138, 60-63.
[http://dx.doi.org/10.1016/j.matlet.2014.09.077]
[95]
Gao, G.; Schilling, A.F.; Yonezawa, T.; Wang, J.; Dai, G.; Cui, X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three‐dimensional scaffold and human mesenchymal stem cells. Biotechnol. J., 2014, 9(10), 1304-1311.
[http://dx.doi.org/10.1002/biot.201400305] [PMID: 25130390]
[96]
Cui, X.; Dean, D.; Ruggeri, Z.M.; Boland, T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng., 2010, 106(6), 963-969.
[http://dx.doi.org/10.1002/bit.22762] [PMID: 20589673]
[97]
Vanderburgh, J.P.; Fernando, S.J.; Merkel, A.R.; Sterling, J.A.; Guelcher, S.A. Fabrication of trabecular bone‐templated tissue‐engineered constructs by 3D inkjet printing. Adv. Healthc. Mater., 2017, 6(22), 1700369.
[http://dx.doi.org/10.1002/adhm.201700369] [PMID: 28892261]
[98]
Tian, F.; Conde, J.; Bao, C.; Chen, Y.; Curtin, J.; Cui, D. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials, 2016, 106, 87-97.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.014] [PMID: 27552319]
[99]
Liao, B.; Xia, R.F.; Li, W.; Lu, D.; Jin, Z.M. 3D-printed Ti6Al4V scaffolds with graded triply periodic minimal surface structure for bone tissue engineering. J. Mater. Eng. Perform., 2021, 30(7), 4993-5004.
[http://dx.doi.org/10.1007/s11665-021-05580-z]
[100]
Kamboj, N.; Aghayan, M.; Rodrigo-Vazquez, C.S.; Rodríguez, M.A.; Hussainova, I. Novel silicon-wollastonite based scaffolds for bone tissue engineering produced by selective laser melting. Ceram. Int., 2019, 45(18), 24691-24701.
[http://dx.doi.org/10.1016/j.ceramint.2019.08.208]
[101]
Hull, S.M.; Lindsay, C.D.; Brunel, L.G.; Shiwarski, D.J.; Tashman, J.W.; Roth, J.G.; Myung, D.; Feinberg, A.W.; Heilshorn, S.C. 3D bioprinting using UNIversal orthogonal network (UNION) bioinks. Adv. Funct. Mater., 2021, 31(7), 2007983.
[http://dx.doi.org/10.1002/adfm.202007983] [PMID: 33613150]
[102]
Kim, S.H.; Yeon, Y.K.; Lee, J.M.; Chao, J.R.; Lee, Y.J.; Seo, Y.B.; Sultan, M.T.; Lee, O.J.; Lee, J.S.; Yoon, S.; Hong, I.S.; Khang, G.; Lee, S.J.; Yoo, J.J.; Park, C.H. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun., 2018, 9(1), 1620.
[http://dx.doi.org/10.1038/s41467-018-03759-y] [PMID: 29693652]
[103]
He, Y.; Wang, F.; Wang, X.; Zhang, J.; Wang, D.; Huang, X. A photocurable hybrid chitosan/acrylamide bioink for DLP based 3D bioprinting. Mater. Des., 2021, 202, 109588.
[http://dx.doi.org/10.1016/j.matdes.2021.109588]
[104]
Hong, H.; Seo, Y.B.; Kim, D.Y.; Lee, J.S.; Lee, Y.J.; Lee, H.; Ajiteru, O.; Sultan, M.T.; Lee, O.J.; Kim, S.H.; Park, C.H. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 2020, 232, 119679.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119679] [PMID: 31865191]
[105]
Ouyang, L.; Armstrong, J.P.K.; Lin, Y.; Wojciechowski, J.P.; Lee-Reeves, C.; Hachim, D.; Zhou, K.; Burdick, J.A.; Stevens, M.M. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci. Adv., 2020, 6(38), eabc5529.
[http://dx.doi.org/10.1126/sciadv.abc5529] [PMID: 32948593]
[106]
Duymaz, B.T.; Erdiler, F.B.; Alan, T.; Aydogdu, M.O.; Inan, A.T.; Ekren, N.; Uzun, M.; Sahin, Y.M.; Bulus, E.; Oktar, F.N.; Selvi, S.S. ToksoyOner, E.; Kilic, O.; Bostan, M.S.; Eroglu, M.S.; Gunduz, O. 3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior. Eur. Polym. J., 2019, 119, 426-437.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.015]
[107]
Micic, M. Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit’s ulna reconstruction. Biomed. Engin., 2020, 65(4), 491-505.
[http://dx.doi.org/10.1515/bmt-2019-0218]
[108]
Demirtaş, T.T.; Irmak, G.; Gümüşderelioğlu, M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication, 2017, 9(3), 035003.
[http://dx.doi.org/10.1088/1758-5090/aa7b1d] [PMID: 28639943]
[109]
Liu, X.; Gaihre, B.; George, M.N.; Miller, A.L., II; Xu, H.; Waletzki, B.E.; Lu, L. 3D bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. J. Biomed. Mater. Res. A, 2021, 109(1), 6-17.
[http://dx.doi.org/10.1002/jbm.a.37002] [PMID: 32418273]
[110]
Xu, T.; Gregory, C.; Molnar, P.; Cui, X.; Jalota, S.; Bhaduri, S.; Boland, T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 2006, 27(19), 3580-3588.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.048] [PMID: 16516288]
[111]
Zhao, X.; Liu, L.; Wang, J.; Xu, Y.; Zhang, W.; Khang, G.; Wang, X. In vitro vascularization of a combined system based on a 3D printing technique. J. Tissue Eng. Regen. Med., 2016, 10(10), 833-842.
