Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Targeted Treatment Strategies for Mitochondria Dysfunction: Correlation with Neurological Disorders

Author(s): Rishav Sharma, Rishabha Malviya*, Saurabh Srivastava, Irfan Ahmad, Safia Obaidur Rab and Prerna Uniyal

Volume 25, Issue 10, 2024

Published on: 21 June, 2024

Page: [683 - 699] Pages: 17

DOI: 10.2174/0113894501303824240604103732

Price: $65

Abstract

Mitochondria are an essential intracellular organelle for medication targeting and delivery since they seem to create energy and conduct many other cellular tasks, and mitochondrial dysfunctions and malfunctions lead to many illnesses. Many initiatives have been taken to detect, diagnose, and image mitochondrial abnormalities, and to transport and accumulate medicines precisely to mitochondria, all because of special mitochondrial aspects of the pathophysiology of cancer. In addition to the negative membrane potential and paradoxical mitochondrial dynamics, they include high temperatures, high levels of reactive oxygen species, high levels of glutathione, and high temperatures. Neurodegenerative diseases represent a broad spectrum of debilitating illnesses. They are linked to the loss of certain groups of neurons based on an individual's physiology or anatomy. The mitochondria in a cell are generally accepted as the authority with respect to ATP production. Disruption of this system is linked to several cellular physiological issues. The development of neurodegenerative disorders has been linked to mitochondrial malfunction, according to pathophysiological studies. There seems to be substantial evidence connecting mitochondrial dysfunction and oxidative stress to the development of neurodegenerative disorders. It has been extensively observed that mitochondrial malfunction triggers autophagy, which plays a role in neurodegenerative disorders. In addition, excitotoxicity and mitochondrial dysfunction have been linked to the development of neurodegenerative disorders. The pathophysiology of neurodegenerative illnesses has been linked to increased apoptosis and necrosis, as well as mitochondrial malfunction. A variety of synthetic and natural treatments have shown efficacy in treating neurodegenerative illnesses caused by mitochondrial failure. Neurodegenerative illnesses can be effectively treated with existing drugs that target mitochondria, although their precise formulations are poorly understood. Therefore, there is an immediate need to focus on creating drug delivery methods specifically targeted at mitochondria in the treatment and diagnosis of neurodegenerative disorders.

[1]
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci Ther 2017; 23(1): 5-22.
[http://dx.doi.org/10.1111/cns.12655] [PMID: 27873462]
[2]
Weng M, Xie X, Liu C, Lim KL, Zhang C, Li L. The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson’s disease. Parkinsons Dis 2018; 2018: 1-9.
[http://dx.doi.org/10.1155/2018/9163040] [PMID: 30245802]
[3]
Chan F, Lax NZ, Davies CH, Turnbull DM, Cunningham MO. Neuronal oscillations: A physiological correlate for targeting mitochondrial dysfunction in neurodegenerative diseases? Neuropharmacology 2016; 102: 48-58.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.033] [PMID: 26518370]
[4]
Akbar M, Essa MM, Daradkeh G, et al. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637: 34-55.
[http://dx.doi.org/10.1016/j.brainres.2016.02.016] [PMID: 26883165]
[5]
van Horssen J, van Schaik P, Witte M. Inflammation and mitochondrial dysfunction: A vicious circle in neurodegenerative disorders? Neurosci Lett 2019; 710: 132931.
[http://dx.doi.org/10.1016/j.neulet.2017.06.050] [PMID: 28668382]
[6]
Wang Z, Guo W, Kuang X, Hou S, Liu H. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian J Pharmaceut Sci 2017; : 132931-508.12(6): 498-508.
[7]
Lee J. Mitochondrial drug targets in neurodegenerative diseases. Bioorg Med Chem Lett 2016; 26(3): 714-20.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.032] [PMID: 26806044]
[8]
Duchen MR. Roles of mitochondria in health and disease. Diabetes 2004; 53 (Suppl. 1): S96-S102.
[http://dx.doi.org/10.2337/diabetes.53.2007.S96] [PMID: 14749273]
[9]
Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: Doubt no more. Biochim Biophys Acta Bioenerg 1998; 1366(1-2): 151-65.
[http://dx.doi.org/10.1016/S0005-2728(98)00110-8]
[10]
Ricci J-E, Waterhouse N, Green DR. Mitochondrial functions during cell death, a complex (I–V) dilemma. Cell Death Differ 2003; 10(5): 488-92.
[http://dx.doi.org/10.1038/sj.cdd.4401225] [PMID: 12728246]
[11]
Corona JC, Duchen MR. Impaired mitochondrial homeostasis and neurodegeneration: Towards new therapeutic targets? J Bioenerg Biomembr 2015; 47(1-2): 89-99.
[http://dx.doi.org/10.1007/s10863-014-9576-6] [PMID: 25216534]
[12]
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts 2016; 6(4): 225-48.
[http://dx.doi.org/10.15171/bi.2016.30] [PMID: 28265539]
[13]
Laksitorini M, Prasasty VD, Kiptoo PK, Siahaan TJ. Pathways and progress in improving drug delivery through the intestinal mucosa and blood–brain barriers. Ther Deliv 2014; 5(10): 1143-63.
[http://dx.doi.org/10.4155/tde.14.67] [PMID: 25418271]
[14]
Sanchez-Covarrubias L, Slosky L, Thompson B, Davis T, Ronaldson P. Transporters at CNS barrier sites: Obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20(10): 1422-49.
[http://dx.doi.org/10.2174/13816128113199990463] [PMID: 23789948]
[15]
Arun S, Liu L, Donmez G. Mitochondrial biology and neurological diseases. Curr Neuropharmacol 2016; 14(2): 143-54.
[http://dx.doi.org/10.2174/1570159X13666150703154541] [PMID: 26903445]
[16]
Liao Y, Dong Y, Cheng J. The function of the mitochondrial calcium uniporter in neurodegenerative disorders. Int J Mol Sci 2017; 18(2): 248.
[http://dx.doi.org/10.3390/ijms18020248] [PMID: 28208618]
[17]
Hu Q, Wang G. Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 2016; 5(1): 14.
[http://dx.doi.org/10.1186/s40035-016-0060-6] [PMID: 27453777]
[18]
Mukherjee A, Becerra Calixto AD, Chavez M, Delgado JP, Soto C. Mitochondrial transplant to replenish damaged mitochondria: A novel therapeutic strategy for neurodegenerative diseases? Prog Mol Biol Transl Sci 2021; 177: 49-63.
[http://dx.doi.org/10.1016/bs.pmbts.2020.10.001] [PMID: 33453942]
[19]
Roca-Portoles A, Tait SWG. Mitochondrial quality control: From molecule to organelle. Cell Mol Life Sci 2021; 78(8): 3853-66.
[http://dx.doi.org/10.1007/s00018-021-03775-0] [PMID: 33782711]
[20]
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 2019; 4(1): 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8]
[21]
Goyal S, Chaturvedi RK. Mitochondrial protein import dysfunction in the pathogenesis of neurodegenerative diseases. Mol Neurobiol 2021; 58(4): 1418-37.
[http://dx.doi.org/10.1007/s12035-020-02200-0] [PMID: 33180216]
[22]
Wang XL, Feng ST, Wang ZZ, Chen NH, Zhang Y. Role of mitophagy in mitochondrial quality control: Mechanisms and potential implications for neurodegenerative diseases. Pharmacol Res 2021; 165: 105433.
[http://dx.doi.org/10.1016/j.phrs.2021.105433] [PMID: 33454337]
[23]
Hroudová J, Singh N, Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer’s disease. BioMed Res Int 2014; 2014: 1-9.
[http://dx.doi.org/10.1155/2014/175062] [PMID: 24900954]
[24]
Ľupták M, Hroudová J. Important role of mitochondria and the effect of mood stabilizers on mitochondrial function. Physiol Res 2019; 68 (Suppl. 1): S3-S15.
[http://dx.doi.org/10.33549/physiolres.934324] [PMID: 31755286]
[25]
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol 2017; 27(21): R1177-92.
[http://dx.doi.org/10.1016/j.cub.2017.09.015] [PMID: 29112874]
[26]
Tandler B, Hoppel C, Mears J. Morphological pathways of mitochondrial division. Antioxidants 2018; 7(2): 30.
[http://dx.doi.org/10.3390/antiox7020030] [PMID: 29462856]
[27]
Wang X, Zheng W. Ca 2+ homeostasis dysregulation in Alzheimer’s disease: A focus on plasma membrane and cell organelles. FASEB J 2019; 33(6): 6697-712.
[http://dx.doi.org/10.1096/fj.201801751R] [PMID: 30848934]
[28]
Oxenoid K, Dong Y, Cao C, et al. Architecture of the mitochondrial calcium uniporter. Nature 2016; 533(7602): 269-73.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[29]
Jiang Q, Yin J, Chen J, et al. Mitochondria-targeted antioxidants: A step towards disease treatment. Oxid Med Cell Longev 2020; 2020: 1-18.
[http://dx.doi.org/10.1155/2020/8837893] [PMID: 33354280]
[30]
Cavalcante GC, Schaan AP, Cabral GF, et al. A cell’s fate: An overview of the molecular biology and genetics of apoptosis. Int J Mol Sci 2019; 20(17): 4133.
[http://dx.doi.org/10.3390/ijms20174133] [PMID: 31450613]
[31]
Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 2020; 11(1): 102.
[http://dx.doi.org/10.1038/s41467-019-13668-3] [PMID: 31900386]
[32]
West AP. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology 2017; 391: 54-63.
[http://dx.doi.org/10.1016/j.tox.2017.07.016] [PMID: 28765055]
[33]
Konat GW, Wiggins RC. Effect of reactive oxygen species on myelin membrane proteins. J Neurochem 1985; 45(4): 1113-8.
[http://dx.doi.org/10.1111/j.1471-4159.1985.tb05530.x] [PMID: 4031880]
[34]
Wang W, Zhang F, Li L, et al. MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons. J Biol Chem 2015; 290(1): 168-82.
[http://dx.doi.org/10.1074/jbc.M114.617167] [PMID: 25416777]
[35]
Souto EB, Severino P, Basso R, Santana MHA. Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers. Methods Mol Biol 2013; 1028: 37-46.
[http://dx.doi.org/10.1007/978-1-62703-475-3_3]
[36]
Brieger K, Schiavone S, Miller J Jr, Krause KH. Reactive oxygen species: From health to disease. Swiss Med Wkly 2012; 142: w13659.
[http://dx.doi.org/10.4414/smw.2012.13659] [PMID: 22903797]
[37]
Morais VA, De Strooper B. Mitochondria dysfunction and neurodegenerative disorders: Cause or consequence. J Alzheimers Dis 2010; 20(s2) (Suppl. 2): S255-63.
[http://dx.doi.org/10.3233/JAD-2010-100345] [PMID: 20463408]
[38]
Kumar A, Singh A. A review on mitochondrial restorative mechanism of antioxidants in Alzheimer’s disease and other neurological conditions. Front Pharmacol 2015; 6: 206.
[http://dx.doi.org/10.3389/fphar.2015.00206] [PMID: 26441662]
[39]
Pathak RK, Kolishetti N, Dhar S. Targeted nanoparticles in mitochondrial medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(3): 315-29.
[http://dx.doi.org/10.1002/wnan.1305] [PMID: 25348382]
[40]
Tonda-Turo C, Origlia N, Mattu C, Accorroni A, Chiono V. Current limitations in the treatment of Parkinson’s and Alzheimer’s diseases: State-of-the-art and future perspective of polymeric carriers. Curr Med Chem 2019; 25(41): 5755-71.
[http://dx.doi.org/10.2174/0929867325666180221125759] [PMID: 29473493]
[41]
Pezzini I, Mattoli V, Ciofani G. Mitochondria and neurodegenerative diseases: The promising role of nanotechnology in targeted drug delivery. Expert Opin Drug Deliv 2017; 14(4): 513-23.
[http://dx.doi.org/10.1080/17425247.2016.1218461] [PMID: 27467010]
[42]
Ramanathan S, Archunan G, Sivakumar M, et al. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; 13: 5561-76.
[http://dx.doi.org/10.2147/IJN.S149022] [PMID: 30271147]
[43]
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469(7329): 221-5.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[44]
Abcouwer SF, Shanmugam S, Gomez PF, et al. Effect of IL-1β on survival and energy metabolism of R28 and RGC-5 retinal neurons. Invest Ophthalmol Vis Sci 2008; 49(12): 5581-92.
[http://dx.doi.org/10.1167/iovs.07-1032] [PMID: 19037001]
[45]
Chen GY, Nuñez G. Sterile inflammation: Sensing and reacting to damage. Nat Rev Immunol 2010; 10(12): 826-37.
[http://dx.doi.org/10.1038/nri2873] [PMID: 21088683]
[46]
Tait SWG, Green DR. Mitochondria and cell signalling. J Cell Sci 2012; 125(4): 807-15.
[http://dx.doi.org/10.1242/jcs.099234] [PMID: 22448037]
[47]
West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol 2011; 11(6): 389-402.
[http://dx.doi.org/10.1038/nri2975] [PMID: 21597473]
[48]
Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464(7285): 104-7.
[http://dx.doi.org/10.1038/nature08780] [PMID: 20203610]
[49]
Fang C, Wei X, Wei Y. Mitochondrial DNA in the regulation of innate immune responses. Protein Cell 2016; 7(1): 11-6.
[http://dx.doi.org/10.1007/s13238-015-0222-9] [PMID: 26498951]
[50]
Nakahira K, Haspel JA, Rathinam VAK, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011; 12(3): 222-30.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[51]
Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012; 485(7397): 251-5.
[http://dx.doi.org/10.1038/nature10992] [PMID: 22535248]
[52]
Iliev AI, Stringaris AK, Nau R, Neumann H. Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). FASEB J 2004; 18(2): 1-17.
[http://dx.doi.org/10.1096/fj.03-0670fje] [PMID: 14688201]
[53]
Walko TD III, Bola RA, Hong JD, et al. Cerebrospinal fluid mitochondrial DNA: A novel DAMP in pediatric traumatic brain injury. Shock 2014; 41(6): 499-503.
[http://dx.doi.org/10.1097/SHK.0000000000000160] [PMID: 24667615]
[54]
Varhaug KN, Vedeler CA, Myhr KM, Aarseth JH, Tzoulis C, Bindoff LA. Increased levels of cell-free mitochondrial DNA in the cerebrospinal fluid of patients with multiple sclerosis. Mitochondrion 2017; 34: 32-5.
[http://dx.doi.org/10.1016/j.mito.2016.12.003] [PMID: 28017684]
[55]
Raoof M, Zhang Q, Itagaki K, Hauser CJ. Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J Trauma 2010; 68(6): 1328-34.
[http://dx.doi.org/10.1097/TA.0b013e3181dcd28d] [PMID: 20539176]
[56]
Cui YH, Le Y, Gong W, et al. Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. J Immunol 2002; 168(1): 434-42.
[http://dx.doi.org/10.4049/jimmunol.168.1.434] [PMID: 11751990]
[57]
Durazo SA, Kompella UB. Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 2012; 12(2): 190-201.
[http://dx.doi.org/10.1016/j.mito.2011.11.001] [PMID: 22138492]
[58]
Chidambaram SB, Bhat A, Ray B, et al. Cocoa beans improve mitochondrial biogenesis via PPARγ/PGC1α dependent signalling pathway in MPP + intoxicated human neuroblastoma cells (SH-SY5Y). Nutr Neurosci 2020; 23(6): 471-80.
[http://dx.doi.org/10.1080/1028415X.2018.1521088] [PMID: 30207204]
[59]
Puspita L, Chung SY, Shim J. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain 2017; 10(1): 53.
[http://dx.doi.org/10.1186/s13041-017-0340-9] [PMID: 29183391]
[60]
Essa MM, Moghadas M, Ba-Omar T, et al. Protective effects of antioxidants in Huntington’s disease: An extensive review. Neurotox Res 2019; 35(3): 739-74.
[http://dx.doi.org/10.1007/s12640-018-9989-9] [PMID: 30632085]
[61]
Ranju V, Sathiya S, Kalaivani P, Priya RJ, Saravana Babu C. Memantine exerts functional recovery by improving BDNF and GDNF expression in 3-nitropropionic acid intoxicated mice. Neurosci Lett 2015; 586: 1-7.
[http://dx.doi.org/10.1016/j.neulet.2014.11.036] [PMID: 25475686]
[62]
Joshi AU, Mochly-Rosen D. Mortal engines: Mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol Res 2018; 138: 2-15.
[http://dx.doi.org/10.1016/j.phrs.2018.08.010] [PMID: 30144530]
[63]
Ettle B, Schlachetzki JCM, Winkler J. Oligodendroglia and myelin in neurodegenerative diseases: More than just bystanders? Mol Neurobiol 2016; 53(5): 3046-62.
[http://dx.doi.org/10.1007/s12035-015-9205-3] [PMID: 25966971]
[64]
Carvalho L, Goodyear P. The architecture of productive learning networks. (1st ed..). New York: Routledge 2014; p. 312.
[http://dx.doi.org/10.4324/9780203591093]
[65]
McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The translational significance of the neurovascular unit. J Biol Chem 2017; 292(3): 762-70.
[http://dx.doi.org/10.1074/jbc.R116.760215] [PMID: 27920202]
[66]
Diogo CV, Yambire KF, Fernández Mosquera L, Branco F T, Raimundo N. Mitochondrial adventures at the organelle society. Biochem Biophys Res Commun 2018; 500(1): 87-93.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.124] [PMID: 28456629]
[67]
Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 2013; 12(6): 465-83.
[http://dx.doi.org/10.1038/nrd4023] [PMID: 23666487]
[68]
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17(12): 865-86.
[http://dx.doi.org/10.1038/nrd.2018.174] [PMID: 30393373]
[69]
Saka R, Sathe P, Khan W. Brain local delivery strategy.Brain Targeted Drug Delivery System. Amsterdam: Elsevier 2019; pp. 241-86.
[http://dx.doi.org/10.1016/B978-0-12-814001-7.00011-1]
[70]
Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J 2015; 17(6): 1327-40.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[71]
Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ. Micro- and nanotechnology approaches to improve Parkinson’s disease therapy. J Control Release 2019; 295: 201-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.036] [PMID: 30579984]
[72]
Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[73]
de Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[74]
Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 2016; 234: 41-8.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.034] [PMID: 27189134]
[75]
Soni S, Ruhela RK, Medhi B. Nanomedicine in central nervous system (CNS) disorders: A present and future prospective. Adv Pharm Bull 2016; 6(3): 319-35.
[http://dx.doi.org/10.15171/apb.2016.044] [PMID: 27766216]
[76]
Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of nanomedicine. ACS Nano 2017; 11(3): 2313-81.
[http://dx.doi.org/10.1021/acsnano.6b06040] [PMID: 28290206]
[77]
Clementino A, Batger M, Garrastazu G, et al. The nasal delivery of nanoencapsulated statins – an approach for brain delivery. Int J Nanomedicine 2016; 11: 6575-90.
[http://dx.doi.org/10.2147/IJN.S119033] [PMID: 27994459]
[78]
Alex AT, Joseph A, Shavi G, Rao JV, Udupa N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv 2016; 23(7): 2144-53.
[http://dx.doi.org/10.3109/10717544.2014.948643] [PMID: 25544603]
[79]
Dowding JM, Song W, Bossy K, et al. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ 2014; 21(10): 1622-32.
[http://dx.doi.org/10.1038/cdd.2014.72] [PMID: 24902900]
[80]
Guerzoni LPB, Nicolas V, Angelova A. in vitro, modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm Res 2017; 34(2): 492-505.
[http://dx.doi.org/10.1007/s11095-016-2080-4] [PMID: 27995523]
[81]
Kovacic P, Somanathan R. Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): Electron transfer and reactive oxygen species. J Nanosci Nanotechnol 2010; 10(12): 7919-30.
[http://dx.doi.org/10.1166/jnn.2010.3028] [PMID: 21121279]
[82]
Bae Y, Jung MK, Lee S, et al. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect. Eur J Pharm Biopharm 2018; 124: 104-15.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.013] [PMID: 29305141]
[83]
Wongrakpanich A, Geary SM, Joiner MA, Anderson ME, Salem AK. Mitochondria-targeting particles. Nanomedicine (Lond) 2014; 9(16): 2531-43.
[http://dx.doi.org/10.2217/nnm.14.161] [PMID: 25490424]
[84]
Zielonka J, Joseph J, Sikora A, et al. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev 2017; 117(15): 10043-120.
[http://dx.doi.org/10.1021/acs.chemrev.7b00042] [PMID: 28654243]
[85]
Battogtokh G, Choi YS, Kang DS, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: Current strategies and future perspectives. Acta Pharm Sin B 2018; 8(6): 862-80.
[http://dx.doi.org/10.1016/j.apsb.2018.05.006] [PMID: 30505656]
[86]
Battogtokh G, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment. Front Pharmacol 2018; 9: 922.
[http://dx.doi.org/10.3389/fphar.2018.00922] [PMID: 30174604]
[87]
Calió ML, Henriques E, Siena A, Bertoncini CRA, Gil-Mohapel J, Rosenstock TR. Mitochondrial dysfunction, neurogenesis, and epigenetics: Putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment. Front Neurosci 2020; 14: 679.
[http://dx.doi.org/10.3389/fnins.2020.00679] [PMID: 32760239]
[88]
Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: From mechanism to therapy. Trends Biochem Sci 2021; 46(4): 329-43.
[http://dx.doi.org/10.1016/j.tibs.2020.11.007] [PMID: 33323315]
[89]
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol Neurodegener 2020; 15(1): 30.
[http://dx.doi.org/10.1186/s13024-020-00376-6] [PMID: 32471464]
[90]
Witte ME, Mahad DJ, Lassmann H, van Horssen J. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol Med 2014; 20(3): 179-87.
[http://dx.doi.org/10.1016/j.molmed.2013.11.007] [PMID: 24369898]
[91]
Muyderman H, Chen T. Mitochondrial dysfunction in amyotrophic lateral sclerosis – a valid pharmacological target? Br J Pharmacol 2014; 171(8): 2191-205.
[http://dx.doi.org/10.1111/bph.12476] [PMID: 24148000]
[92]
Folbergrová J, Kunz WS. Mitochondrial dysfunction in epilepsy. Mitochondrion 2012; 12(1): 35-40.
[http://dx.doi.org/10.1016/j.mito.2011.04.004] [PMID: 21530687]
[93]
Sulaiman SA, Rani ZM, Radin FZM, Murad NAA. Advancement in the diagnosis of mitochondrial diseases. J Transl Gene Gen 2020; 4(3): 159-87.
[http://dx.doi.org/10.20517/jtgg.2020.27]
[94]
Jurcau A. Insights into the pathogenesis of neurodegenerative diseases: Focus on mitochondrial dysfunction and oxidative stress. Int J Mol Sci 2021; 22(21): 11847.
[http://dx.doi.org/10.3390/ijms222111847] [PMID: 34769277]
[95]
Larosa V, Remacle C. Insights into the respiratory chain and oxidative stress. Biosci Rep 2018; 38(5): BSR20171492.
[http://dx.doi.org/10.1042/BSR20171492] [PMID: 30201689]
[96]
Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 2013; 8(21): 2003-14.
[PMID: 25206509]
[97]
Selvaraji S, Poh L, Natarajan V, Mallilankaraman K, Arumugam TV. Negative conditioning of mitochondrial dysfunction in age-related neurodegenerative diseases. Cond Med 2019; 2(1): 30-9.
[PMID: 31058265]
[98]
Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 2019; 15(3): 321-87.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[99]
Mebane-Sims I. Alzheimer’s Association, 2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018; 14(3): 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[100]
Waseem R, Shamsi A, Mohammad T, et al. Multispectroscopic and molecular docking insight into elucidating the interaction of irisin with Rivastigmine tartrate: A combinational therapy approach to fight Alzheimer’s disease. ACS Omega 2021; 6(11): 7910-21.
[http://dx.doi.org/10.1021/acsomega.1c00517] [PMID: 33778302]
[101]
Waseem R, Shamsi A, Mohammad T, et al. FNDC5/Irisin: Physiology and pathophysiology. Molecules 2022; 27(3): 1118.
[http://dx.doi.org/10.3390/molecules27031118] [PMID: 35164383]
[102]
Förstl H, Kurz A. Clinical features of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 1999; 249(6): 288-90.
[http://dx.doi.org/10.1007/s004060050101] [PMID: 10653284]
[103]
Waseem R, Anwar S, Khan S, et al. MAP/Microtubule affinity regulating kinase 4 inhibitory potential of Irisin: A new therapeutic strategy to combat cancer and alzheimer’s disease. Int J Mol Sci 2021; 22(20): 10986.
[http://dx.doi.org/10.3390/ijms222010986] [PMID: 34681645]
[104]
Silva DF, Selfridge JE, Lu J, e L, Cardoso SM, Swerdlow RH. Mitochondrial abnormalities in Alzheimer’s disease: Possible targets for therapeutic intervention. Adv Pharmacol 2012; 64: 83-126.
[http://dx.doi.org/10.1016/B978-0-12-394816-8.00003-9] [PMID: 22840745]
[105]
Blagov AV, Grechko AV, Nikiforov NG, Borisov EE, Sadykhov NK, Orekhov AN. Role of impaired mitochondrial dynamics processes in the pathogenesis of Alzheimer’s disease. Int J Mol Sci 2022; 23(13): 6954.
[http://dx.doi.org/10.3390/ijms23136954] [PMID: 35805958]
[106]
Flannery PJ, Trushina E. Mitochondrial dysfunction in Alzheimer’s disease and progress in mitochondria-targeted therapeutics. Curr Behav Neurosci Rep 2019; 6(3): 88-102.
[http://dx.doi.org/10.1007/s40473-019-00179-0]
[107]
Wang X, Wang W, Li L, Perry G, Lee H, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842(8): 1240-7.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[108]
Cenini G, Voos W. Mitochondria as potential targets in Alzheimer disease therapy: An update. Front Pharmacol 2019; 10: 902.
[http://dx.doi.org/10.3389/fphar.2019.00902] [PMID: 31507410]
[109]
Agrawal I, Jha S. Mitochondrial dysfunction and Alzheimer’s disease: Role of microglia. Front Aging Neurosci 2020; 12: 252.
[http://dx.doi.org/10.3389/fnagi.2020.00252] [PMID: 32973488]
[110]
Feeney CJ, Frantseva MV, Carlen PL, et al. Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. Brain Res 2008; 1198: 1-15.
[http://dx.doi.org/10.1016/j.brainres.2007.12.049] [PMID: 18261717]
[111]
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. cellular and molecular basis of neurodegeneration in Parkinson’s disease. Front Aging Neurosci 2018; 10: 109.
[http://dx.doi.org/10.3389/fnagi.2018.00109] [PMID: 29719505]
[112]
Marsili L, Rizzo G, Colosimo C. Diagnostic criteria for Parkinson’s disease: From James Parkinson to the concept of prodromal disease. Front Neurol 2018; 9: 156.
[http://dx.doi.org/10.3389/fneur.2018.00156] [PMID: 29628907]
[113]
Dickson DW. Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harb Perspect Med 2012; 2(8): a009258.
[http://dx.doi.org/10.1101/cshperspect.a009258] [PMID: 22908195]
[114]
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019; 18(6): e13031.
[http://dx.doi.org/10.1111/acel.13031] [PMID: 31432604]
[115]
Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38(5): 515-7.
[http://dx.doi.org/10.1038/ng1769] [PMID: 16604074]
[116]
Gu G, Reyes PF, Golden GT, et al. Mitochondrial DNA deletions/rearrangements in parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 2002; 61(7): 634-9.
[http://dx.doi.org/10.1093/jnen/61.7.634] [PMID: 12125742]
[117]
Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: Clinical and molecular genetic study. Lancet 2004; 364(9437): 875-82.
[http://dx.doi.org/10.1016/S0140-6736(04)16983-3] [PMID: 15351195]
[118]
Couvreur P, Vauthier C. Nanotechnology: Intelligent design to treat complex disease. Pharm Res 2006; 23(7): 1417-50.
[http://dx.doi.org/10.1007/s11095-006-0284-8] [PMID: 16779701]
[119]
Gruber J, Fong S, Chen CB, et al. Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 2013; 31(5): 563-92.
[http://dx.doi.org/10.1016/j.biotechadv.2012.09.005] [PMID: 23022622]
[120]
Lü JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009; 9(4): 325-41.
[http://dx.doi.org/10.1586/erm.09.15] [PMID: 19435455]
[121]
Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci USA 2012; 109(40): 16288-93.
[http://dx.doi.org/10.1073/pnas.1210096109] [PMID: 22991470]
[122]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[123]
Zhang E, Zhang C, Su Y, Cheng T, Shi C. Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 2011; 16(3-4): 140-6.
[http://dx.doi.org/10.1016/j.drudis.2010.12.006] [PMID: 21182981]
[124]
Weissig V, Torchilin VP. Towards mitochondrial gene therapy: DQAsomes as a strategy. J Drug Target 2001; 9(1): 1-13.
[http://dx.doi.org/10.3109/10611860108995628] [PMID: 11378519]
[125]
D’Souza GGM, Boddapati SV, Weissig V. Mitochondrial leader sequence-plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 2005; 5(5): 352-8.
[http://dx.doi.org/10.1016/j.mito.2005.07.001] [PMID: 16154389]
[126]
Kumar P, Kalonia H, Kumar A. Sesamol attenuate 3-nitropropionic acid-induced Huntington-like behavioral, biochemical, and cellular alterations in rats. J Asian Nat Prod Res 2009; 11(5): 439-50.
[http://dx.doi.org/10.1080/10286020902862194] [PMID: 19504387]
[127]
Hao S, Ji J, Zhao H, et al. Mitochondrion-targeted peptide SS-31 inhibited oxidized low-density lipoproteins-induced foam cell formation through both ROS scavenging and inhibition of cholesterol influx in RAW264. 7 cells. Molecules 2015; 20(12): 21287-97.
[http://dx.doi.org/10.3390/molecules201219764] [PMID: 26633327]
[128]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[129]
Kasote DM, Hegde MV, Katyare SS. Mitochondrial dysfunction in psychiatric and neurological diseases: Cause(s), consequence(s), and implications of antioxidant therapy. Biofactors 2013; 39(4): 392-406.
[http://dx.doi.org/10.1002/biof.1093] [PMID: 23460132]
[130]
Wojda U, Salinska E, Kuznicki J. Calcium ions in neuronal degeneration. IUBMB Life 2008; 60(9): 575-90.
[http://dx.doi.org/10.1002/iub.91] [PMID: 18478527]
[131]
Ferreiro E, Baldeiras I, Ferreira IL, et al. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: From pathogenesis to biomarkers. Int J Cell Biol 2012; 2012: 1-23.
[http://dx.doi.org/10.1155/2012/735206] [PMID: 22701485]
[132]
Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 2003; 161(1): 41-54.
[http://dx.doi.org/10.1083/jcb.200207030] [PMID: 12695498]
[133]
Giasson BI, Ischiropoulos H, Lee VMY, Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases1,2 11Guest Editors: Mark A. Smith and George Perry 22This article is part of a series of reviews on “Causes and Consequences of Oxidative Stress in Alzheimer’s Disease.” The full list of papers may be found on the homepage of the journal. Free Radic Biol Med 2002; 32(12): 1264-75.
[http://dx.doi.org/10.1016/S0891-5849(02)00804-3] [PMID: 12057764]
[134]
Andersen JK. Oxidative stress in neurodegeneration: Cause or consequence? Nat Med 2004; 10(S7) (Suppl.): S18-25.
[http://dx.doi.org/10.1038/nrn1434] [PMID: 15298006]
[135]
Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 2004; 304(5669): 448-52.
[http://dx.doi.org/10.1126/science.1091230] [PMID: 15087549]
[136]
Dumont M, Ho DJ, Calingasan NY, Xu H, Gibson G, Beal MF. Mitochondrial dihydrolipoyl succinyltransferase deficiency accelerates amyloid pathology and memory deficit in a transgenic mouse model of amyloid deposition. Free Radic Biol Med 2009; 47(7): 1019-27.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.008] [PMID: 19596066]
[137]
Shi Q, Xu H, Yu H, et al. Inactivation and reactivation of the mitochondrial α-ketoglutarate dehydrogenase complex. J Biol Chem 2011; 286(20): 17640-8.
[http://dx.doi.org/10.1074/jbc.M110.203018] [PMID: 21454586]
[138]
Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA 2004; 101(29): 10726-31.
[http://dx.doi.org/10.1073/pnas.0403649101] [PMID: 15247418]
[139]
Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer’s disease: Implications for mitochondrially targeted antioxidant therapeutics. J Biomed Biotechnol 2006; 2006(3): 1-13.
[http://dx.doi.org/10.1155/JBB/2006/31372] [PMID: 17047303]
[140]
Tranah GJ, Nalls MA, Katzman SM, et al. Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly. J Alzheimers Dis 2012; 32(2): 357-72.
[http://dx.doi.org/10.3233/JAD-2012-120466] [PMID: 22785396]
[141]
Giasson BI, Lee VMY. A new link between pesticides and Parkinson’s disease. Nat Neurosci 2000; 3(12): 1227-8.
[http://dx.doi.org/10.1038/81737] [PMID: 11100135]
[142]
Lindqvist D, Kaufman E, Brundin L, Hall S, Surova Y, Hansson O. Non-motor symptoms in patients with Parkinson’s disease–correlations with inflammatory cytokines in serum. PLoS One 2012; 7(10): e47387.
[http://dx.doi.org/10.1371/journal.pone.0047387]
[143]
Abeliovich A. Mitochondrial damage control. Nature 2010; 463(7282): 744-5.
[http://dx.doi.org/10.1038/463744a] [PMID: 20148026]
[144]
Matsui H, Gavinio R, Asano T, et al. PINK1 and Parkin complementarily protect dopaminergic neurons in vertebrates. Hum Mol Genet 2013; 22(12): 2423-34.
[http://dx.doi.org/10.1093/hmg/ddt095] [PMID: 23449626]
[145]
Momb J, Lewandowski JP, Bryant JD, et al. Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc Natl Acad Sci USA 2013; 110(2): 549-54.
[http://dx.doi.org/10.1073/pnas.1211199110] [PMID: 23267094]
[146]
Alleyne T, Mohan N, Adogwa A. Elevated ferric, calcium and magnesium ions in the brain induce protein aggregation in brain mitochondria. West Indian Med J 2012; 61(2): 122-7.
[PMID: 23155955]
[147]
Chaturvedi RK, Beal MF. Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol Cell Neurosci 2013; 55: 101-14.
[http://dx.doi.org/10.1016/j.mcn.2012.11.011] [PMID: 23220289]
[148]
Helguera P, Seiglie J, Rodriguez J, Hanna M, Helguera G, Busciglio J. Adaptive downregulation of mitochondrial function in down syndrome. Cell Metab 2013; 17(1): 132-40.
[http://dx.doi.org/10.1016/j.cmet.2012.12.005] [PMID: 23312288]
[149]
Siddiqui A, Rivera-Sánchez S, Castro MR, et al. Mitochondrial DNA damage Is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radic Biol Med 2012; 53(7): 1478-88.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.008] [PMID: 22709585]
[150]
Marobbio CMT, Pisano I, Porcelli V, Lasorsa FM, Palmieri L. Rapamycin reduces oxidative stress in frataxin-deficient yeast cells. Mitochondrion 2012; 12(1): 156-61.
[http://dx.doi.org/10.1016/j.mito.2011.07.001] [PMID: 21782979]
[151]
Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E. Friedreich ataxia: Molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 2010; 13(5): 651-90.
[http://dx.doi.org/10.1089/ars.2009.3015] [PMID: 20156111]
[152]
Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann Med 2018; 50(2): 121-7.
[http://dx.doi.org/10.1080/07853890.2017.1417631] [PMID: 29237304]
[153]
Esteves AR, Arduíno DM, Swerdlow RH, Oliveira CR, Cardoso SM. Dysfunctional mitochondria uphold calpain activation: Contribution to Parkinson’s disease pathology. Neurobiol Dis 2010; 37(3): 723-30.
[http://dx.doi.org/10.1016/j.nbd.2009.12.011] [PMID: 20034566]
[154]
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol 2019; 234(6): 8152-61.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[155]
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol 2018; 16: 263-75.
[http://dx.doi.org/10.1016/j.redox.2018.03.002] [PMID: 29549824]
[156]
Gao J, Wang L, Liu J, Xie F, Su B, Wang X. Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants 2017; 6(2): 25.
[http://dx.doi.org/10.3390/antiox6020025] [PMID: 28379197]
[157]
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1066-77.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy