Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Interaction between Enzymatic Detergent and Textile Metals/Metal Oxide Nanoparticles

In Press, (this is not the final "Version of Record"). Available online 18 June, 2024
Author(s): Fateme Mirzajani* and Nora Mohseni
Published on: 18 June, 2024

Article ID: e180624231088

DOI: 10.2174/0122106812309716240610112654

Price: $95

Abstract

Introduction: Nanoparticles are used in industrial products, such as textiles, to induce novel properties, such as antibacterial, antistatic, UV blocking, self-cleaning properties, wrinkle resistance, and water and oil repellent. Moreover, using enzymes (protease, lipase, amylase, and cellulase) is widespread in detergent industries for washing conditions.

Methods: This research examines the interactions between metal (Ag) and metal oxide nanoparticles (TiO2 and ZnO NPs) and amylase, cellulase, protease, and lipase as detergent enzymes and their impacts on enzyme activity. Using a central composite design, a total of 320 experiments under different conditions were conducted to determine the extent of change in enzyme activity. Results indicated that lipase had the lowest activity under interaction with silver nanoparticles, while cellulase and protease were most affected by interactions with Ag NPs and a-TiO2.

Results: The surface response of the examined parameters showed the most effect from the interaction time and temperature and the enzyme/nanoparticle ratio and temperature parameters. This research result demonstrated that physical, chemical, and biological differences existed between nanoparticle and enzyme interface.

Conclusion: The findings can be used to improve the interaction between nanoparticles and detergent enzymes in washing conditions, aiming to retain their traits.

[1]
Mohajerani, A.; Burnett, L.; Smith, J.V.; Kurmus, H.; Milas, J.; Arulrajah, A.; Horpibulsuk, S.; Abdul Kadir, A. Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials, 2019, 12(19), 3052.
[http://dx.doi.org/10.3390/ma12193052] [PMID: 31547011]
[2]
Gupta, R.; Xie, H. Nanoparticles in daily life: Applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol., 2018, 37, 209-230.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009]
[3]
Joseph, T.; Kar Mahapatra, D.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a unique position in medicine. Nanomaterials, 2023, 13(3), 574.
[http://dx.doi.org/10.3390/nano13030574] [PMID: 36770535]
[4]
Mao, B.H.; Tsai, J.C.; Chen, C.W.; Yan, S.J.; Wang, Y.J. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology, 2016, 10(8), 1021-1040.
[http://dx.doi.org/10.1080/17435390.2016.1189614] [PMID: 27240148]
[5]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[6]
Han, W.; Yu, Y.; Li, N.; Wang, L. Application and safety assessment for nano-composite materials in food packaging. Chin. Sci. Bull., 2011, 56(12), 1216-1225.
[http://dx.doi.org/10.1007/s11434-010-4326-6]
[7]
Singh, S.; Hasan, M.R.; Sharma, P.; Narang, J. Graphene nanomaterials: The wondering material from synthesis to applications. Sensors Int., 2022, 3, 100190.
[http://dx.doi.org/10.1016/j.sintl.2022.100190]
[8]
Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnology, 2022, 20(1), 262.
[http://dx.doi.org/10.1186/s12951-022-01477-8] [PMID: 35672712]
[9]
Zhang, N.; Xiong, G.; Liu, Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front. Bioeng. Biotechnol., 2022, 10, 1001572.
[http://dx.doi.org/10.3389/fbioe.2022.1001572] [PMID: 36619393]
[10]
Singh, P.; Ali, S.W.; Kale, R.D. Antimicrobial Nanomaterials as Advanced Coatings for Self-Sanitizing of Textile Clothing and Personal Protective Equipment. ACS Omega, 2023, 8(9), 8159-8171.
[http://dx.doi.org/10.1021/acsomega.2c06343] [PMID: 36910928]
[11]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[12]
Elia, V.; Marrari, L.A.; Napoli, E. Aqueous nanostructures in water induced by electromagnetic fields emitted by EDS. J. Therm. Anal. Calorim., 2012, 107(2), 843-851.
[http://dx.doi.org/10.1007/s10973-011-1484-y]
[13]
Singh, R.; Rabiei Dolatabadi, Z.; Tripathi, N. Recent progress of filtration mechanism to fabricate the effective COVID-masks: A review. J. Composit. Comp., 2021, 3, 218-229.
[http://dx.doi.org/10.52547/jcc.3.4.3]
[14]
Nikolova, M.P.; Joshi, P.B.; Chavali, M.S. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics, 2023, 15(6), 1650.
[http://dx.doi.org/10.3390/pharmaceutics15061650] [PMID: 37376098]
[15]
Taha, T.B.; Barzinjy, A.A.; Hussain, F.H.S.; Nurtayeva, T. Nanotechnology and Computer Science: Trends and advances. Memories - Materials, Devices, Circuits and Systems, 2022, 2, 100011.
[http://dx.doi.org/10.1016/j.memori.2022.100011]
[16]
Kumar, N.; Chauhan, N.S. Nano-Biocatalysts: Potential Biotechnological Applications. Indian J. Microbiol., 2021, 61(4), 441-448.
[http://dx.doi.org/10.1007/s12088-021-00975-x] [PMID: 34744199]
[17]
Chandra, P. Microbial lipases and their industrial applications: A comprehensive review. Microb Cell Fact, 2020, 19, 169.
[18]
Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.S. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega, 2023, 8(6), 5184-5196.
[http://dx.doi.org/10.1021/acsomega.2c07560] [PMID: 36816672]
[19]
Falch, E.A. Industrial enzymes — Developments in production and application. Biotechnol. Adv., 1991, 9(4), 643-658.
[http://dx.doi.org/10.1016/0734-9750(91)90736-F] [PMID: 14542053]
[20]
Hauthal, H.G. Basics, ingredients, detergents, product safety and sustainability. Tenside Surfactants Deterg., 2008, 45, 30-42.
[http://dx.doi.org/10.3139/113.100361]
[21]
García-Álvarez, R.; Vallet-Regí, M. Hard and soft protein corona of nanomaterials: Analysis and relevance. Nanomaterials (Basel), 2021, 11(4), 888.
[http://dx.doi.org/10.3390/nano11040888] [PMID: 33807228]
[22]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[23]
Liu, N.; Tang, M.; Ding, J. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. Chemosphere, 2020, 245, 125624.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125624] [PMID: 31864050]
[24]
Bashiri, G.; Padilla, M.S.; Swingle, K.L.; Shepherd, S.J.; Mitchell, M.J.; Wang, K. Nanoparticle protein corona: From structure and function to therapeutic targeting. Lab Chip, 2023, 23(6), 1432-1466.
[http://dx.doi.org/10.1039/D2LC00799A] [PMID: 36655824]
[25]
Abarca-Cabrera, L.; Fraga-García, P.; Berensmeier, S. Bio-nano interactions: Binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater. Res., 2021, 25(1), 12.
[http://dx.doi.org/10.1186/s40824-021-00212-y] [PMID: 33883044]
[26]
Durán, N.; Silveira, C.P.; Durán, M.; Martinez, D.S.T. Silver nanoparticle protein corona and toxicity: A mini-review. J. Nanobiotechnol., 2015, 13(1), 55.
[http://dx.doi.org/10.1186/s12951-015-0114-4] [PMID: 26337542]
[27]
Mahmoudi, M.; Landry, M.P.; Moore, A.; Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater., 2023, 8(7), 422-438.
[http://dx.doi.org/10.1038/s41578-023-00552-2] [PMID: 37361608]
[28]
Pearson, R.M.; Juettner, V.V.; Hong, S. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Front Chem., 2014, 2, 108.
[http://dx.doi.org/10.3389/fchem.2014.00108] [PMID: 25506050]
[29]
Huang, W.; Xiao, G.; Zhang, Y.; Min, W. Research progress and application opportunities of nanoparticle–protein corona complexes. Biomed. Pharmacother., 2021, 139, 111541.
[http://dx.doi.org/10.1016/j.biopha.2021.111541] [PMID: 33848776]
[30]
Tang, Z.; Xiao, Y.; Kong, N.; Liu, C.; Chen, W.; Huang, X.; Xu, D.; Ouyang, J.; Feng, C.; Wang, C.; Wang, J.; Zhang, H.; Tao, W. Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharm. Sin. B, 2021, 11(11), 3447-3464.
[http://dx.doi.org/10.1016/j.apsb.2021.05.004] [PMID: 34900529]
[31]
Mishra, R.K.; Ahmad, A.; Vyawahare, A.; Alam, P.; Khan, T.H.; Khan, R. Biological effects of formation of protein corona onto nanoparticles. Int. J. Biol. Macromol., 2021, 175, 1-18.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.152] [PMID: 33508360]
[32]
Pederzoli, F.; Tosi, G.; Vandelli, M.A.; Belletti, D.; Forni, F.; Ruozi, B. Protein corona and nanoparticles: how can we investigate on? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(6), e1467.
[http://dx.doi.org/10.1002/wnan.1467] [PMID: 28296346]
[33]
Charbgoo, F.; Nejabat, M.; Abnous, K.; Soltani, F.; Taghdisi, S.M.; Alibolandi, M.; Thomas Shier, W.; Steele, T.W.J.; Ramezani, M. Gold nanoparticle should understand protein corona for being a clinical nanomaterial. J. Control. Release, 2018, 272, 39-53.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.002] [PMID: 29305922]
[34]
Wang, H.; Shang, L.; Maffre, P.; Hohmann, S.; Kirschhöfer, F.; Brenner-Weiß, G.; Nienhaus, G.U. The nature of a hard protein corona forming on quantum dots exposed to human blood serum. Small, 2016, 12(42), 5836-5844.
[http://dx.doi.org/10.1002/smll.201602283] [PMID: 27606563]
[35]
Alshameri, A.W.; Owais, M. 2022, Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review., Open Nano., 2022, 8, 100077.
[http://dx.doi.org/10.1016/j.onano.2022.100077]
[36]
Zhao, Y.; Chu, Q.; Shi, X.; Zheng, X.; Shen, X.; Zhang, Y. Toxicity testing of four silver nanoparticle-coated dental castings in 3-D LO2 cell cultures. J. Zhejiang Univ. Sci. B, 2018, 19(2), 159-167.
[http://dx.doi.org/10.1631/jzus.B1600482] [PMID: 29405043]
[37]
Yu, Z.; Wang, W.; Kong, F.; Lin, M.; Mustapha, A. Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells. Int. J. Biol. Macromol., 2019, 129, 887-894.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.084] [PMID: 30776442]
[38]
Pandey, V.K.; Islam, R.U.; Shams, R.; Dar, A.H. A comprehensive review on the application of essential oils as bioactive compounds in Nano-emulsion based edible coatings of fruits and vegetables. Appl. Food Res., 2022, 2(1), 100042.
[http://dx.doi.org/10.1016/j.afres.2022.100042]
[39]
Russ Algar, W.; Jeen, T.; Massey, M. Small surface, big effects, and big challenges: Toward understanding enzymatic activity at the inorganic nanoparticle–substrate interface. Langmuir, 2019, 35(22), 7067-7091.
[http://dx.doi.org/10.1021/acs.langmuir.8b02733]
[40]
Aloulou, A.; Rodriguez, J.A.; Fernandez, S.; van Oosterhout, D.; Puccinelli, D.; Carrière, F. Exploring the specific features of interfacial enzymology based on lipase studies. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2006, 1761(9), 995-1013.
[http://dx.doi.org/10.1016/j.bbalip.2006.06.009] [PMID: 16931141]
[41]
Saptarshi, S.R.; Duschl, A.; Lopata, A.L. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. J. Nanobiotechnol., 2013, 11(1), 26.
[http://dx.doi.org/10.1186/1477-3155-11-26] [PMID: 23870291]
[42]
Park, S.J. Protein–nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles. Int. J. Nanomedicine, 2020, 15, 5783-5802.
[http://dx.doi.org/10.2147/IJN.S254808] [PMID: 32821101]
[43]
Eisazadeh, B.; Mirzajani, F.; Sefidbakht, Y. How is the effect of silver nanoparticles and lipase/cellulase enzymes on each other? Iran. J. Sci. Technol. Trans. A Sci., 2020, 44(1), 27-35.
[http://dx.doi.org/10.1007/s40995-020-00820-8]
[44]
Tomak, A.; Yilancioglu, B.; Winkler, D.; Karakus, C.O. Protein corona formation on silver nanoparticles under different conditions. Colloids Surf. A Physicochem. Eng. Asp., 2022, 651, 129666.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129666]
[45]
Weber, C.; Simon, J.; Mailänder, V.; Morsbach, S.; Landfester, K. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater., 2018, 76, 217-224.
[http://dx.doi.org/10.1016/j.actbio.2018.05.057] [PMID: 29885856]
[46]
Breznica, P.; Koliqi, R.; Daka, A. A review of the current understanding of nanoparticles protein corona composition. Med. Pharm. Rep., 2020, 93(4), 342-350.
[http://dx.doi.org/10.15386/mpr-1756] [PMID: 33225259]
[47]
Alizadeh, N.; Salimi, A. Multienzymes activity of metals and metal oxide nanomaterials: Applications from biotechnology to medicine and environmental engineering. J. Nanobiotechnol., 2021, 19(1), 1-31.
[http://dx.doi.org/10.1186/s12951-021-00771-1]
[48]
Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y.; Mishra, R.K.; Marchon, D.; Flatt, R.J.; Estrela-Lopis, I.; Llop, J.; Moya, S.; Ziolo, R.F. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf. Sci. Rep., 2017, 72(1), 1-58.
[http://dx.doi.org/10.1016/j.surfrep.2017.02.001]
[49]
Jain, A.; Singh, S.K.; Arya, S.K.; Kundu, S.C.; Kapoor, S. Protein nanoparticles: Promising platforms for drug delivery applications. ACS Biomater. Sci. Eng., 2018, 4(12), 3939-3961.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01098] [PMID: 33418796]
[50]
Khoshnevisan, K.; Vakhshiteh, F.; Barkhi, M.; Baharifar, H.; Poor-Akbar, E.; Zari, N.; Stamatis, H.; Bordbar, A-K. Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances. Molecular Catalysis, 2017, 442, 66-73.
[http://dx.doi.org/10.1016/j.mcat.2017.09.006]
[51]
Zhu, R.R.; Wang, W.R.; Sun, X.Y.; Liu, H.; Wang, S.L. Enzyme activity inhibition and secondary structure disruption of nano-TiO2 on pepsin. Toxicol. In Vitro, 2010, 24(6), 1639-1647.
[http://dx.doi.org/10.1016/j.tiv.2010.06.002] [PMID: 20541600]
[52]
Weng, Y.; Yang, G.; Li, Y.; Xu, L.; Chen, X.; Song, H.; Zhao, C.X. Alginate-based materials for enzyme encapsulation. Adv. Colloid Interface Sci., 2023, 318, 102957.
[http://dx.doi.org/10.1016/j.cis.2023.102957] [PMID: 37392664]
[53]
Dik, G.; Bakar, B.; Ulu, A.; Ateş, B. Propelling of enzyme activity by using different triggering strategies: Applications and perspectives. Ind. Eng. Chem. Res., 2023, 62(36), 14111-14129.
[http://dx.doi.org/10.1021/acs.iecr.3c01678]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy