Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

A Comprehensive Review of Drugs Determined by Spectrophotometry using Vanillin as a Chromogenic Reagent in the Past Decade

In Press, (this is not the final "Version of Record"). Available online 21 June, 2024
Author(s): Swathi Naraparaju, Karuna Devi Barla*, Soujanya Chaganti, Pani Kumar D. Anumolu and Sruthi Sunkara
Published on: 21 June, 2024

DOI: 10.2174/0115734129306714240610070448

Price: $95

Abstract

Many analytical techniques have been used in quality control, such as spectrophotometry, spectrofluorimetry, HPLC, and other hyphenated techniques. Among them, spectrophotometry is considered to be one of the most commonly used simple techniques. Drugs that lack chromogenic groups can be readily determined by using the chromogenic reagents, which react with the functional groups present in the drugs and produce a chromogenic group that can be detected in the visible region using a spectrophotometer. Chromogenic reagents play a vital role in the estimation of such types of drugs. Vanillin is one of the chromogenic reagents that possess a carbonyl group that reacts with the drugs that possess amine moiety and results in the formation of Schiff’s base, which is a yellow-colored compound that can be detected by spectrophotometry. The present review gives insights into the reaction conditions and applications of the drugs that are estimated by using vanillin as a chromogenic label.

[1]
Redasani, V.K.; Patel, P.R.; Marathe, D.Y.; Chaudhari, S.R.; Shirkhedkar, A.A.; Surana, S.J. A review on derivative UV-spectrophotometry analysis of drugs in pharmaceutical formulations and biological samples review. J. Chil. Chem. Soc., 2018, 63(3), 4126-4134.
[http://dx.doi.org/10.4067/s0717-97072018000304126]
[2]
Patel, D.; Panchal, D.; Patel, K.; Dalwadi, M.; Upadhyay, U. A review on UV visible spectroscopy. Ijcrt., 2022, 10(10), b399-b411.
[3]
Karuna, D.B.; Manasa, S.; Naraparaju, S.; Soujanya, Ch.; Kumar, P.A.D. Spectrophotometric determination of dabigatran etexilate mesylate using 1, 2-napthoquinone-4-sulfonate (NQS) reagent in bulk and capsules. IJPRA, 2023, 8(3), 1275-1284.
[4]
Sravani, K.; Masthanamma, S.K.; Prasanna, V.L.; Sowmya, D.K.; Tanuja, A. Analytical reagents used in chemical and spectrophotometric analysis. Res J Pharm Technol, 2015, 8(2), 110-117.
[http://dx.doi.org/10.5958/0974-360X.2015.00020.7]
[5]
Kumar, V.V.; Bala, R.; Pullabhotla, R. Derivatizing agents for spectrophotometric and spectrofluorimetric determination of pharmaceuticals: A review. J. Taibah Univ. Sci., 2023, 17(1), 1-24.
[6]
Ravisankar, P.; Sulthana, S.; Babu, P.S.; Afzal, B.S.; Aswini, R.; Swathi, V.; Mahamuda, S.; Lakshmi, M.; Navyasri, N.; Thanuja, I.M. Comprehensive review of important analytical reagents used in spectrophotometry. IAJPR, 2017, 7(05), 8716-8735.
[7]
Gummadi, S.; Kommoju, M. Colorimetric approaches to drug analysis and applications. A Review. Am. J. PharmTech Res, 2019, 9(1), 14-37.
[http://dx.doi.org/10.46624/ajptr.2019.v9.i1.002]
[8]
Devi, B.K.; Madhavi, K.; Naraparaju, S.; Deverakonda, R. Use of chemical reagents in non-fluorescent pharmaceutical labels: a comprehensive review. Curr. Pharm. Anal., 2023, 19(6), 445-475.
[http://dx.doi.org/10.2174/1573412919666230609120450]
[9]
Emmanuel, A.; Cyril, U.O.; Edidiong, O.N.; Ekaete, U.D. Novel spectrophotometric determination of artesunate using vanillin/sulphuric acid reagent. JOCPR, 2015, 7(7), 1050-1058.
[10]
Baraka, M.M.; Elsadek, M.E.; Ibrahim, S.M.; El-didamoony, M.A. Spectrophotometric determination of irbesartan, losartan, atenolol and hydrochlorothiazide in bulk and dosage forms. AJPAMC, 2016, 4(2), 88-106.
[11]
Rehman Mughal, U-U.; Dayo, A.; Ali Ghoto, M.; Lal, M.; Iqbal Arain, M.; Parveen, R.; Ali Gilal, R. Quantitative determination of amikacin Sulfate using vanillin from pure and commercial brands available in Pakistan. J. Young Pharm., 2015, 8(1), 28-32.
[http://dx.doi.org/10.5530/jyp.2016.1.7]
[12]
Hamd, M.A.E.; Derayea, S.M.; Abdelmageed, O.H.; Askal, H.F. A novel spectrophotometric method for determination of five 1,4-dihydropyridine drugs in their tablets and capsules using vanillin reagent. Am. J. Anal. Chem., 2013, 4(3), 148-157.
[http://dx.doi.org/10.4236/ajac.2013.43020]
[13]
Baraka, M.M.; Elsadek, M.E.; Ibrahim, A.M. Spectrophotometric determination of albendazole in pure form and tablet form. AJPAMC, 2014, 2(4), 276-294.
[14]
Lettieri, M.; Scarano, S.; Palladino, P.; Minunni, M. Colorimetric determination of carbidopa in anti-Parkinson drugs based on 4-hydroxy-3-methoxybenzaldazine formation by reaction with vanillin. Anal. Bioanal. Chem., 2022, 414(23), 6911-6918.
[http://dx.doi.org/10.1007/s00216-022-04256-4] [PMID: 35927364]
[15]
Rahman, N.; Khalaf, O.F. Spectrophotometric determination of cefixime through schiff’s base system using vanillin reagents in pharmaceutical preparations (NJC). Irq. Nat. J. Chem., 2013, 49, 38-46.
[16]
Vijayalakshmi, R.; Naga, Y.; Ramya, S.; Mani, A.D.; Dhanaraju, M.D. Spectrophotometric determination of darunavir ethanolate by condensation technique. Int. J. Pharm. Tech. Res., 2016, 9(6), 301-306.
[17]
Al-Obaidi, M.; Al-Sabha, T.; Al-Ghabsha, T. Spectrophotometric determination of nitrazepam and dapsone using vanillin reagent in pharmaceutical preparations. J. Educ. Sci, 2014, 27(1), 43-57.
[http://dx.doi.org/10.33899/edusj.2014.161562]
[18]
Abdullah, E.H.; Rashid, Q.N. Spectrophotometric determination of esomepreazol in pure form and in its pharmaceutical preparations. Int. J. Drug Deliv. Technol., 2021, 11(1), 42-46.
[19]
Kumar, A.; Singh, V.; Kumar, P. Spectrophotometric determination of eflornithine hydrochloride using vanillin as derivative chromogenic reagent. Trop. J. Pharm. Res., 2014, 13(11), 1917-1923.
[http://dx.doi.org/10.4314/tjpr.v13i11.21]
[20]
Hassouna, M.E. Spectrophotometric determination of furosemide drug in different formulations using schiff ’s bases. Forensic Res. Criminol. Int. J., 2016, 1(6), 214-221.
[21]
Taghreed, A.; Mohammeda, M.A. Spectrophotometric determination of certain antiepileptic’s in tablets using vanillin reagent. JAC, 2015, 11(2), 3540-3553.
[22]
Kazemipour, M.; Fakhari, I.; Ansari, M. Gabapentin determination in human plasma and capsule by coupling of solid phase extraction, derivatization reaction, and uv-vis spectrophotometry. Iran. J. Pharm. Res., 2013, 12(3), 247-253.
[PMID: 24250630]
[23]
Pani, A.; Satyakala, N.; Sowndarya, R.; Rajeshwari, G.; Radhagayathri, A.; Sunitha, G. Quantification of linagliptin by chemical derivatization with appliance of chromogenic reagents. J. Appl. Commun. Res., 2017, 11(2), 39-50.
[24]
Zenita Devi, O.; Basavaiah, K.; Vinay, K.B.; Revanasiddappa, H.D. Sensitive spectrophotometric determination of metoclopramide hydrochloride in dosage forms and spiked human urine using vanillin. Arab. J. Chem., 2016, 9, S64-S72.
[http://dx.doi.org/10.1016/j.arabjc.2011.02.017]
[25]
Luma, I.I.; Qabas, N.R. Spectrophotometric determination of nystatin in its pharmaceutical preparations. AIP Conf. Proc., 2022, 2450(1)
[26]
Mannan, A.; Jamal, K.A.; Khan, M.; Abbas, G. Validated spectrophotometric method for determination of polymaxin-b sulfate in pharmaceutical formulations. J. Pharm. Pharm. Sci., 2017, 5(4), 33-38.
[27]
Saleh, H.M.; Henawee, M.M.; Ragab, G.H.; Mohamed, O.F. Spectrophotometric and spectrofluorimetric determination of pregabalin via condensation reactions in pure form and in capsules. IJPCBS, 2014, 4(3), 738-747.
[28]
Mohammed, N.S.; Sabha, T.N.A.; Jabar, P.A. Development method for spectrophotometric analysis of sulfamethoxazole using vanilline reagent. Asian J. Appl. Chem. Res, 2020, 6(2), 41-49.
[http://dx.doi.org/10.9734/ajacr/2020/v6i230159]
[29]
Mehdi, Z.S. Analytical method development for the spectrophotometric determination of sulfamethoxazole in bulk drug and pharmaceutical preparation. J. Chem. Biochem., 2015, 3(1), 63-74.
[http://dx.doi.org/10.15640/jcb.v3n1a5]
[30]
Baraka, M.M.; Elsadek, M.E.; Ibrahim, A.M. Spectrophotometric determination of secnidazole in pure form and pharmaceutical formulation. Zagazig J. Pharm. Sci., 2014, 23(2), 75-87.
[http://dx.doi.org/10.21608/zjps.2014.38187]
[31]
Et al, A.; Omar, F.K. Colorimetric assay of thiamine hydrochloride in pharmaceutical preparations. Baghdad Sci. J, 2019, 16(4), 0898.
[http://dx.doi.org/10.21123/bsj.2019.16.4.0898]
[32]
Alhemiary, N.A.F.; Saleh, M.H.A. Spectrophotometric determination of tinidazole using promethazine and ethyl vanillin reagents in pharmaceutical Preparations. Pharma Chem., 2012, 4(6), 2152-2160.
[33]
Prashanth, K.N.; Basavaiah, K.; Raghu, M.S. Spectrophotometric determination of zolmitriptan in bulk drug and pharmaceuticals using vanillin as a reagent. Anal. Chem., 2013, 1-7.
[34]
Etim, E.; Udobre, A.; Johnson, E. Development and validation of UV spectrophotometric method for the determination of artesunate and dihydroartemisinin by coupling. J. Pharm. Innov., 2016, 5(8), 4-7.
[35]
Aghayere, G.E.; Adelusi, S.A. Development of colorimetric method for the assay of artesunate using 4-nitrobenzaldehyde. J. Sci. Pract. Pharm., 2019, 6(1), 298-302.
[http://dx.doi.org/10.47227/jsppharm.v6i1.3]
[36]
Adegoke, O.A.; Osoye, A.O. Derivatization of artesunate and dihydroartemisinin for colorimetric analysis using p-dimethylaminobenzaldehyde. Eurasian J Anal Chem., 2011, 6(2), 104-113.
[37]
Attih, E.E.; Usifoh, C.O.; Oladimeji, H.O. Sensitive uv-spectrophotometric determination of dihydroartemisinin and artesunate in pharmaceuticals using ferric-hydroxamate complex formation. Bull. Env. Pharmacol. Life Sci., 2015, 4(8), 90-99.
[38]
Lawal, A.; Abubakar, M.G.; Wali, U. FTIR and UV-Visible Spectrophotometeric analyses of artemisinin and its derivatives. J. Pharm. Biomed. Sci., 2012, 24(24), 6-14.
[39]
Attih, E.E.; Johnson, E.C.; Etim, E.I.; Oladimeji, H.O.; Eseyin, O.A. Validated spectrophotometric determination of artesunate and dihydroartemisinin using anisaldehyde/sulphuric acid reagent. Nig. J. Pharm. Appl. Sci. Res., 2021, 10(1), 43-49.
[40]
Zhuk, Y.N.; Vasyuk, S.O. Quantitative determination of Atenolol in tablets. IJAPBC, 2016, 5(3), 350-355.
[41]
Agrawal, Y.K.; Raman, K.; Rajput, S.; Menon, S.K. Spectrophotometric determination of atenolol via hydroxamic acid formation. Anal. Lett., 1992, 25(8), 1503-1510.
[http://dx.doi.org/10.1080/00032719208017132]
[42]
Mhemeed, A.H. Spectrophotometric determination of metoprolol and atenolol by iron (iii) and ferricyanide. Syst. Rev. Pharm., 2021, 12(1), 34-39.
[43]
Zakaria, S.A.; Zakaria, R.A.; Othman, N.S. Spectrophotometric determination of atenolol via oxidation and bleaching color reaction for methyl red dye. J. Phys. Conf. Ser., 2021, 2063(1), 012008.
[http://dx.doi.org/10.1088/1742-6596/2063/1/012008]
[44]
Kudige, N. Simple, sensitive and selective spectrophotometric methods, for the determination of atenolol in pharmaceuticals through charge transfer complex formation reaction. Acta Poloniae Pharmaceutica ñ. Drug Res., 2012, 69(2), 213-223.
[45]
Prashanth, K.N.; Basavaiah, K. Sensitive spectrophotometric determination of atenolol in pharmaceutical formulations using bromate-bromide mixture as an eco-friendly brominating agent. J. Anal. Methods Chem., 2012, 2012(1), 1-12.
[http://dx.doi.org/10.1155/2012/810156] [PMID: 22567567]
[46]
Majeed, S.Y.; Salih, O.A.; Saleem, B.A.A. A new spectrophotometric method to estimate atenolol, amlodipine, and furosemide in pharmaceutical dosages. Eur. Chem. Commun., 2022, 4(12), 1285-1294.
[47]
Sharma, D.K.; Raj, P. Simple and rapid spectrophotometric determination of atenolol and esmolol β-blockers in pharmaceutical formulations and spiked water samples. Int. J. Pharm. Sci. Res., 2017, 8(12), 5168-5177.
[48]
Setty, N.; Chakravarthi, I.E. A UV-Visible spectrophotometric determination of atenolol in pharmaceutical formulations. IJSR, 2013, 2(3), 31-32.
[http://dx.doi.org/10.15373/22778179/MAR2013/11]
[49]
Saleem, B. Spectrophotometric determination of atenolol using indigo carmine dye. Kirkuk Univ. J. Sci. Stud, 2019, 14(2), 19-35.
[http://dx.doi.org/10.32894/kujss.2019.14.2.2]
[50]
El-didamony, A.M.; Moustafa, M.A. Direct spectrophotometric determination of atenolol and timolol anti-hypertensive drugs. Int. J. Pharm. Pharm. Sci., 2017, 9(3), 47-53.
[http://dx.doi.org/10.22159/ijpps.2017v9i3.16198]
[51]
Bashir, N.; Shah, S.W.; Bangesh, M. A novel spectrophotometric determination of atenolol using sodium nitroprusside. JSIR, 2011, 70, 51-54.
[52]
G, S.T.; M, G.B.; K, V.S. Spectrophotometric method for the determination amikacin in pure and pharmaceutical dosage form. Int. J. Curr. Pharm. Res., 2018, 10(1), 38-42.
[http://dx.doi.org/10.22159/ijcpr.2018v10i1.24703]
[53]
Vinny, T.M.; Prakash, N.K.S.; Supraja, S.; Saibabu, S.; Veera, A.S. Novel colorimetric approach for amikacin estimation in pure powder and its pharmaceutical formulations. WJBPHS, 2023, 14(1), 270-279.
[54]
Adam, M.E.; Adam, M.E.; Shantier, S.W.; Hussien, M.A.; Garalnabi, A.E.; Gadkariem, E.A. Development of spectrophotometric method for the determination of amikacin sulphate in its pure and pharmaceutical formulations using ascorbic acid. EJPMR, 2017, 4(2), 235-239.
[55]
Sabha, N. Spectrophotometric determination of amikacin sulphate via charge transfer complex formation reaction using tetracyanoethy’lene and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone reagents. Arab. J. Sci. Eng., 2010, 35, 27-40.
[56]
Vaikosen, E.N.; Origbo, S.O.; Ere, D.; Odaderia, P. Comparative application of biological and ninhydrin- derivatized spectrophotometric assays in the evaluation and validation of amikacin sulfate injection. Braz. J. Pharm. Sci., 2022, 58, e201185.
[http://dx.doi.org/10.1590/s2175-97902022e201185]
[57]
Omar, M.A.; Nagy, D.M.; Hammad, M.A.; Aly, A.A. Validated spectrophotometric methods for determination of certain aminoglycosides in pharmaceutical formulations. J. Appl. Pharm. Sci., 2013, 3(3), 151-161.
[58]
Alkhalil, R.; Attal, A.; Sakur, A.A. Spectrophotometric Determination of Amlodipine Besylate in Pure Form and Pharmaceutical Formulation using Amido Black. RJPT, 2019, 12(7), 3389-3392.
[http://dx.doi.org/10.5958/0974-360X.2019.00572.9]
[59]
Soliman, M.M.; Darwish, M.K.; Abdel-Razeq, S.A-M. SAM. Determination of amlodipine besilate and azilsartan medoxomil by uhplc, hptlc and spectrophotometric techniques. Int. Res. J. Pure Appl. Chem., 2019, 25, 1-13.
[http://dx.doi.org/10.9734/irjpac/2019/v19i330109]
[60]
Basavaiah, K.; Chandrashekar, U.; Nagegowda, P. Sci. Asia, 2006, 32(3), 271-278.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2006.32.271]
[61]
Sridhar, K.; Sastry, C.S.P.; Reddy, M.N.; Sankar, D.G.; Srinivas, K.R. Spectrophotometric determination of amlodipine besylate in pure forms and tablets. Anal. Lett., 1997, 30(1), 121-133.
[http://dx.doi.org/10.1080/00032719708002295]
[62]
Rahman, N.; Azmi, S.N.H. Spectrophotometric determination of amlodipine besylate by charge-transfer complex formation with p-Chloranilic acid. Anal. Sci., 2000, 16(12), 1353-1356.
[http://dx.doi.org/10.2116/analsci.16.1353]
[63]
Alizadeh, N.; Hemati, F. Spectrophotometric method for the determination of amlodipine besylate in pure and dosage forms using 7,7,8,8-tetracyanoquinodimethane and tetracyanoethylene. Bull. Fac. Pharm. Cairo Univ., 2014, 52(1), 109-114.
[http://dx.doi.org/10.1016/j.bfopcu.2014.01.003]
[64]
Mohsen, K.Z.A.; Khaleel, A.; Rashid, Q.N. Spectrophotometric methods for estimation of amlodipine besylate in pure form and in it’s pharmaceutical formulations. Int. J. Health Sci., 2022, 27, 7726-7741.
[65]
Singhvi, I.; Chaturvedi, S.C. Visible spectrophotometric methods for estimation of amlodipine besylate form tablets. Indian J. Pharm. Sci., 1998, 309-310.
[66]
Badran, R.; Al-Khateeb, M.J. A spectrophotometric determination of amlodipine besylate (AMB) in pharmaceutical preparations using gresol red (GR) reagent. Int. J. Chemtech Res., 2015, 8(11), 229-236.
[67]
Mahmoud, A.M.; Abdel-Wadood, H.M.; Mohamed, N.A. Kinetic spectrophotometric method for determination of amlodipine besylate in its pharmaceutical tablets. J. Pharm. Anal., 2012, 2(5), 334-341.
[http://dx.doi.org/10.1016/j.jpha.2012.03.002] [PMID: 29403763]
[68]
Sulyma, M.; Vasyuk, S.; Zhuk, Y.; Kaminskyy, D.; Chupashko, O.; Ogurtsov, V. New spectrophotometric method of amlodipine besylate determination and its validation. Chemistry & Chemical Technology, 2018, 12(4), 429-433.
[http://dx.doi.org/10.23939/chcht12.04.429]
[69]
Refat, M.S.; Mohamed, G.G.; Fathi, A. Spectrophotometric determination of albendazole drug in tablets: spectroscopic characterization of the charge-transfer solid complexes. Chin. J. Chem., 2011, 29(2), 324-332.
[http://dx.doi.org/10.1002/cjoc.201190086]
[70]
Basavaiah, K.; Ramakrishna, V.; Somashekar, B.C.; Anil, U.R. Sensitive titrimetric and spectrophotometric methods for the assay of albendazole in pharmaceuticals using sodium periodate. ACAIJ, 2006, 2(5-6), 159-166.
[71]
Oday, T.A.; Elgendy, K.M.; Saad, M.Z.; Hassan, W.S.; Sebaiy, M.M. New spectrophotometric methods for determination of albendazole in presence of cerium as oxidant and both indigo carmine and alizarin red dyes in bulk and dosage forms. Vol. 4. Biotechnol. Bioeng., 2020, 4(1), 20-25.
[http://dx.doi.org/10.22259/2637-5362.0401003]
[72]
Swamy, N.; Basavaiah, K. Simple and rapid spectrophotometric assay of albendazole in pharmaceuticals using iodine and picric acid as CT complexing agents. Braz. J. Pharm. Sci., 2014, 50(4), 839-850.
[http://dx.doi.org/10.1590/S1984-82502014000400019]
[73]
Basavaiah, K.; Nagegowda, P. Three new methods for the assay of albendazole using N-chlorosuccinimide. JSIR, 2004, 63, 835-841.
[74]
Swamy, N.; Basavaiah, K. Use of two sulfonphthalein dyes for the sensitive and selective extraction-free spectrophotometric assay of albendazole in bulk drug and in tablets. Anal. Chem., 2013, 1-11.
[75]
Issopoulos, P.B.; Economou, P.T. Spectrophotometric method for the determination of carbidopa using neotetrazolium chloride. J. Pharm. Pharmacol., 2011, 44(12), 1020-1022.
[http://dx.doi.org/10.1111/j.2042-7158.1992.tb07085.x] [PMID: 1361549]
[76]
Keskar, M.R.; Jugade, R.M. Spectrophotometric determination of cefixime trihydrate in pharmaceutical formulations based on ion-pair reaction with bromophenol blue. Anal. Chem. Insights, 2015, 10(1), ACI.S28463.
[http://dx.doi.org/10.4137/ACI.S28463] [PMID: 26279621]
[77]
Ramadan, A.A.; Mandil, H.; Dahhan, M. Spectrophotometric determination of cefixime in pure form and in Syrian pharmaceuticals through complexation with Cu(II). Asian J. Chem., 2013, 25(6), 3457-3462.
[http://dx.doi.org/10.14233/ajchem.2013.13959]
[78]
pasha, S.I.; A, S.; Sravanthi, K.; Srinika, G.; Nikhila, V. New visible spectrophotometric method for the determination of cefixime trihydrate in pharmaceutical formulations. Orient. J. Chem., 2012, 28(1), 571-574.
[http://dx.doi.org/10.13005/ojc/280174]
[79]
Naeem Khan, M.; Qayum, A.; Ur Rehman, U.; Gulab, H.; Idrees, M. Spectrophotometric method for quantitative determination of cefixime in bulk and pharmaceutical preparation using ferroin complex. J. Appl. Spectrosc., 2015, 82(4), 705-711.
[http://dx.doi.org/10.1007/s10812-015-0167-z]
[80]
Bassam, N.; Saif, I.N. A new kinetic spectrophotometric method for determination of cefixime in pharmaceutical preparations using saffron extract as natural reagent. IJPRBS, 2013, 2(5), 328-349.
[81]
Godambe, R.D.; Disouza, J.I.; Jamkhandi, C.M.; Kumbhar, P.S. Development of spectrophotometric and fluorometric methods for estimation of darunavir using qbd approach. Int. J. Curr. Pharm. Res., 2018, 10(1), 13-18.
[http://dx.doi.org/10.22159/ijcpr.2018v10i1.24401]
[82]
Vijayalakshmi, R.; Anjani, D.; Dhanaraju, M.D. Analytical method development for the estimation of darunavir by ion-pair complex using visible spectrophotometry. IJPPR, 2018, 12(2), 182-192.
[83]
Reddy, M.P.; Rami, R.N. Spectrophotometric estimation of darunavir in bulk and pharmaceutical formulations. Int. J. Chem. Sci., 2013, 11(1), 614-618.
[84]
Acharyulu, M.L.N.; Rao, P.V.S.R.; Rama, K.S. Spectrophotometric determination of Darunavir using NQS and Brucine meta periodate. Pharma Chem., 2020, 12(7), 36-42.
[85]
Rao, K.P. Validation of visible spectrophotometric methods of darunavir in pure and dosage forms. Pharma Chem., 2016, 8(17), 54-61.
[86]
Enizzi, M.S.; Sheej, A.O.A.; Sabha, T.N. Spectrophotometric determination of dapsone using charge transfer complex formation reaction. Egypt. J. Chem., 2020, 63(8), 3167-3177.
[87]
Revanasiddappa, H.D.; Manju, B. A spectrophotometric method for the determination of metoclopramide HCl and dapsone. J. Pharm. Biomed. Anal., 2001, 25(3-4), 631-637.
[http://dx.doi.org/10.1016/S0731-7085(00)00592-6] [PMID: 11377044]
[88]
Nagaraja, P.; Yathirajan, H.S.; Sunitha, K.R.; Vasantha, R.A. Novel methods for the rapid spectrophotometric determination of dapsone. Anal. Lett., 2002, 35(9), 1531-1540.
[http://dx.doi.org/10.1081/AL-120006728]
[89]
Wang, H.Y.; Xu, L.X.; Xiao, Y.; Han, J. Spectrophotometric determination of dapsone in pharmaceutical products using sodium 1,2-naphthoquinone-4-sulfonic as the chromogenic reagent. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2004, 60(12), 2933-2939.
[http://dx.doi.org/10.1016/j.saa.2004.02.013] [PMID: 15350932]
[90]
Safaa, M.A.A. Colorimetric and kinetic method for determination of dapsone in bulk and pharmaceutical preparations. IJRPB, 2015, 3(1), 15-21.
[91]
Ahmad, W.S.; Abdulaziz, M.S. Spectrophotometric determination of dapsone in pharmaceutical formulation by schiff҆s base with p-dimethyl amino benzaldehyde. Int. J. Drug Deliv. Technol., 2021, 11(1), 141-146.
[92]
Daood, L.T. Spectrophotometric determination of dapsone using phloroglucinol azo coupling reagent. Raf Jour. Sci., 2008, 19(3), 24-37.
[93]
Sarsam, L.A. Spectrophotometric and high-performance liquid chromatographic methods for the determination of dapsone in a pharmaceutical preparation. Raf Jour. Sci., 2013, 24(1), 128-145.
[http://dx.doi.org/10.33899/rjs.2013.67587]
[94]
Rasheed, S.; Dev, S.; Jacob, J.; Rani, S. Determination of esomeprazole by complexation method. Pharma Chem., 2017, 9(22), 101-105.
[95]
Mandil, H.; Alhaj, A.; Allabban, A.A. A new sensitive spectrophotometric method for determination of esomeprazole magnesium trihydrate in dosage forms. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 747-751.
[96]
Yoganda Swamy, M.M.V. New spectrophotometric determination of esomeprazole in bulk and pharmaceutical dosage form using wool fast blue. J. Drug Deliv. Ther., 2018, 8(4), 320-322.
[http://dx.doi.org/10.22270/jddt.v8i4.1802]
[97]
Rahman, N.; Bano, Z.; Azmi, S.N.H. Spectrophotometric determination of esomeprazole magnesium in commercial tablets using 5-sulfosalicylic acid and N-bromosuccinimide. J. Chin. Chem. Soc., 2008, 55(3), 557-566.
[http://dx.doi.org/10.1002/jccs.200800082]
[98]
Purushotham, R. Simple Spectrophotometric Determination of Esomeprazole Magnesium in Pharmaceutical Formulations. Asian J Pharm Health Sci., 2011, 1(3), 135-136.
[99]
Sharma, M.C.; Sharma, S. Spectrophotometric methods for the estimation of esomeprazole magnesium trihydrate in pharmaceutical formulations using indigo carmine reagent. Int. J. Pharm. Tech. Res., 2011, 3(2), 1186-1190.
[100]
Yoganandaswamy, M.M.; Reddy, A.J.P. New spectrophotometric determination of esomeprazole in bulk and pharmaceutical dosage form using tropaeoline-oo. J. Appl. Chem., 2018, 11(6), 59-62.
[101]
Kumar, A.; Singh, V.; Kumar, P. Spectrophotometric estimation of eflornithine hydrochloride by using ion-pair reagents. Pak. J. Pharm. Sci., 2015, 28(2), 623-629.
[PMID: 25730793]
[102]
Mohsen, M.Z.; Monir, Z.S.; Wafaa, S.H.; Mostafa, E.E.; Mahmoud, M.S. Validation of spectrophotometric method for determination of esomeprazole and ciprofloxacin in their pure and dosage forms. IJPSDR, 2020, 6(1), 1-5.
[http://dx.doi.org/10.17352/ijpsdr.000024]
[103]
Mohammed, G.F.; Omar, F.K. Spectrophotometric estimation of esomeprazole using diazotization reaction with meta- amino phenol reagent and application in pharmaceutical preparations. Int. J. Health Sci., 2022, 6(S5), 10354-10366.
[104]
Alhfidh, H.A.; Othman, N.S. Application of the Cloud Point Extraction Method in Spectrophotometric Estimation of Esomeprazole using Diazotised p-Nitroanline and Triton X -114. Egypt. J. Chem., 2021, 64(11), 6242-6249.
[105]
Kumar, P. Spectrophotometric determination of eflornithine hydrochloride as active pharmaceutical ingredient using sodium 1,2-naphthoquinone-4-sulfonate as the derivative chromogenic reagent. Anal. Chem.: Indian J., 2008, 7(11), 812-817.
[106]
Kumar, A.; Singh, V.; Kumar, P. Spectrophotometric determination of Eflornithine hydrochloride through schiff’s base system using pdab reagent in pharmaceutical preparation. IJPS, 2015, 1(1), 1-5.
[107]
Basavaiah, K.; Chandrashekar, U.; Gowda, N. Titrimetric and spectrophotometric assay of felodipine in tablets using bromate–bromide, Methyl Orange and Indigo Carmine reagents. J. Serb. Chem. Soc., 2005, 70(7), 969-978.
[http://dx.doi.org/10.2298/JSC0507969B]
[108]
Gölcü, A. Spectrophotometric determination of furosemide in pharmaceutical dosage forms using complex formation with Cu(II). J. Anal. Chem., 2006, 61(8), 748-754.
[http://dx.doi.org/10.1134/S1061934806080053]
[109]
Shah, J.; Jan, M.R.; Khan, M.A. Determination of furosemide by simple diazotization method in pharmaceutical preparations. J. Chin. Chem. Soc., 2005, 52(2), 347-352.
[http://dx.doi.org/10.1002/jccs.200500052]
[110]
Mahmoud, H.A. Spectrophotometric determination of furosemide using pyrogallol reagent in pharmaceutical preparations. J. Med. Chem., 2023, 6(6), 1254-1264.
[111]
Saleem, B.A.A.; Hamdon, E.A.; Majeed, S.Y. Visible quantitative methods for the estimation of furosemide in pure form and pharmaceutical formulations. J. Pharm. Res. Int., 2021, 33(47B), 200-209.
[http://dx.doi.org/10.9734/jpri/2021/v33i47B33113]
[112]
Abdul, M.K.A.; Zahraa, T.W.A. Estimation of furosemide spectrophotometrically in pharmaceutical preparations by oxidative coupling reaction. Tikrit J. Pure Sci., 2022, 27(4), 39-46.
[113]
Tharpa, K.; Basavaiah, K.; Vinay, K.B. Spectrophotometric determination of furosemide in pharmaceuticals using permanganate. Jordan J Chem., 2009, 4(4), 387-397.
[114]
Al-Rufaie, M.M. Modern kinetic spectrophotometric procedure for estimation of furosemide drug as bulk form and in pharmaceuticals preparations. Curr. Issues Pharm. Med. Sci., 2016, 29(4), 184-189.
[http://dx.doi.org/10.1515/cipms-2016-0039]
[115]
Ahmed, S.F.; Sher, N.; Shafi, N.; Shamshad, H.; Zubair, A. Kinetic and thermodynamic spectrophotometric technique to estimate gabapentin in pharmaceutical formulations using ninhydrin. J. Anal. Sci. Technol., 2013, 4(17), 1-8.
[116]
Abdulrahman, S.A.M.; Basavaiah, K. Sensitive and selective spectrophotometric determination of gabapentin in capsules using two nitrophenols as chromogenic agents. Int. J. Anal. Chem., 2011, 2011, 1-9.
[http://dx.doi.org/10.1155/2011/619310] [PMID: 21760787]
[117]
Sampada, D.D.; Pramod, H.S.; Pramod, L.I. Development and validation of UV-spectrophotometric method for gabapentin in bulk drug and formulation. Asian J. Res. Chem, 2011, 4(10), 1526-1528.
[118]
Adegbolagun, O.M.; Thomas, O.E.; Aiyenale, E.O.; Adegoke, O.A. A new spectrophotometric method for the determination of gabapentin using chromotropic acid. ACTA Pharmaceutica Sciencia, 2018, 56(3), 93-110.
[http://dx.doi.org/10.23893/1307-2080.APS.05621]
[119]
Saleh, M.S.; Youssef, A.K.; Hashem, E.Y.; Abdel-Kader, D.A. A novel spectrophotometric method for determination of gabapentin in pharmaceutical formulations using 2,5-dihydroxybenzaldehyde. Comput. Chem., 2014, 2(2), 22-30.
[http://dx.doi.org/10.4236/cc.2014.22004]
[120]
Adegoke, O.A.; Adegbolagun, O.M.; Aiyenale, E.O.; Thomas, O.E. New spectrophotometric method for the determination of gabapentin in bulk and dosage forms using p -dimethylaminobenzaldehyde. J. Taibah Univ. Sci., 2018, 12(6), 754-764.
[http://dx.doi.org/10.1080/16583655.2018.1495418]
[121]
Satish, P.; Natavarlal, P. Visible spectrophotometric methods for determination of gabapentin in pharmaceutical tablet and capsule dosage forms. Asian J Pharm Life Sci, 2011, 3.
[122]
Mohammed. Spectrophotometric method for determination of gabapentin in pharmaceutical formulation by derivatization with 4-chloro-7-nitrobenzo- 2-oxa-1,3-diazole (nbd-cl). Int J Drug Dev & Res., 2015, 7(4), 1-4.
[123]
Andayani, R.; Elita, D.; Armin, F. The development and validation of spectrophotometric assay for determination of gabapentin in capsules using ninhydrin and ascorbic acid. J Pharm Biol Sci., 2023, 18(23), 14-20.
[124]
Abdulrahman, S.A.M.; Basavaiah, K. Sensitive and selective spectrophotometric assay of gabapentin in capsules using sodium 1, 2‐naphthoquinone‐4‐sulfonate. Drug Test. Anal., 2011, 3(10), 748-754.
[http://dx.doi.org/10.1002/dta.242] [PMID: 21337720]
[125]
Almasri, I.M.; Ramadan, M.; Algharably, E. Development and validation of spectrophotometric method for determination of gabapentin in bulk and pharmaceutical dosage forms based on Schiff base formation with salicylaldehyde. J. Appl. Pharm. Sci., 2019, 9(3), 21-26.
[http://dx.doi.org/10.7324/JAPS.2019.90304]
[126]
Tulja, R.; Gowri, S.; Satyanarayana, B. Extractive visible spectrophotometric method for determination of telmisatan and irbesartan in bulk and pharmaceutical formulations. Asian J. Pharm. Clin. Res., 2012, 5(1), 41-45.
[127]
Thamir, Z.M.; Oma, F.K. Development of spectrophotometric method to assay irbesartan in pure and in pharmaceutical dosage form using diazotization reaction. Int. J. Health Sci., 2022, 6(S4), 5622-5634.
[128]
Ashour, S.; Fawaz, C.M.; Bayram, R. A new spectrophotometric method applied to the simple determination of irbesartan in tablets.R. J. Aleppo Univ. Basic Sciences Series, 2006, 49
[129]
Afaf, A. Spectrofluorimetric and Spectrophotometric Determination of Irbesartan and Bisoprolol hemifumarate independently in their Tablets. Pharm. Biosci. J., 2016, 4(2), 43-52.
[http://dx.doi.org/10.20510/ukjpb/4/i2/97093]
[130]
Ramakrishna, V.; Anupama, B. Assay of irbesartan by extractive spectrophotometry. IJPCBS, 2012, 2(4), 529-531.
[131]
Safwan, A.; Roula, B. Novel extractive visible spectrophotometric method for determination of antihypertensive drug irbesartan with sulfonaphthalein acid dyes in tablets. Arch Pharm Pharma Sci, 2022, 6(1), 6-12.
[132]
Mohammed, T.Z.; Khalaf, O.F. Indirect spectrophotometric method for estimation of irbesartan in pure and in pharmaceutical dosage form using oxidation and reduction reaction. J. Glob. Sci. Res., 2022, 7(10), 2713-2722.
[133]
Ashour, S.; Bayram, R. Selective and validated kinetic spectrophotometric method for the determination of irbesartan in pure and pharmaceutical formulations. Ann. Pharm. Fr., 2019, 77(2), 101-111.
[http://dx.doi.org/10.1016/j.pharma.2018.09.002] [PMID: 30471775]
[134]
Naga, N.V.V.M.; Pulla, R.S.; Vardhan, S.V.M.; Rambabu, C. Extractive visible spectrophotometric determination of lamotrigine in pure and pharmaceutical formulations. Chem. Sci. Trans., 2013, 2(3), 1016-1020.
[135]
Vinay, K.B.; Revanasiddappa, H.D.; Rajendraprasad, N. Development and validation of spectrophotometric methods for the sensitive and selective determination of lamotrigine in pharmaceuticals using bromocresol purple. Yao Wu Shi Pin Fen Xi, 2009, 17(6), 424-433.
[136]
Rajendraprasad, N.; Basavaiah, K.; Vinay, K.B. Sensitive spectrophotometric determination of lamotrigine in bulk drug and pharmaceutical formulations using bromocresol green. Ecl. Quím., São Paulo., 2010, 35(1), 55-66.
[137]
Jha, C.P.; Imam, S.W.; Thakur, B.G. Spectrophotometrical determination of lamotrigine drug in its branded tablets. Acta Cienc. Indica, 2015, 49(3), 119-127.
[138]
Sharafeldin, M; Aboul, K. A; Saleh, H; Henawee, M. M; Sharf, M. N. Spectrophotometric estimation of lamotrigine and minoxidil in bulk and dosage forms. R. J Pharm Tech, 2012, 5(5), 697-708.
[139]
Abu, S.H.H.M.; Attia, K.A.M.; Salama, F.; Amin, M.A.A.; Said, R.A.M. Stability-indicating spectrophotometric methods for determination of lamotrigine in pure form and pharmaceutical preparations. J. Pharm. Sci., 2014, 50, 67-83.
[140]
Alizadeh, N.; Khakinahad, R.; Jabbari, A. Spectrophotometric determination of lamotrigine in pharmaceutical preparations and urine by charge-transfer complexation. Pharmazie, 2008, 63(11), 791-795.
[PMID: 19069238]
[141]
Jayanna, B.K.; Devaraj, T.D.; Roopa, K.P.; Nagendrappa, G.; Gowda, N. Spectrophotometric estimation of lamotrigine in tablets. Indian J. Pharm. Sci., 2016, 78(5), 657-662.
[142]
Gurupadayya, B.M.; Chandan, R.S. Spectrophotometric determination of lamotrigine using Gibb’s and MBTH reagent in pharmaceutical dosage form. J. Pharm. Res., 2011, 4(6), 1813-1815.
[143]
Vinay, K.B.; Rajendraprasad, H.O.N.; Basavaiah, K. Sensitive, selective and extraction-free spectrophotometric Sensitive, selective and extraction-free spectrophotometric determination of lamotrigine in pharmaceuticals using two determination of lamotrigine in pharmaceuticals using two sulphonthalein dyes sulphonthalein dyes. TJPS, 2011, 35, 65-76.
[144]
Parastekar Makhijani Ritika, V. Unique & Novel Spectrophotometric Determination of Linagliptin Drug in Bulk and Pharmaceutical Formulations by using Iron & 1, 10 Phenthroline. Int. J. Sci. Res. (Raipur), 2023, 12(7), 1647-1651.
[http://dx.doi.org/10.21275/MR23721221014]
[145]
Sahloul, L.; Salami, M. Development and validation of a new analytical method for determination of linagliptin in bulk by visible spectrophotometer. Sci. Rep., 2023, 13(1), 4083.
[http://dx.doi.org/10.1038/s41598-023-31202-w] [PMID: 36906687]
[146]
Gurrala, S.; Anumolu, P.D.; Menkana, S.; Gandla, N.; Toddi, K. Spectrophotometric estimation of linagliptin using ion-pair complexation and oxidative coupling reactions – A green approach. Thaiphesatchasan, 2020, 44(4), 245-250.
[http://dx.doi.org/10.56808/3027-7922.2460]
[147]
Rambabu, C.; Kishore, M.S. Spectrophotometric determination of losartan potassium through ion association reaction. Pharma Chem., 2014, 6(5), 171-177.
[148]
Dawood, A.G.; Omer, L.S. Spectrophotometric estimation of losartan potassium with methylene blue by ion-pair extraction method. Iraqi J. of Sci., 2020, 61(12), 3141-3153.
[http://dx.doi.org/10.24996/ijs.2020.61.12.1]
[149]
Shakeel, A.S.; Karajgi, S.R.; Sonawane, S. Visible spectrophotometric methods for the estimation of losartan potassium and omeprazole in single component pharmaceutical formulations. Int. J. Pharm. Tech. Res., 2009, 1(4), 1247-1250.
[150]
Siva, K.; Kiran, M.; Ramu, K.; Rambabu, C. Visible spectrophotometric determination of losartan potassium in pure and dosage forms by ion-ion association reactions using bcp and bpb reagents. Pharm. Lett., 2015, 7(1), 75-80.
[151]
Begum, M.; Koki, I.B.; Rizwan, M.; Syed, A.A. Sensitive and selective spectrophotometric methods for the determination of cisaprid, metoclopramide hydrochloride, sulphadoxine and sulphamethoxazole. IJCMER, 2016, 3(4), 84-90.
[152]
Taha, H.K.A.; Al-Rufaie, M.M.; Motaweq, Z.Y. Spectrophotometric determination of metoclopramide medicine in bulk form and in pharmaceuticals using orcinol as reagent. An. Univ. Ovidius Constanta Ser. Chim., 2016, 29(2), 85-91.
[http://dx.doi.org/10.2478/auoc-2018-0012]
[153]
Deepakumari, H.N.; Revanasiddappa, H.D. Spectrophotometric estimation of nitrazepam in pure and in pharmaceutical preparations. J. Spectrosc., 2013, 2013(1), 1-8.
[http://dx.doi.org/10.1155/2013/671689]
[154]
Omran, A.A.; Ahmed, H.; Mohammed, K.; Khalaf, M.; Alsaraf, M.; Oudah, K. Highly development and validation of a spectrophotometric method for mogadon drug in pharmaceutical tablets by diazotization reaction. Eurasian Chem Commun., 2023, 5, 1013-1022.
[155]
Walash, M.I.; Rizk, M.; El-Brashy, A. Spectrophotometric determination of chlordiazepoxide and nitrazepam. Talanta, 1988, 35(11), 895-898.
[http://dx.doi.org/10.1016/0039-9140(88)80209-1] [PMID: 18964639]
[156]
El Hamd, M.A.; Derayea, S.M.; Abdelmageed, O.H.; Askal, H.F. spectrophotometric method for determination of five 1,4-dihydropyridine drugs using n -bromosuccinimide and indigo carmine dye. Int. J. Spectrosc., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/243059]
[157]
Rahman, N.; Ahmad Khan, N.; Hejaz Azmi, S.N. Extractive spectrophotometric methods for the determination of nifedipine in pharmaceutical formulations using bromocresol green, bromophenol blue, bromothymol blue and eriochrome black T. Farmaco, 2004, 59(1), 47-54.
[http://dx.doi.org/10.1016/j.farmac.2003.10.001] [PMID: 14751316]
[158]
Nguyen, T.D. Extractive spectrophotometric determination of nimodipine through ion-pair complex formation with bromothymol blue. J. Sci. Technol., 2022, 17(1), 1-5.
[http://dx.doi.org/10.56651/lqdtu.jst.v17.n01.297]
[159]
Deepa, K.H.N.; Revana, H.D. A Sensitive spectrophotometric estimation of nimodipine in tablets and injection using phloroglucinol. Spectroscopy, 2013, 1-7.
[160]
Ahmed, H.H.; Mohammed, S.A. Spectrophotometric approach for estimating nimodipine by oxidative-coupling reaction with 4-aminoantipyrine in its tablet and biological fluids. Med Clin Res., 2023, 8(9), 1-10.
[161]
Ravichandran, V.; Sulthana, M.T.; Shameem, A.; Balakumar, M.; Raghuram, S.; Sankar, V. Spectrophotometric method for determination of nimodipine in pharmaceutical dosage forms. IJPS, 2001, 6, 425-427.
[162]
Azar, M.H.W.; Hamsa, M.Y. Developing and validating a spectrophotometric method for estimating anti-fungal (Nystatin) in its pure form pharmaceutical formulation using tetrachloro-1,4-benzoquinone. Hist. Med., 2023, 9(2), 372-381.
[163]
Shihab, I.; Al-Sabha, T. Spectrophotometric determination of ibuprofen and nystatin spectrophotometric determination of ibuprofen and nystatin via ion pair complex formation using chromotrope 2R. J. Educ. Sci., 1970, 28(2), 289-299.
[http://dx.doi.org/10.33899/edusj.1970.161532]
[164]
Muralikrishna, C.R. Spectrophotometric determination of oxcarbazepine in bulk and pharmaceutical formulations. Asian J. Res. Chem, 2013, 6(9), 808-810.
[165]
Venkateswarlu, D.; Sreedevi, G.; Chakravarthy, I.E.; Rami, R.N.; Prabhavathi, K. A Simple spectrophotometric method for the estimation of oxcarbazipine in pharmaceutical formulation. IJPPR, 2020, 17(3), 1-9.
[166]
Rajendraprasad, N.; Basavaiah, K.; Vinay, K.B. Application of 3-methylbenzothiazolin-2-one hydrazone for the quantitative spectrophotometric determination of oxcarbazepine in pharmaceuticals with cerium(IV) and periodate. J. Appl. Spectrosc., 2012, 79(4), 616-625.
[http://dx.doi.org/10.1007/s10812-012-9648-5]
[167]
Reddy, A.J.P. New spectrophotometric determination of pregabalin bulk and pharmaceutical dosage. JDDT, 2013, 1(6), 56-58.
[168]
Najam, R.; Shah, G.M.; Andrabi, S.M.A. Kinetic spectrophotometric determination of an important pharmaceutical compound, pregabalin. J. Anal. Sci. Technol., 2013, 4(1), 22.
[http://dx.doi.org/10.1186/2093-3371-4-22]
[169]
Walash, M.I.; El-Enany, N.; Askar, H. Validated spectrophotometric and spectrofluorimetric methods for the determination of pregabalin in its pure and dosage forms using eosin. Int. J. Pharm., 2016, 6(1), 28-40.
[170]
Sowjanya, K.; Thejaswini, J.C.; Gurupadayya, B.M.; Indupriya, M. Spectrophotometric determination of pregabalin using gibb’s and mbth reagent in pharmaceutical dosage form. Pharma Chem., 2011, 3(1), 112-122.
[171]
Ravichandran, V.; Shankar, V.; Sivaanad, V.; Velraajan, G.; Raghuraman, S. Spectrophotometric determination of secnidazole in tablets. IJPS, 2002, 64(5), 396-398.
[172]
Khier, A.A.; Elhenawee, M.M.; Elmasry, M.S. Spectrophotometric method for the determination of some drugs using fast red b salt. J. Chem., 2008, 5(S2), 1087-1097.
[173]
Kumar, S.; Senthil, K.K.; Manasa, B.; Nagamani, E.; Manoj, V.G.; Mahesh, E. Spectrophotometric determination of secnidazole using folin ciocalteu’s & sodium carbonate. IJRPC, 2012, 2(3), 809-815.
[174]
Saffaj, T.; Charrouf, M.; Abourriche, A.; Aboud, Y.; Bennamara, A.; Berrada, M. Spectrophotometric determination of Metronidazole and Secnidazole in pharmaceutical preparations based on the formation of dyes. Dyes Pigments, 2006, 70(3), 259-262.
[http://dx.doi.org/10.1016/j.dyepig.2005.01.009]
[175]
Youssef, A.K.; Saleh, M.M.S.; Abdel, K.D.A.; Hashem, E.Y. Facile spectrophotometric determination of metronidazole and secnidazole in pharmaceutical preparations based on the formation of dyes. Int. J. Pharm. Sci. Res., 2015, 6(1), 103-108.
[176]
Nassem, M.; Hamdany, A.; Abdulkader, N. Spectrophotometric determination of sulfamethoxazole in pure and in pharmaceutical preparations by diazotization and coupling reaction. Raf. J. Sci., 2019, 28(3), 15-62.
[177]
Issa, Y.M.; Amin, A.S. Spectrophotometric microdetermination of sulfamethoxazole and trimethoprim using alizarin and quinalizarin. Anal. Lett., 1994, 27(6), 1147-1158.
[http://dx.doi.org/10.1080/00032719408000285]
[178]
Okab RA, A.; Msa, G.; an, A.H. Development green spectrophotometric method for determination of sulfamethoxazole in pure and pharmaceutical formulations. Pharm. Anal. Acta, 2018, 9(5)
[http://dx.doi.org/10.4172/2153-2435.1000584]
[179]
Salman, A.; Alrassol, K. Spectrophotometric method for the determination of sulfa drug in pharmaceuticals based on charge transfer reaction. J. Chem. Pharm. Res., 2017, (2), 244-251.
[180]
Alaa, A. A novel spectrophotometric determination and kinetic study of sulfamethoxazole in pure and tablet formulation using 9-chloroacridine reagent. Int. Res. J. Pure Appl. Chem., 2021, 22(10), 1-13.
[181]
Bora, G. Vanillin-more than a flavouring agent: A review on its bioactive properties. J. Pharm. Negat. Results, 2023, 14(1), 616-622.
[182]
Bezerra, D.P.; Soares, A.K.N.; de Sousa, D.P. Overview of the role of vanillin on redox status and cancer development. Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/9734816] [PMID: 28077989]
[183]
Fayeulle, A.; Trudel, E.; Damiens, A.; Josse, A.; Ben Hadj Youssef, N.; Vigneron, P.; Vayssade, M.; Rossi, C.; Ceballos, C. Antimicrobial and antioxidant activities of amines derived from vanillin as potential preservatives: Impact of the substituent chain length and polarity. Sustain. Chem. Pharm., 2021, 22, 100471.
[http://dx.doi.org/10.1016/j.scp.2021.100471]
[184]
Illicachi, L.; Montalvo-Acosta, J.; Insuasty, A.; Quiroga, J.; Abonia, R.; Sortino, M.; Zacchino, S.; Insuasty, B. synthesis and dft calculations of novel vanillin-chalcones and their 3-aryl-5-(4-(2-(dimethylamino)-ethoxy)-3-methoxyphenyl)-4,5-dihydro-1h-pyrazole-1-carbaldehyde derivatives as antifungal agents. Molecules, 2017, 22(9), 1476.
[http://dx.doi.org/10.3390/molecules22091476] [PMID: 29240047]
[185]
Javed, H.U.; Liu, R.; Li, C.; Zhong, S.; Lai, J.; Hasan, M.; Shu, X.; Zeng, L.Y. Preparation of vanillin-taurine antioxidant compound, characterization, and evaluation for improving the post-harvest quality of litchi. Antioxidants, 2023, 12(3), 618.
[http://dx.doi.org/10.3390/antiox12030618] [PMID: 36978866]
[186]
Abdulmalik, O.; Pagare, P.P.; Huang, B.; Xu, G.G.; Ghatge, M.S.; Xu, X.; Chen, Q.; Anabaraonye, N.; Musayev, F.N.; Omar, A.M.; Venitz, J.; Zhang, Y.; Safo, M.K. VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions. Sci. Rep., 2020, 10(1), 20277.
[http://dx.doi.org/10.1038/s41598-020-77171-2] [PMID: 33219275]
[187]
Imaga, N.A. Phytomedicines and nutraceuticals: alternative therapeutics for sickle cell anemia. ScientificWorldJournal, 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/269659] [PMID: 23476125]
[188]
Syahri, J.; Hasmalina, N.; Achromi, N.; Bambang, P.; Emmy, Y. Novel aminoalkylated chalcone: Synthesis, biological evaluation, and docking simulation as potent antimalarial agents. J. Appl. Pharm. Sci., 2020, 10(6), 1-5.
[http://dx.doi.org/10.7324/JAPS.2020.10601]
[189]
Kumar, R.; Niren, E.K. Synthesis, characterization and anti-inflammatory activity of hydrazones bearing 5-nitro-furan moiety and 5-iodo-vanillin hybrid. World J. Pharm. Res., 2017, 6(11), 982-993.
[190]
Kadium, R.T.; Hanan, A.; Basim, J.H. Design, synthesis and characterization of some novel thiazolidine-2,4-dione derivatives as antidiabetic agents. Acta Pol Pharm Drug Res., 2022, 78, 773-779.
[191]
Olatunde, A.; Mohammed, A.; Ibrahim, M.A.; Tajuddeen, N.; Shuaibu, M.N. Vanillin: A food additive with multiple biological activities. EJMCR, 2022, 5, 100055.
[192]
Arya, S.S.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Adv. Tradit. Med., 2021, 21(3), 1-17.
[http://dx.doi.org/10.1007/s13596-020-00531-w]

© 2024 Bentham Science Publishers | Privacy Policy