[http://dx.doi.org/10.1002/term.1863] [PMID: 24399638]
[112]
Poldervaart, M.T.; Gremmels, H.; van Deventer, K.; Fledderus, J.O.; Öner, F.C.; Verhaar, M.C.; Dhert, W.J.A.; Alblas, J. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J. Control. Release, 2014, 184, 58-66.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.007] [PMID: 24727077]
[113]
Pescosolido, L.; Schuurman, W.; Malda, J.; Matricardi, P.; Alhaique, F.; Coviello, T.; van Weeren, P.R.; Dhert, W.J.A.; Hennink, W.E.; Vermonden, T. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules, 2011, 12(5), 1831-1838.
[http://dx.doi.org/10.1021/bm200178w] [PMID: 21425854]
[114]
Lee, Y.B.; Polio, S.; Lee, W.; Dai, G.; Menon, L.; Carroll, R.S.; Yoo, S.S. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol., 2010, 223(2), 645-652.
[http://dx.doi.org/10.1016/j.expneurol.2010.02.014] [PMID: 20211178]
[115]
Suri, S.; Han, L.H.; Zhang, W.; Singh, A.; Chen, S.; Schmidt, C.E. Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed. Microdevices, 2011, 13(6), 983-993.
[http://dx.doi.org/10.1007/s10544-011-9568-9] [PMID: 21773726]
[116]
Bose, S.; Koski, C.; Vu, A.A. Additive manufacturing of natural biopolymers and composites for bone tissue engineering. Mater. Horiz., 2020, 7(8), 2011-2027.
[http://dx.doi.org/10.1039/D0MH00277A]
[117]
Skardal, A.; Zhang, J.; McCoard, L.; Xu, X.; Oottamasathien, S.; Prestwich, G.D. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A, 2010, 16(8), 2675-2685.
[http://dx.doi.org/10.1089/ten.tea.2009.0798] [PMID: 20387987]
[118]
Park, J.K.; Shim, J-H.; Kang, K.S.; Yeom, J.; Jung, H.S.; Kim, J.Y.; Lee, K.H.; Kim, T-H.; Kim, S-Y.; Cho, D-W.; Hahn, S.K. Solid free‐form fabrication of tissue‐engineering scaffolds with a poly (lactic‐co‐glycolic acid) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein-2/poly (ethylene glycol) complex. Adv. Funct. Mater., 2011, 21(15), 2906-2912.
[http://dx.doi.org/10.1002/adfm.201100612]
[119]
Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today, 2013, 16(12), 496-504.
[http://dx.doi.org/10.1016/j.mattod.2013.11.017]
[120]
Ardelean, I.L.; Gudovan, D.; Ficai, D.; Ficai, A.; Andronescu, E.; Albu-Kaya, M.G.; Neacsu, P.; Ion, R.N.; Cimpean, A.; Mitran, V. Collagen/hydroxyapatite bone grafts manufactured by homogeneous/heterogeneous 3D printing. Mater. Lett., 2018, 231, 179-182.
[http://dx.doi.org/10.1016/j.matlet.2018.08.042]
[121]
Aldana, A.A.; Valente, F.; Dilley, R.; Doyle, B. Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties. Bioprinting, 2021, 21, e00105.
[http://dx.doi.org/10.1016/j.bprint.2020.e00105]
[122]
Chimene, D.; Lennox, K.K.; Kaunas, R.R.; Gaharwar, A.K. Advanced bioinks for 3D printing: a materials science perspective. Ann. Biomed. Eng., 2016, 44(6), 2090-2102.
[http://dx.doi.org/10.1007/s10439-016-1638-y] [PMID: 27184494]
[123]
Yang, Y.; Song, X.; Li, X.; Chen, Z.; Zhou, C.; Zhou, Q.; Chen, Y. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures. Adv. Mater., 2018, 30(36), 1706539.
[http://dx.doi.org/10.1002/adma.201706539] [PMID: 29920790]
[124]
Ouyang, L.; Yao, R.; Zhao, Y.; Sun, W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 2016, 8(3), 035020.
[http://dx.doi.org/10.1088/1758-5090/8/3/035020] [PMID: 27634915]
[125]
Zheng, Y.; Han, Q.; Wang, J.; Li, D.; Song, Z.; Yu, J. Promotion of osseointegration between implant and bone interface by titanium alloy porous scaffolds prepared by 3D printing. ACS Biomater. Sci. Eng., 2020, 6(9), 5181-5190.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00662] [PMID: 33455268]
[126]
Gao, F.; Xu, Z.; Liang, Q.; Liu, B.; Li, H.; Wu, Y.; Zhang, Y.; Lin, Z.; Wu, M.; Ruan, C.; Liu, W. Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv. Funct. Mater., 2018, 28(13), 1706644.
[http://dx.doi.org/10.1002/adfm.201706644]
[127]
Chou, D.T.; Wells, D.; Hong, D.; Lee, B.; Kuhn, H.; Kumta, P.N. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater., 2013, 9(10), 8593-8603.
[http://dx.doi.org/10.1016/j.actbio.2013.04.016] [PMID: 23624222]
[128]
Siu, T.L.; Rogers, J.M.; Lin, K.; Thompson, R.; Owbridge, M. Custom-made titanium 3-dimensional printed interbody cages for treatment of osteoporotic fracture-related spinal deformity. World Neurosurg., 2018, 111, 1-5.
[http://dx.doi.org/10.1016/j.wneu.2017.11.160] [PMID: 29223522]
[129]
Nune, K.C.; Misra, R.D.K.; Gaytan, S.M.; Murr, L.E. Interplay between cellular activity and three‐dimensional scaffold‐cell constructs with different foam structure processed by electron beam melting. J. Biomed. Mater. Res. A, 2015, 103(5), 1677-1692.
[http://dx.doi.org/10.1002/jbm.a.35307] [PMID: 25111154]
[130]
Yu, W.; Zhao, H.; Ding, Z.; Zhang, Z.; Sun, B.; Shen, J.; Chen, S.; Zhang, B.; Yang, K.; Liu, M.; Chen, D.; He, Y. In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration. Colloids Surf. B Biointerfaces, 2017, 149, 330-340.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.037] [PMID: 27792982]
[131]
Dumas, M.; Terriault, P.; Brailovski, V. Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Mater. Des., 2017, 121, 383-392.
[http://dx.doi.org/10.1016/j.matdes.2017.02.021]
[132]
Soro, N.; Attar, H.; Brodie, E.; Veidt, M.; Molotnikov, A.; Dargusch, M.S. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications. J. Mech. Behav. Biomed. Mater., 2019, 97, 149-158.
[http://dx.doi.org/10.1016/j.jmbbm.2019.05.019] [PMID: 31121433]
[133]
Kuo, T.Y.; Chin, W.H.; Chien, C.S.; Hsieh, Y.H. Mechanical and biological properties of graded porous tantalum coatings deposited on titanium alloy implants by vacuum plasma spraying. Surf. Coat. Tech., 2019, 372, 399-409.
[http://dx.doi.org/10.1016/j.surfcoat.2019.05.003]
[134]
Weng, Z.; Bai, L.; Liu, Y.; Zhao, Y.; Sun, Y.; Zhang, X.; Huang, X.; Huang, D.; Yao, X.; Hang, R. Osteogenic activity, antibacterial ability, and Ni release of Mg-incorporated Ni-Ti-O nanopore coatings on NiTi alloy. Appl. Surf. Sci., 2019, 486, 441-451.
[http://dx.doi.org/10.1016/j.apsusc.2019.04.259]
[135]
Lee, J.; Wen, H.; Battula, S.; Akella, R.; Collins, M.; Romanos, G. Outcome after placement of tantalum porous engineered dental implants in fresh extraction sockets: a canine study. Int. J. Oral Maxillofac. Implants, 2015, 30(1), 134-142.
[http://dx.doi.org/10.11607/jomi.3692] [PMID: 25615921]
[136]
Wang, L.; Hu, X.; Ma, X.; Ma, Z.; Zhang, Y.; Lu, Y.; Li, X.; Lei, W.; Feng, Y. Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants. Colloids Surf. B Biointerfaces, 2016, 148, 440-452.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.018] [PMID: 27648775]
[137]
Bandyopadhyay, A.; Mitra, I.; Shivaram, A.; Dasgupta, N.; Bose, S. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Addit. Manuf., 2019, 28, 259-266.
[http://dx.doi.org/10.1016/j.addma.2019.04.025] [PMID: 31406683]
[138]
Zhao, D.; Ma, Z.; Wang, T.; Liu, B. Biocompatible porous tantalum metal plates in the treatment of tibial fracture. Orthop. Surg., 2019, 11(2), 325-329.
[http://dx.doi.org/10.1111/os.12432] [PMID: 30884151]
[139]
Zhao, G.; Li, S.; Chen, X.; Qu, X.; Chen, R.; Wu, Y.; Liu, Y.; Zou, X.; Lu, X. Porous tantalum scaffold fabricated by gel casting based on 3D printing and electrolysis. Mater. Lett., 2019, 239, 5-8.
[http://dx.doi.org/10.1016/j.matlet.2018.12.047]
[140]
Zhao, S.; Xie, K.; Guo, Y.; Tan, J.; Wu, J.; Yang, Y.; Fu, P.; Wang, L.; Jiang, W.; Hao, Y. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair. ACS Biomater. Sci. Eng., 2020, 6(9), 5120-5131.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01911] [PMID: 33455263]
[141]
Bobby Kannan, M.; Chappell, J.; Khakbaz, H.; Taherishargh, M.; Fiedler, T. Biodegradable 3D porous zinc alloy scaffold for bone fracture fixation devices. Med. Devices Sens., 2020, 3(6), e10108.
[http://dx.doi.org/10.1002/mds3.10108]
[142]
Martinez Holguin, D.A.; Han, S.; Kim, N.P. Magnesium alloy 3D printing by wire and arc additive manufacturing (WAAM). MRS Adv., 2018, 3(49), 2959-2964.
[http://dx.doi.org/10.1557/adv.2018.553]
[143]
Xu, W.; Zhuang, Y.; Zhang, X.; Cai, H.; Gao, X. Preparation of medical magnesium matrix composite for bone defect and design method of 3D printed material. Sci. Adv. Mater., 2019, 11(6), 824-834.
[http://dx.doi.org/10.1166/sam.2019.3557]
[144]
Pei, X.; Ma, L.; Zhang, B.; Sun, J.; Sun, Y.; Fan, Y.; Gou, Z.; Zhou, C.; Zhang, X. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Biofabrication, 2017, 9(4), 045008.
[http://dx.doi.org/10.1088/1758-5090/aa90ed] [PMID: 28976356]
[145]
Driscoll, J.A.; Lubbe, R.; Jakus, A.E.; Chang, K.; Haleem, M.; Yun, C.; Singh, G.; Schneider, A.D.; Katchko, K.M.; Soriano, C.; Newton, M.; Maerz, T.; Li, X.; Baker, K.; Hsu, W.K.; Shah, R.N.; Stock, S.R.; Hsu, E.L. 3D-printed ceramic-demineralized bone matrix hyperelastic bone composite scaffolds for spinal fusion. Tissue Eng. Part A, 2020, 26(3-4), 157-166.
[http://dx.doi.org/10.1089/ten.tea.2019.0166] [PMID: 31469055]
[146]
Gmeiner, R.; Mitteramskogler, G.; Stampfl, J.; Boccaccini, A.R. Stereolithographic ceramic manufacturing of high strength bioactive glass. Int. J. Appl. Ceram. Technol., 2015, 12(1), 38-45.
[http://dx.doi.org/10.1111/ijac.12325]
[147]
Tesavibul, P.; Felzmann, R.; Gruber, S.; Liska, R.; Thompson, I.; Boccaccini, A.R.; Stampfl, J. Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater. Lett., 2012, 74, 81-84.
[http://dx.doi.org/10.1016/j.matlet.2012.01.019]
[148]
Hartmann, M.; Pfaffinger, M.; Stampfl, J. The role of solvents in lithography-based ceramic manufacturing of lithium disilicate. Materials , 2021, 14(4), 1045.
[http://dx.doi.org/10.3390/ma14041045] [PMID: 33672167]
[149]
Baumgartner, S.; Gmeiner, R.; Schönherr, J.A.; Stampfl, J. Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications. Mater. Sci. Eng. C, 2020, 116, 111180.
[http://dx.doi.org/10.1016/j.msec.2020.111180] [PMID: 32806296]
[150]
Li, X.; Yuan, Y.; Liu, L.; Leung, Y-S.; Chen, Y.; Guo, Y.; Chai, Y.; Chen, Y. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Biodes. Manuf., 2020, 3(1), 15-29.
[http://dx.doi.org/10.1007/s42242-019-00056-5]
[151]
Raja, N.; Sung, A.; Park, H.; Yun, H. Low-temperature fabrication of calcium deficient hydroxyapatite bone scaffold by optimization of 3D printing conditions. Ceram. Int., 2021, 47(5), 7005-7016.
[http://dx.doi.org/10.1016/j.ceramint.2020.11.051]
[152]
Mirkhalaf, M.; Dao, A.; Schindeler, A.; Little, D.G.; Dunstan, C.R.; Zreiqat, H. Personalized Baghdadite scaffolds: stereolithography, mechanics and in vivo testing. Acta Biomater., 2021, 132, 217-226.
[http://dx.doi.org/10.1016/j.actbio.2021.03.012] [PMID: 33711527]
[153]
Fernandes, M.H.; Alves, M.M.; Cebotarenco, M.; Ribeiro, I.A.C.; Grenho, L.; Gomes, P.S.; Carmezim, M.J.; Santos, C.F. Citrate zinc hydroxyapatite nanorods with enhanced cytocompatibility and osteogenesis for bone regeneration. Mater. Sci. Eng. C, 2020, 115, 111147.
[http://dx.doi.org/10.1016/j.msec.2020.111147] [PMID: 32600733]
[154]
Koksal, O.K.; Wrobel, P.; Apaydin, G.; Cengiz, E.; Lankosz, M.; Tozar, A.; Karahan, I.H.; Özkalayci, F. Elemental analysis for iron, cobalt, copper and zinc decorated hydroxyapatite synthetic bone dusts by EDXRF and SEM. Microchem. J., 2019, 144, 83-87.
[http://dx.doi.org/10.1016/j.microc.2018.08.050]
[155]
Chen, S.; Shi, Y.; Zhang, X.; Ma, J. Biomimetic synthesis of Mg‐substituted hydroxyapatite nanocomposites and three‐dimensional printing of composite scaffolds for bone regeneration. J. Biomed. Mater. Res. A, 2019, 107(11), 2512-2521.
[http://dx.doi.org/10.1002/jbm.a.36757] [PMID: 31319006]
[156]
Deng, C.; Yao, Q.; Feng, C.; Li, J.; Wang, L.; Cheng, G.; Shi, M.; Chen, L.; Chang, J.; Wu, C. Retracted: 3D printing of bilineage constructive biomaterials for bone and cartilage regeneration. Adv. Funct. Mater., 2017, 27(36), 1703117.
[http://dx.doi.org/10.1002/adfm.201703117]
[157]
Inzana, J.A.; Olvera, D.; Fuller, S.M.; Kelly, J.P.; Graeve, O.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials, 2014, 35(13), 4026-4034.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.064] [PMID: 24529628]
[158]
Huang, T.; Fan, C.; Zhu, M.; Zhu, Y.; Zhang, W.; Li, L. 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. Appl. Surf. Sci., 2019, 467-468, 345-353.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.166]
[159]
Hassanajili, S.; Karami-Pour, A.; Oryan, A.; Talaei-Khozani, T. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater. Sci. Eng. C, 2019, 104, 109960.
[http://dx.doi.org/10.1016/j.msec.2019.109960] [PMID: 31500051]
[160]
Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013, 49(4), 780-792.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[161]
Chen, J.K.; Shen, C.R.; Liu, C.L. N-acetylglucosamine: production and applications. Mar. Drugs, 2010, 8(9), 2493-2516.
[http://dx.doi.org/10.3390/md8092493] [PMID: 20948902]
[162]
Ivanova, E.P.; Bazaka, K.; Crawford, R.J. New functional biomaterials for medicine and healthcare; Woodhead Publishing New Delhi: India, 2014, Vol. 67, .
[163]
Cen, L.; Liu, W.; Cui, L.; Zhang, W.; Cao, Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr. Res., 2008, 63(5), 492-496.
[http://dx.doi.org/10.1203/PDR.0b013e31816c5bc3] [PMID: 18427293]
[164]
Khalil, S.; Sun, W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng., 2009, 131(11), 111002.
[http://dx.doi.org/10.1115/1.3128729] [PMID: 20353253]
[165]
Neufurth, M.; Wang, X.; Schröder, H.C.; Feng, Q.; Diehl-Seifert, B.; Ziebart, T.; Steffen, R.; Wang, S.; Müller, W.E.G. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials, 2014, 35(31), 8810-8819.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.002] [PMID: 25047630]
[166]
Wang, X.; Tolba, E.; Schröder, H.C.; Neufurth, M.; Feng, Q.; Diehl-Seifert, B.; Müller, W.E.G. Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS One, 2014, 9(11), e112497.
[http://dx.doi.org/10.1371/journal.pone.0112497] [PMID: 25383549]
[167]
Jeon, O.; Alt, D.S.; Ahmed, S.M.; Alsberg, E. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials, 2012, 33(13), 3503-3514.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.041] [PMID: 22336294]
[168]
Jia, J.; Richards, D.J.; Pollard, S.; Tan, Y.; Rodriguez, J.; Visconti, R.P.; Trusk, T.C.; Yost, M.J.; Yao, H.; Markwald, R.R.; Mei, Y. Engineering alginate as bioink for bioprinting. Acta Biomater., 2014, 10(10), 4323-4331.
[http://dx.doi.org/10.1016/j.actbio.2014.06.034] [PMID: 24998183]
[169]
Xu, C.; Zhang, M.; Huang, Y.; Ogale, A.; Fu, J.; Markwald, R.R. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir, 2014, 30(30), 9130-9138.
[http://dx.doi.org/10.1021/la501430x] [PMID: 25005170]
[170]
Gasperini, L.; Maniglio, D.; Motta, A.; Migliaresi, C. An electrohydrodynamic bioprinter for alginate hydrogels containing living cells. Tissue Eng. Part C Methods, 2015, 21(2), 123-132.
[http://dx.doi.org/10.1089/ten.tec.2014.0149] [PMID: 24903714]
[171]
Belaid, H.; Nagarajan, S.; Barou, C.; Huon, V.; Bares, J.; Balme, S.; Miele, P.; Cornu, D.; Cavaillès, V.; Teyssier, C.; Bechelany, M. Boron nitride based nanobiocomposites: design by 3D printing for bone tissue engineering. ACS Appl. Bio Mater., 2020, 3(4), 1865-1874.
[http://dx.doi.org/10.1021/acsabm.9b00965] [PMID: 35025309]
[172]
Grottkau, B.E.; Hui, Z.; Yao, Y.; Pang, Y. Rapid fabrication of anatomically-shaped bone scaffolds using indirect 3D printing and perfusion techniques. Int. J. Mol. Sci., 2020, 21(1), 315.
[http://dx.doi.org/10.3390/ijms21010315] [PMID: 31906530]
[173]
Li, X.; Wang, Y.; Wang, Z.; Qi, Y.; Li, L.; Zhang, P.; Chen, X.; Huang, Y. Composite PLA/PEG/nHA/dexamethasone scaffold prepared by 3D printing for bone regeneration. Macromol. Biosci., 2018, 18(6), 1800068.
[http://dx.doi.org/10.1002/mabi.201800068] [PMID: 29687630]
[174]
Hung, B.P.; Naved, B.A.; Nyberg, E.L.; Dias, M.; Holmes, C.A.; Elisseeff, J.H.; Dorafshar, A.H.; Grayson, W.L. Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater. Sci. Eng., 2016, 2(10), 1806-1816.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00101] [PMID: 27942578]
[175]
Lee, H.; Yang, G.H.; Kim, M.; Lee, J.; Huh, J.; Kim, G. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater. Sci. Eng. C, 2018, 84, 140-147.
[http://dx.doi.org/10.1016/j.msec.2017.11.013] [PMID: 29519423]
[176]
Lohrasbi, S.; Mirzaei, E.; Karimizade, A.; Takallu, S.; Rezaei, A. Collagen/cellulose nanofiber hydrogel scaffold: physical, mechanical and cell biocompatibility properties. Cellulose, 2020, 27(2), 927-940.
[http://dx.doi.org/10.1007/s10570-019-02841-y]
[177]
Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003, 24(24), 4337-4351.
[http://dx.doi.org/10.1016/S0142-9612(03)00340-5] [PMID: 12922147]
[178]
Xu, Z.; Fan, C.; Zhang, Q.; Liu, Y.; Cui, C.; Liu, B.; Wu, T.; Zhang, X.; Liu, W. A self‐thickening and self‐strengthening strategy for 3D printing high‐strength and antiswelling supramolecular polymer hydrogels as meniscus substitutes. Adv. Funct. Mater., 2021, 31(18), 2100462.
[http://dx.doi.org/10.1002/adfm.202100462]
[179]
Ni, T.; Liu, M.; Zhang, Y.; Cao, Y.; Pei, R. 3D bioprinting of bone marrow mesenchymal stem cell-laden silk fibroin double network scaffolds for cartilage tissue repair. Bioconjug. Chem., 2020, 31(8), 1938-1947.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00298] [PMID: 32644779]
[180]
Jiang, P.; Yan, C.; Guo, Y.; Zhang, X.; Cai, M.; Jia, X.; Wang, X.; Zhou, F. Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels. Biomater. Sci., 2019, 7(5), 1805-1814.
[http://dx.doi.org/10.1039/C9BM00081J] [PMID: 30855616]
[181]
Daly, R.; Harrington, T.S.; Martin, G.D.; Hutchings, I.M. Inkjet printing for pharmaceutics - A review of research and manufacturing. Int. J. Pharm., 2015, 494(2), 554-567.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.017] [PMID: 25772419]
[182]
Lin, H.; Zhang, D.; Alexander, P.G.; Yang, G.; Tan, J.; Cheng, A.W.M.; Tuan, R.S. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 2013, 34(2), 331-339.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.048] [PMID: 23092861]
[183]
Dybowska-Sarapuk, L.; Kielbasinski, K.; Arazna, A.; Futera, K.; Skalski, A.; Janczak, D.; Sloma, M.; Jakubowska, M. Efficient inkjet printing of graphene-based elements: Influence of dispersing agent on ink viscosity. Nanomaterials , 2018, 8(8), 602.
[http://dx.doi.org/10.3390/nano8080602] [PMID: 30096800]
[184]
Zhong, M.; Zhang, F.; Yu, Y.; Zhang, J.; Shen, W.; Guo, S. Flexible micro-supercapacitors assembled via chemically reduced graphene oxide films assisted by a laser printer. Nanotechnology, 2018, 29(43), 43LT01.
[http://dx.doi.org/10.1088/1361-6528/aad886] [PMID: 30084387]
[185]
Kyle, S.; Jessop, Z.M.; Al-Sabah, A.; Whitaker, I.S. ‘Printability’of candidate biomaterials for extrusion based 3D printing: state‐of‐the‐art. Adv. Healthc. Mater., 2017, 6(16), 1700264.
[http://dx.doi.org/10.1002/adhm.201700264] [PMID: 28558161]
[186]
Shen, Y.; Tang, H.; Huang, X.; Hang, R.; Zhang, X.; Wang, Y.; Yao, X. DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Carbohydr. Polym., 2020, 235, 115970.
[http://dx.doi.org/10.1016/j.carbpol.2020.115970] [PMID: 32122504]
[187]
Zhou, L.; Ramezani, H.; Sun, M.; Xie, M.; Nie, J.; Lv, S.; Cai, J.; Fu, J.; He, Y. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater. Sci., 2020, 8(18), 5020-5028.
[http://dx.doi.org/10.1039/D0BM00896F] [PMID: 32844842]
[188]
Jiang, P.; Lin, P.; Yang, C.; Qin, H.; Wang, X.; Zhou, F. 3D printing of dual-physical cross-linking hydrogel with ultrahigh strength and toughness. Chem. Mater., 2020, 32(23), 9983-9995.
[http://dx.doi.org/10.1021/acs.chemmater.0c02941]
[189]
Li, Q.; Xu, Z.Y.; Zhang, D.F.; Yang, J.H.; Liu, W.G. T-shaped trifunctional crosslinker-toughening hydrogels. Sci. China Technol. Sci., 2020, 63(9), 1721-1729.
[http://dx.doi.org/10.1007/s11431-020-1537-6]
[190]
Bertassoni, L.E.; Cardoso, J.C.; Manoharan, V.; Cristino, A.L.; Bhise, N.S.; Araujo, W.A.; Zorlutuna, P.; Vrana, N.E.; Ghaemmaghami, A.M.; Dokmeci, M.R.; Khademhosseini, A. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 2014, 6(2), 024105.
[http://dx.doi.org/10.1088/1758-5082/6/2/024105] [PMID: 24695367]
[191]
Billiet, T.; Gevaert, E.; De Schryver, T.; Cornelissen, M.; Dubruel, P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35(1), 49-62.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.078] [PMID: 24112804]
[192]
Liu, W.; Heinrich, M.A.; Zhou, Y.; Akpek, A.; Hu, N.; Liu, X.; Guan, X.; Zhong, Z.; Jin, X.; Khademhosseini, A.; Zhang, Y.S. Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks. Adv. Healthc. Mater., 2017, 6(12), 1601451.
[http://dx.doi.org/10.1002/adhm.201601451] [PMID: 28464555]
[193]
Park, H.E.; Gasek, N.; Hwang, J.; Weiss, D.J.; Lee, P.C. Effect of temperature on gelation and cross-linking of gelatin methacryloyl for biomedical applications. Phys. Fluids, 2020, 32(3), 033102.
[http://dx.doi.org/10.1063/1.5144896]
[194]
Avallone, P.R.; Raccone, E.; Costanzo, S.; Delmonte, M.; Sarrica, A.; Pasquino, R.; Grizzuti, N. Gelation kinetics of aqueous gelatin solutions in isothermal conditions via rheological tools. Food Hydrocoll., 2021, 111, 106248.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106248]
[195]
Yin, J.; Yan, M.; Wang, Y.; Fu, J.; Suo, H. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl. Mater. Interfaces, 2018, 10(8), 6849-6857.
[http://dx.doi.org/10.1021/acsami.7b16059] [PMID: 29405059]
[196]
Xavier, J.R.; Thakur, T.; Desai, P.; Jaiswal, M.K.; Sears, N.; Cosgriff-Hernandez, E.; Kaunas, R.; Gaharwar, A.K. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano, 2015, 9(3), 3109-3118.
[http://dx.doi.org/10.1021/nn507488s] [PMID: 25674809]
[197]
Liu, W.; Zhong, Z.; Hu, N.; Zhou, Y.; Maggio, L.; Miri, A.K.; Fragasso, A.; Jin, X.; Khademhosseini, A.; Zhang, Y.S. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication, 2018, 10(2), 024102.
[http://dx.doi.org/10.1088/1758-5090/aa9d44] [PMID: 29176035]
[198]
Gao, Q.; Niu, X.; Shao, L.; Zhou, L.; Lin, Z.; Sun, A.; Fu, J.; Chen, Z.; Hu, J.; Liu, Y.; He, Y. 3D printing of complex GelMA-based scaffolds with nanoclay. Biofabrication, 2019, 11(3), 035006.
[http://dx.doi.org/10.1088/1758-5090/ab0cf6] [PMID: 30836349]
[199]
Wang, Y.; Huang, X.; Shen, Y.; Hang, R.; Zhang, X.; Wang, Y.; Yao, X.; Tang, B. Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks. J. Mater. Sci., 2019, 54(10), 7883-7892.
[http://dx.doi.org/10.1007/s10853-019-03447-2]
[200]
Ansari, S.; Sarrion, P.; Hasani-Sadrabadi, M.M.; Aghaloo, T.; Wu, B.M.; Moshaverinia, A. Regulation of the fate of dental‐derived mesenchymal stem cells using engineered alginate‐GelMA hydrogels. J. Biomed. Mater. Res. A, 2017, 105(11), 2957-2967.
[http://dx.doi.org/10.1002/jbm.a.36148] [PMID: 28639378]
[201]
Kesti, M.; Müller, M.; Becher, J.; Schnabelrauch, M.; D’Este, M.; Eglin, D.; Zenobi-Wong, M. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater., 2015, 11, 162-172.
[http://dx.doi.org/10.1016/j.actbio.2014.09.033] [PMID: 25260606]
[202]
Duan, B.; Kapetanovic, E.; Hockaday, L.A.; Butcher, J.T. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater., 2014, 10(5), 1836-1846.
[http://dx.doi.org/10.1016/j.actbio.2013.12.005] [PMID: 24334142]
[203]
Abar, B.; Alonso-Calleja, A.; Kelly, A.; Kelly, C.; Gall, K.; West, J.L. 3D printing of high‐strength, porous, elastomeric structures to promote tissue integration of implants. J. Biomed. Mater. Res. A, 2021, 109(1), 54-63.
[http://dx.doi.org/10.1002/jbm.a.37006] [PMID: 32418348]
[204]
Zhong, L.; Chen, J.; Ma, Z.; Feng, H.; Chen, S.; Cai, H.; Xue, Y.; Pei, X.; Wang, J.; Wan, Q. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale, 2020, 12(48), 24437-24449.
[http://dx.doi.org/10.1039/D0NR06297A] [PMID: 33305769]
[205]
Wang, X.; Fang, J.; Zhu, W.; Zhong, C.; Ye, D.; Zhu, M.; Lu, X.; Zhao, Y.; Ren, F. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair. Adv. Funct. Mater., 2021, 31(20), 2010068.
[http://dx.doi.org/10.1002/adfm.202010068]
[206]
Wan, Z.; Zhang, P.; Liu, Y.; Lv, L.; Zhou, Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater., 2020, 101, 26-42.
[http://dx.doi.org/10.1016/j.actbio.2019.10.038] [PMID: 31672585]
[207]
Kim, S.H.; Seo, Y.B.; Yeon, Y.K.; Lee, Y.J.; Park, H.S.; Sultan, M.T.; Lee, J.M.; Lee, J.S.; Lee, O.J.; Hong, H.; Lee, H.; Ajiteru, O.; Suh, Y.J.; Song, S.H.; Lee, K.H.; Park, C.H. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials, 2020, 260, 120281.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120281] [PMID: 32858503]
[208]
Darabi, M.A.; Khosrozadeh, A.; Wang, Y.; Ashammakhi, N.; Alem, H.; Erdem, A.; Chang, Q.; Xu, K.; Liu, Y.; Luo, G.; Khademhosseini, A.; Xing, M. An alkaline based method for generating crystalline, strong, and shape memory polyvinyl alcohol biomaterials. Adv. Sci., 2020, 7(21), 1902740.
[http://dx.doi.org/10.1002/advs.201902740] [PMID: 33173720]
[209]
Shou, Y. 4D-printable thermoresponsive hydrogel exhibits high mechanical properties; Springer, 2021.
[http://dx.doi.org/10.1557/s43577-021-00086-4]
[210]
Senatov, F.S.; Niaza, K.V.; Zadorozhnyy, M.Y.; Maksimkin, A.V.; Kaloshkin, S.D.; Estrin, Y.Z. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater., 2016, 57, 139-148.
[http://dx.doi.org/10.1016/j.jmbbm.2015.11.036] [PMID: 26710259]
[211]
Senatov, F.S.; Zadorozhnyy, M.Y.; Niaza, K.V.; Medvedev, V.V.; Kaloshkin, S.D.; Anisimova, N.Y.; Kiselevskiy, M.V.; Yang, K-C. Shape memory effect in 3D-printed scaffolds for self-fitting implants. Eur. Polym. J., 2017, 93, 222-231.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.06.011]
[212]
Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8), 773-785.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
[213]
Kankala, R.; Xu, X.M.; Liu, C.G.; Chen, A.Z.; Wang, S.B. 3D-printing of microfibrous porous scaffolds based on hybrid approaches for bone tissue engineering. Polymers, 2018, 10(7), 807.
[http://dx.doi.org/10.3390/polym10070807] [PMID: 30960731]
[214]
Neufurth, M.; Wang, X.; Wang, S.; Steffen, R.; Ackermann, M.; Haep, N.D.; Schröder, H.C.; Müller, W.E.G. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater., 2017, 64, 377-388.
[http://dx.doi.org/10.1016/j.actbio.2017.09.031] [PMID: 28966095]
[215]
Oladapo, B.I.; Zahedi, S.A.; Adeoye, A.O.M. 3D printing of bone scaffolds with hybrid biomaterials. Compos., Part B Eng., 2019, 158, 428-436.
[http://dx.doi.org/10.1016/j.compositesb.2018.09.065]
[216]
Bahcecioglu, G.; Hasirci, N.; Bilgen, B.; Hasirci, V. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus. Biofabrication, 2019, 11(2), 025002.
[http://dx.doi.org/10.1088/1758-5090/aaf707] [PMID: 30530944]
[217]
Dávila, J.L.; Freitas, M.S.; Inforçatti Neto, P.; Silveira, Z.C.; Silva, J.V.L.; d’Ávila, M.A. Fabrication of PCL/β‐TCP scaffolds by 3D mini‐screw extrusion printing. J. Appl. Polym. Sci., 2016, 133(15) app.43031.
[http://dx.doi.org/10.1002/app.43031]
[218]
Nyberg, E.; Rindone, A.; Dorafshar, A.; Grayson, W.L. Comparison of 3D-printed poly-ɛ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue Eng. Part A, 2017, 23(11-12), 503-514.
[http://dx.doi.org/10.1089/ten.tea.2016.0418] [PMID: 28027692]
[219]
Axpe, E.; Oyen, M. Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci., 2016, 17(12), 1976.
[http://dx.doi.org/10.3390/ijms17121976] [PMID: 27898010]
[220]
Kilian, D.; Ahlfeld, T.; Akkineni, A.R.; Bernhardt, A.; Gelinsky, M.; Lode, A., 3D Bioprinting of osteochondral tissue substitutes - in vitro-chondro-genesis in multi-layered mineralized constructs. Sci. Rep., 2020, 10(1), 8277.
[http://dx.doi.org/10.1038/s41598-020-65050-9] [PMID: 32427838]
[221]
Morrison, R.J. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci. translat. med. 2015, 7(285), 285ra64-285ra6.
[http://dx.doi.org/10.1126/scitranslmed.3010825]
[222]
Gao, B.; Yang, Q.; Zhao, X.; Jin, G.; Ma, Y.; Xu, F. 4D bioprinting for biomedical applications. Trends Biotechnol., 2016, 34(9), 746-756.
[http://dx.doi.org/10.1016/j.tibtech.2016.03.004] [PMID: 27056447]
[223]
Li, Y.C.; Zhang, Y.S.; Akpek, A.; Shin, S.R.; Khademhosseini, A. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication, 2016, 9(1), 012001.
[http://dx.doi.org/10.1088/1758-5090/9/1/012001] [PMID: 27910820]
[224]
Wang, C.; Yue, H.; Liu, J.; Zhao, Q.; He, Z.; Li, K.; Lu, B.; Huang, W.; Wei, Y.; Tang, Y.; Wang, M. Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes. Biofabrication, 2020, 12(4), 045025.
[http://dx.doi.org/10.1088/1758-5090/abab5b] [PMID: 32736373]
[225]
Sydney Gladman, A.; Matsumoto, E.A.; Nuzzo, R.G.; Mahadevan, L.; Lewis, J.A. Biomimetic 4D printing. Nat. Mater., 2016, 15(4), 413-418.
[http://dx.doi.org/10.1038/nmat4544] [PMID: 26808461]
[226]
Rossetti, L.; Kuntz, L.A.; Kunold, E.; Schock, J.; Müller, K.W.; Grabmayr, H.; Stolberg-Stolberg, J.; Pfeiffer, F.; Sieber, S.A.; Burgkart, R.; Bausch, A.R. The microstructure and micromechanics of the tendon-bone insertion. Nat. Mater., 2017, 16(6), 664-670.
[http://dx.doi.org/10.1038/nmat4863] [PMID: 28250445]
[227]
Kuang, X.; Wu, J.; Chen, K.; Zhao, Z.; Ding, Z.; Hu, F.; Fang, D.; Qi, H.J. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci. Adv., 2019, 5(5), eaav5790.
[http://dx.doi.org/10.1126/sciadv.aav5790] [PMID: 31058222]
[228]
Qu, M.; Jiang, X.; Zhou, X.; Wang, C.; Wu, Q.; Ren, L.; Zhu, J.; Zhu, S.; Tebon, P.; Sun, W.; Khademhosseini, A. Stimuliresponsive delivery of growth factors for tissue engineering. Adv. Healthc. Mater., 2020, 9(7), 1901714.
[http://dx.doi.org/10.1002/adhm.201901714] [PMID: 32125786]
[229]
Lu, Y.; Aimetti, A.A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater., 2016, 2(1), 16075.
[http://dx.doi.org/10.1038/natrevmats.2016.75]
[230]
Larush, L. 3D printing of responsive hydrogels for drug-delivery systems. Med., 2017, 1, 219-229.
[231]
Gupta, M.K.; Meng, F.; Johnson, B.N.; Kong, Y.L.; Tian, L.; Yeh, Y.W.; Masters, N.; Singamaneni, S.; McAlpine, M.C. 3D printed programmable release capsules. Nano Lett., 2015, 15(8), 5321-5329.
[http://dx.doi.org/10.1021/acs.nanolett.5b01688] [PMID: 26042472]
[232]
Kang, X.; Zhang, X.B.; Gao, X.D.; Hao, D.J.; Li, T.; Xu, Z.W. Bioprinting for bone tissue engineering. Front. Bioeng. Biotechnol., 2022, 10, 1036375.
[http://dx.doi.org/10.3389/fbioe.2022.1036375] [PMID: 36507261]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy