Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

Artificial Intelligence and Disease Signature Pathways: Driving Innovation to Elucidate Underlying Pathogenic Mechanisms

In Press, (this is not the final "Version of Record"). Available online 21 June, 2024
Author(s): Kenneth Maiese
Published on: 21 June, 2024

DOI: 10.2174/1567202621999240621122700

Price: $95

[1]
Chen X, Jiang L, Zhou Z, Yang B, He Q, Zhu C, et al. The Role of Membrane-Associated E3 Ubiquitin Ligases in Cancer. Front Pharmacol 2022; 13: 928794.
[2]
Foser S, Maiese K, Digumarthy SR, Puig-Butille JA, Rebhan C. Looking to the Future of Early Detection in Cancer: Liquid Biopsies, Imaging, and Artificial Intelligence. Clin Chem 2024; 70(1): 27-32.
[3]
Hsu NW, Chou KC, Wang YT, Hung CL, Kuo CF, Tsai SY. Building a model for predicting metabolic syndrome using artificial intelligence based on an investigation of whole-genome sequencing. J Transl Med 2022; 20(1): 190.
[4]
Singha M, Pu L, Srivastava G, Ni X, Stanfield BA, Uche IK, et al. Unlocking the Potential of Kinase Targets in Cancer: Insights from CancerOmicsNet, an AI-Driven Approach to Drug Response Prediction in Cancer. Cancers 2023; 15(16)
[5]
Berschneider B, Ellwanger DC, Baarsma HA, Thiel C, Shimbori C, White ES, et al. miR-92a regulates TGF-beta1-induced WISP1 expression in pulmonary fibrosis. Int J Biochem Cell Biol 2014; 53: 432-41.
[6]
Ehtewish H, Mesleh A, Ponirakis G, De la Fuente A, Parray A, Bensmail I, et al. Blood-Based Proteomic Profiling Identifies Potential Biomarker Candidates and Pathogenic Pathways in Dementia. Int J Mol Sci 2023; 24(9)
[7]
Jain S. A Computational Model for Detection of Lung Diseases Due to Forkhead Transcription Factors Emergent Converging Technologies and Biomedical Systems. Lecture Notes in Electrical Engineering, Springer Singapore 2022; pp. 71-81.
[8]
Tian L, Wu W, Yu T. Graph Random Forest: A Graph Embedded Algorithm for Identifying Highly Connected Important Features. Biomolecules 2023; 13(7)
[9]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11(3): 372-85.
[10]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[11]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[12]
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Frontiers in immunology 2023; 14(Nov 03): 1273570.
[13]
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12(22): 2595.
[14]
Yeger H. CCN proteins: opportunities for clinical studies-a personal perspective. J Cell Commun Signal 2023; 17(2): 333-52.
[15]
Li Y, Wang F, Liu T, Lv N, Yuan X, Li P. WISP1 induces ovarian cancer via the IGF1/alphavbeta3/Wnt axis. J Ovarian Res 2022; 15(1): 94.
[16]
Liu D, Zhang M, Tian J, Gao M, Liu M, Fu X, et al. WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-E-deficient mice via the focal adhesion kinase/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway. J Hypertens 2022; 40(9): 1666-81.
[17]
Liu L, Xu S, Li P, Li L. A novel adipokine WISP1 attenuates lipopolysaccharide-induced cell injury in 3T3-L1 adipocytes by regulating the PI3K/Akt pathway. Obes Res Clin Pract 2022; 16(2): 122-9.
[18]
Maiese K. Wnt Signaling and WISP1 (CCN4): Critical Components in Neurovascular Disease, Blood Brain Barrier Regulation, and Cerebral Hemorrhage. Curr Neurovasc Res 2022; 19(4): 379-82.
[19]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[20]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Front Biosci (Landmark edition) 2021; 26(9): 614-27.
[21]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[22]
Wetzel A, Lei SH, Liu T, Hughes MP, Peng Y, McKay T, et al. Dysregulated Wnt and NFAT signaling in a Parkinson’s disease LRRK2 G2019S knock-in model. Sci Rep 2024; 14(1): 12393.
[23]
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, et al. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9(1): 12.
[24]
Dong L, Hou B, Liu C, Mao C, Huang X, Shang L, et al. Association Between Wnt Target Genes and Cortical Volumes in Alzheimer’s Disease. J Mol Neurosci 2023; 73(11-12): 1010-6.
[25]
Guo T, Chen M, Liu J, Wei Z, Yuan J, Wu W, et al. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia. J Transl Med 2023; 21(1): 297.
[26]
Mehra S, Ahsan AU, Sharma M, Budhwar M, Chopra M. Gestational Fisetin Exerts Neuroprotection by Regulating Mitochondria-Directed Canonical Wnt Signaling, BBB Integrity, and Apoptosis in Prenatal VPA-Induced Rodent Model of Autism. Mol Neurobiol 2023.
[27]
Sierra-Pagan JE, Dsouza N, Das S, Larson TA, Sorensen JR, Ma X, et al. FOXK1 regulates Wnt signalling to promote cardiogenesis. Cardiovasc Res 2023; 119(8): 1728-39.
[28]
Gao J, Xu H, Rong Z, Chen L. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries. Bioengineered 2022; 13(5): 12409-20.
[29]
Chen Y, Huang C, Zhu SY, Zou HC, Xu CY, Chen YX. Overexpression of HOTAIR attenuates Pi-induced vascular calcification by inhibiting Wnt/beta-catenin through regulating miR-126/Klotho/SIRT1 axis. Mol Cell Biochem 2021; 476(10): 3551-61.
[30]
Maiese K. The bright side of reactive oxygen species: lifespan extension without cellular demise. J Transl Sci 2016; 2(3): 185-7.
[31]
Maiese K. Disease onset and aging in the world of circular RNAs. J Transl Sci 2016; 2(6): 327-9.
[32]
Maiese K. Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease. Curr Neurovasc Res 2017; 14(1): 82-8.
[33]
Maiese K, Chong ZZ, Wang S, Shang YC. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 2012; 13(11): 13830-66.
[34]
Maiese K. WISP1: Clinical insights for a proliferative and restorative member of the CCN family. Curr Neurovasc Res 2014; 11(4): 378-89.
[35]
Maiese K. Stem cell guidance through the mechanistic target of rapamycin. World J Stem Cells 2015; 7(7): 999-1009.
[36]
Sanabria-de la Torre R, Garcia-Fontana C, Gonzalez-Salvatierra S, Andujar-Vera F, Martinez-Heredia L, Garcia-Fontana B, et al. The Contribution of Wnt Signaling to Vascular Complications in Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23(13): 6995.
[37]
Wright LH, Herr DJ, Brown SS, Kasiganesan H, Menick DR. Angiokine Wisp-1 is increased in myocardial infarction and regulates cardiac endothelial signaling. JCI Insight 2018; 3(4)
[38]
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI J 2023; 22: 690-715.
[39]
Liu Y, Qin W, Zhang F, Wang J, Li X, Li S, et al. Association between WNT-1-inducible signaling pathway protein-1 (WISP1) genetic polymorphisms and the risk of gastric cancer in Guangxi Chinese. Cancer Cell Int 2021; 21(1): 405.
[40]
Liu Y, Yao J. Research progress of cystatin SN in cancer. OncoTargets and Ther 2019; 12: 3411-9.
[41]
Ma D, Hou L, Xia H, Li H, Fan H, Jia X, et al. PER2 inhibits proliferation and stemness of glioma stem cells via the Wnt/beta-catenin signaling pathway. Oncol Rep 2020; 44(2): 533-42.
[42]
Maiese K. Novel Stem Cell Strategies with mTOR Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies. Academic Press, Elsevier 2016; pp. 3-22.
[43]
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[44]
Maiese K. Prospects and Perspectives for WISP1 (CCN4) in Diabetes Mellitus. Curr Neurovasc Res 2020; 17(3): 327-31.
[45]
Maiese K, Chong ZZ, Shang YC, Wang S. Novel directions for diabetes mellitus drug discovery. Expert Opin Drug Discov 2013; 8(1): 35-48.
[46]
Maltseva D, Raygorodskaya M, Knyazev E, Zgoda V, Tikhonova O, Zaidi S, et al. Knockdown of the alpha5 laminin chain affects differentiation of colorectal cancer cells and their sensitivity to chemotherapy. Biochimie 2020; 174: 107-16.
[47]
Ozalp O, Cark O, Azbazdar Y, Haykir B, Cucun G, Kucukaylak I, et al. Nradd Acts as a Negative Feedback Regulator of Wnt/beta-Catenin Signaling and Promotes Apoptosis. Biomolecules 2021; 11(1)
[48]
Wang Y, Yang SH, Hsu PW, Chien SY, Wang CQ, Su CM, et al. Impact of WNT1-inducible signaling pathway protein-1 (WISP-1) genetic polymorphisms and clinical aspects of breast cancer. Medicine 2019; 98(44): e17854.
[49]
Zhang Y, Tian J, Qu C, Peng Y, Lei J, Sun L, et al. A look into the link between centrosome amplification and breast cancer. Biomed Pharmacother 2020; 132: 110924.
[50]
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, et al. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13(12): 6147-75.
[51]
Zhu Y, Li W, Yang Y, Li Y, Zhao Y. WISP1 indicates poor prognosis and regulates cell proliferation and apoptosis in gastric cancer via targeting AKT/mTOR signaling pathway. Am J Transl Res 2020; 12(11): 7297-311.
[52]
Gonzalez-Fernandez C, Gonzalez P, Gonzalez-Perez F, Rodriguez FJ. Characterization of Ex Vivo and In Vitro Wnt Transcriptome Induced by Spinal Cord Injury in Rat Microglial Cells. Brain Sci 2022; 12(6): 708.
[53]
Han XR, Wen X, Wang YJ, Wang S, Shen M, Zhang ZF, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/beta-catenin signalling pathway. J Cell Mol Med 2018; 22(6): 3167-82.
[54]
He W, Lu Q, Sherchan P, Huang L, Hu X, Zhang JH, et al. Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/beta-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS 2021; 18(1): 44.
[55]
Maiese K. Forkhead transcription factors: new considerations for alzheimer’s disease and dementia. J Transl Sci 2016; 2(4): 241-7.
[56]
Maiese K. Erythropoietin and mTOR: A “One-Two Punch” for Aging-Related Disorders Accompanied by Enhanced Life Expectancy. Curr Neurovasc Res 2016; 13(4): 329-40.
[57]
Paul R, Bapat P, Deogharkar A, Kazi S, Singh SKV, Gupta T, et al. MiR-592 activates the mTOR kinase, ERK1/ERK2 kinase signaling and imparts neuronal differentiation signature characteristic of Group 4 medulloblastoma. Hum Mol Genet 2021; 30(24): 2416-28.
[58]
Xu JX, Fang K, Gao XR, Liu S, Ge JF. Resveratrol Protects SH-SY5Y Cells Against Oleic Acid-Induced Glucolipid Metabolic Dysfunction and Cell Injuries Via the Wnt/beta-Catenin Signalling Pathway. Neurochem Res 2021; 46(11): 2936-47.
[59]
Maiese K. Charting a course for erythropoietin in traumatic brain injury. J Transl Sci 2016; 2(2): 140-4.
[60]
Tanioka M, Park WK, Shim I, Kim K, Choi S, Kim UJ, et al. Neuroprotection from Excitotoxic Injury by Local Administration of Lipid Emulsion into the Brain of Rats. Int J Mol Sci 2020; 21(8)
[61]
Vallee A, Vallee JN, Lecarpentier Y. Parkinson’s Disease: Potential Actions of Lithium by Targeting the WNT/beta-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway. Cells 2021; 10(2)
[62]
Klimontov VV, Bulumbaeva DM, Fazullina ON, Lykov AP, Bgatova NP, Orlov NB, et al. Circulating Wnt1-inducible signaling pathway protein-1 (WISP-1/CCN4) is a novel biomarker of adiposity in subjects with type 2 diabetes. J Cell Commun Signal 2020; 14(1): 101-9.
[63]
Liu JJ, Shentu LM, Ma N, Wang LY, Zhang GM, Sun Y, et al. Inhibition of NF-kappaB and Wnt/beta-catenin/GSK3beta Signaling Pathways Ameliorates Cardiomyocyte Hypertrophy and Fibrosis in Streptozotocin (STZ)-induced Type 1 Diabetic Rats. Curr Med Sci 2020; 40(1): 35-47.
[64]
Liu L, Hu J, Yang L, Wang N, Liu Y, Wei X, et al. Association of WISP1/CCN4 with Risk of Overweight and Gestational Diabetes Mellitus in Chinese Pregnant Women. Dis Markers 2020; 2020: 4934206.
[65]
Maiese K. New Insights for Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev 2015; 2015(2015:875961): 875961.
[66]
Maiese K. Erythropoietin and diabetes mellitus. World J Diabetes 2015; 6(14): 1259-73.
[67]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Frontiers in bioscience (Landmark edition) 2020; 25(11): 1925-73.
[68]
Nie X, Wei X, Ma H, Fan L, Chen WD. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med 2021; 25(14): 6479-95.
[69]
Sahin Ersoy G, Altun Ensari T, Subas S, Giray B, Simsek EE, Cevik O. WISP1 is a novel adipokine linked to metabolic parameters in gestational diabetes mellitus. J Matern Fetal Neonatal Med 2017; 30(8): 942-6.
[70]
Wang H, Zhang R, Wu X, Chen Y, Ji W, Wang J, et al. The Wnt Signaling Pathway in Diabetic Nephropathy. Front Cell Dev Biol 2021; 9: 701547.
[71]
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, et al. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. Int J Mol Sci 2024; 25(3): 1689.
[72]
Fessel J. Personalized, Precision Medicine to Cure Alzheimer’s Dementia: Approach #1. Int J Mol Sci 2024; 25(7)
[73]
Ibrahim WW, Sayed RH, Abdelhameed MF, Omara EA, Nassar MI, Abdelkader NF, et al. Neuroprotective potential of Erigeron bonariensis ethanolic extract against ovariectomized/D-galactose-induced memory impairments in female rats in relation to its metabolite fingerprint as revealed using UPLC/MS. Inflammopharmacology 2024; 32(2): 1091-112.
[74]
Kwok I, Lattie EG, Yang D, Summers A, Cotten P, Leong CA, et al. Developing Social Enhancements for a Web-Based, Positive Emotion Intervention for Alzheimer Disease Caregivers: Qualitative Focus Group and Interview Study. JMIR Form Res 2024; 8: e50234.
[75]
Trujillo-Rangel WA, Acuna-Vaca S, Padilla-Ponce DJ, Garcia-Mercado FG, Torres-Mendoza BM, Pacheco-Moises FP, et al. Modulation of the Circadian Rhythm and Oxidative Stress as Molecular Targets to Improve Vascular Dementia: A Pharmacological Perspective. Int J Mol Sci 2024; 25(8): 4401.
[76]
Jahan R, Yousaf M, Khan H, Shah SA, Khan AA, Bibi N, et al. Zinc Ortho Methyl Carbonodithioate Improved Pre and Post-Synapse Memory Impairment via SIRT1/p-JNK Pathway against Scopolamine in Adult Mice. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology 2023; 18(1-2): 183-94.
[77]
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13(5): 816.
[78]
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10(7): 871.
[79]
Matysek A, Sun L, Kimmantudawage SP, Feng L, Maier AB. Targeting impaired nutrient sensing via the sirtuin pathway with novel compounds to prevent or treat dementia: A systematic review. Ageing Res Rev 2023; 90: 102029.
[80]
Mishra P, Davies DA, Albensi BC. The Interaction Between NF-kappaB and Estrogen in Alzheimer’s Disease. Mol Neurobiol 2023; 60(3): 1515-26.
[81]
Ullah H, Hussain A, Asif M, Nawaz F, Rasool M. Natural Products as Bioactive Agents in the Prevention of Dementia. CNS Neurol Disord Drug Targets 2023; 22(4): 466-76.
[82]
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. Sci Adv 2023; 9(7): eabq1141.
[83]
Xu Y, Wang Y, Jiang Y, Liu M, Zhong W, Ge Z, et al. Relationship between cognitive dysfunction and the promoter methylation of PER1 and CRY1 in patients with cerebral small vessel disease. Front Aging Neurosci 2023; 15: 1174541.
[84]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[85]
Maiese K. Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen Res 2019; 14(5): 773-4.
[86]
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17(5): 765-83.
[87]
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11(7): 1002.
[88]
Cheng X, Song C, Du Y, Gaur U, Yang M. Pharmacological Treatment of Alzheimer’s Disease: Insights from Drosophila melanogaster. Int J Mol Sci 2020; 21(13): 4621.
[89]
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and Its Therapeutic Potential for Cognitive Impairment. Biomolecules 2022; 12(9): 1310.
[90]
Gonzalo-Gobernado R, Perucho J, Vallejo-Munoz M, Casarejos MJ, Reimers D, Jimenez-Escrig A, et al. Liver Growth Factor “LGF” as a Therapeutic Agent for Alzheimer’s Disease. Int J Mol Sci 2020; 21(23): 9201.
[91]
Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep 2019; 9(1): 840.
[92]
Hu Z, Jiao R, Wang P, Zhu Y, Zhao J, De Jager P, et al. Shared Causal Paths underlying Alzheimer’s dementia and Type 2 Diabetes. Sci Rep 2020; 10(1): 4107.
[93]
Movahedpour A, Vakili O, Khalifeh M, Mousavi P, Mahmoodzadeh A, Taheri-Anganeh M, et al. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy. Cell Biochem Funct 2022; 40(3): 232-47.
[94]
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, et al. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer’s disease and age-matched non-demented brains. Mol Brain 2021; 14(1): 110.
[95]
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic Pathways and Alzheimer’s Disease: Probing Therapeutic Potential. Neurochem Res 2021; 46(12): 3103-22.
[96]
Toniolo S, Scarioni M, Di Lorenzo F, Hort J, Georges J, Tomic S, et al. Dementia and COVID-19, a Bidirectional Liaison: Risk Factors, Biomarkers, and Optimal Health Care. J Alzheimers Dis 2021; 82(3): 883-98.
[97]
Castellano G, Esposito A, Mirizio M, Montanaro G, Vessio G. Detection of Dementia Through 3D Convolutional Neural Networks Based on Amyloid PET. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). Orlanso, FL, USA. 2021; pp. 2021; 1-6.
[98]
Jo T, Nho K, Risacher SL, Saykin AJ. Alzheimer’s Neuroimaging I. Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics 2020; 21 (Suppl. 21): 496.
[99]
Maiese K. Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss. Curr Neurovasc Res 2017; 14(4): 415-20.
[100]
Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer’s Disease. Curr Neurovasc Res 2018; 15(4): 367-71.
[101]
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16(1): 44.
[102]
Skillback T, Blennow K, Zetterberg H, Shams S, Machado A, Pereira J, et al. Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity. Alzheimers Dement (Amst) 2021; 13(1): e12141.
[103]
Ahmad R, Khan A, Rehman IU, Lee HJ, Khan I, Kim MO. Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. Int J Mol Sci 2022; 23(11): 6086.
[104]
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer’s Disease. Int J Mol Sci 2019; 20(20): 5090.
[105]
Engin AB, Engin A. Alzheimer’s Disease and Protein Kinases. Adv Exp Med Biol 2021; 1275: 285-321.
[106]
Min AY, Yoo JM, Sok DE, Kim MR. Mulberry Fruit Prevents Diabetes and Diabetic Dementia by Regulation of Blood Glucose through Upregulation of Antioxidative Activities and CREB/BDNF Pathway in Alloxan-Induced Diabetic Mice. Oxid Med Cell Longev 2020; 2020: 1298691.
[107]
Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med 2021; 169: 382-96.
[108]
Rehman IU, Khan A, Ahmad R, Choe K, Park HY, Lee HJ, et al. Neuroprotective Effects of Nicotinamide against MPTP-Induced Parkinson’s Disease in Mice: Impact on Oxidative Stress, Neuroinflammation, Nrf2/HO-1 and TLR4 Signaling Pathways. Biomedicines 2022; 10(11): 2929.
[109]
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease. Curr Neurovasc Res 2023; 20(3): 314-33.
[110]
Maiese K. Picking a bone with WISP1 (CCN4): new strategies against degenerative joint disease. J Transl Sci 2016; 1(3): 83-5.
[111]
Sun C, Bai S, Liang Y, Liu D, Liao J, Chen Y, et al. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed Pharmacother 2023; 162: 114573.
[112]
Desai SC, Macrin AD, Senthilvelan T, Panda RC. Identification of genes associated with accelerated biological ageing through computational analysis: a systematic review. Biotechnol Bioprocess Eng; BBE 2024.
[113]
Dhillon VS, Shahid M, Deo P, Fenech M. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. Int J Mol Sci 2024; 25(2): 718.
[114]
Esmaeili M, Nasr-Esfahani MH, Shoaraye Nejati A, Safaeinejad Z, Atefi A. T LM, et al. PPARgamma dependent PEX11beta counteracts the suppressive role of SIRT1 on neural differentiation of HESCs. PLoS One 2024; 19(5): e0298274.
[115]
Farid HA, Sayed RH, El-Shamarka ME, Abdel-Salam OME, El Sayed NS. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson’s disease in rats. Inflammopharmacology 2024; 32(2): 1421-37.
[116]
Golatkar V, Bhatt LK. Artesunate attenuates isoprenaline induced cardiac hypertrophy in rats via SIRT1 inhibiting NF-kappaB activation. Eur J Pharmacol. 2024 (June 4); 176709.
[117]
Pandaram A, Paul J, Wankhar W, Thakur A, Verma S, Vasudevan K, et al. Aspartame Causes Developmental Defects and Teratogenicity in Zebra Fish Embryo: Role of Impaired SIRT1/FOXO3a Axis in Neuron Cells. Biomedicines 2024; 12(4): 855.
[118]
Ramadhan AY, Soetikno V. Molecular Adaptation of Cardiac Remodeling in Metabolic Syndrome: Focus on AMPK, SIRT1 and PGC-1a. Molecular and Cellular Biomedical Sciences 2024; 8(1): 15-22.
[119]
Sedik AA, Elgohary R, Khalifa E, Khalil WKB. H IS, M BS, et al. Lauric acid attenuates hepato-metabolic complications and molecular alterations in high-fat diet-induced nonalcoholic fatty liver disease in rats. Toxicol Mech Methods 2024; 34(4): 454-67.
[120]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[121]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res 2021; 16(3): 448-55.
[122]
Xiao X, Feng H, Liao Y, Tang H, Li L, Li K, et al. Identification of key circadian rhythm genes in skin aging based on bioinformatics and machine learning. Aging (Albany NY) 2023; 15(20): 11672-89.
[123]
Bellanti F, Iannelli G, Blonda M, Tamborra R, Villani R, Romano A, et al. Alterations of Clock Gene RNA Expression in Brain Regions of a Triple Transgenic Model of Alzheimer’s Disease. J Alzheimers Dis 2017; 59(2): 615-31.
[124]
Bellet MM, Masri S, Astarita G, Sassone-Corsi P, Della Fazia MA, Servillo G. Histone Deacetylase SIRT1 Controls Proliferation, Circadian Rhythm, and Lipid Metabolism during Liver Regeneration in Mice. J Biol Chem 2016; 291(44): 23318-29.
[125]
Fang M, Ohman Strickland PA, Kang HG, Zarbl H. Uncoupling genotoxic stress responses from circadian control increases susceptibility to mammary carcinogenesis. Oncotarget 2017; 8(20): 32752-68.
[126]
Liu Z, Gan L, Zhang T, Ren Q, Sun C. Melatonin alleviates adipose inflammation through elevating alpha-ketoglutarate and diverting adipose-derived exosomes to macrophages in mice. J Pineal Res 2018; 64(1): 12455.
[127]
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15(1): 81-91.
[128]
Sanchez DI, Gonzalez-Fernandez B, Crespo I, San-Miguel B, Alvarez M, Gonzalez-Gallego J, et al. Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma. J Pineal Res 2018; 65(3): e12506.
[129]
Sato S, Solanas G, Peixoto FO, Bee L, Symeonidi A, Schmidt MS, et al. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging. Cell 2017; 170(4): 664-77 e11.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy