Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Advances in the Development of Non-Structural Protein 1 (NsP1) Inhibitors for the Treatment of Chikungunya Virus Infection

In Press, (this is not the final "Version of Record"). Available online 15 June, 2024
Author(s): Timoteo Delgado-Maldonado, Antonio Moreno-Herrera and Gildardo Rivera*
Published on: 15 June, 2024

DOI: 10.2174/0113895575301735240607055839

Price: $95

Abstract

Chikungunya is a re-emerging viral infection of worldwide concern, and new antiviral therapeutics are necessary to combat this disease. Inhibitors of the non-structural protein 1 (NsP1), which shows Methyltransferase (MTase) activity and plays a crucial in the Chikungunya virus (ChikV) replication, are exhibiting promising results. This review aimed to describe recent advances in the development of NsP1 inhibitors for the treatment of ChikV disease. High-throughput screening of novel ChikV NsP1 inhibitors has been widely performed for the identification of new molecule hits through fluorescence polarization, Western blotting, ELISA-based assay, and capillary electrophoresis assays. Additionally, cell-based assays confirmed that the inhibition of ChikV NsP1 abolishes viral replication. In summary, pyrimidine and pyrimidin-7(6H)-one derivatives, GTP and nucleoside analogs have been demonstrated to show inhibitory activity and are considered promising scaffolds that provide useful knowledge for the research and development of new NsP1 inhibitors as potential treatment of Chikungunya re-emerging disease.

[1]
Chen, R.; Puri, V.; Fedorova, N.; Lin, D.; Hari, K.L.; Jain, R.; Rodas, J.D.; Das, S.R.; Shabman, R.S.; Weaver, S.C. Comprehensive genome scale phylogenetic study provides new insights on the global expansion of chikungunya virus. J. Virol., 2016, 90(23), 10600-10611.
[http://dx.doi.org/10.1128/JVI.01166-16] [PMID: 27654297]
[2]
De Lima Cavalcanti, T.Y.V.; Pereira, M.R.; de Paula, S.O.; Franca, R.F.O. A review on chikungunya virus epidemiology, pathogenesis and current vaccine development. Viruses, 2022, 14(5), 969.
[http://dx.doi.org/10.3390/v14050969] [PMID: 35632709]
[3]
Tanaka, A.; Suzuki, Y. Genome-wide approaches to unravel the host factors involved in chikungunya virus replication. Front. Microbiol., 2022, 13, 866271.
[http://dx.doi.org/10.3389/fmicb.2022.866271] [PMID: 35401487]
[4]
Bartholomeeusen, K.; Daniel, M.; LaBeaud, D.A.; Gasque, P.; Peeling, R.W.; Stephenson, K.E.; Ng, L.F.P.; Ariën, K.K. Chikungunya fever. Nat. Rev. Dis. Primers, 2023, 9(1), 17.
[http://dx.doi.org/10.1038/s41572-023-00429-2] [PMID: 37024497]
[5]
Vega-Rúa, A.; Lourenço-de-Oliveira, R.; Mousson, L.; Vazeille, M.; Fuchs, S.; Yébakima, A.; Gustave, J.; Girod, R.; Dusfour, I.; Leparc-Goffart, I.; Vanlandingham, D.L.; Huang, Y.J.S.; Lounibos, L.P.; Mohamed Ali, S.; Nougairede, A.; De Lamballerie, X.; Failloux, A.B. Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe. PLoS Negl. Trop. Dis., 2015, 9(5), e0003780.
[http://dx.doi.org/10.1371/journal.pntd.0003780] [PMID: 25993633]
[6]
Burt, F.J.; Chen, W.; Miner, J.J.; Lenschow, D.J.; Merits, A.; Schnettler, E.; Kohl, A.; Rudd, P.A.; Taylor, A.; Herrero, L.J.; Zaid, A.; Ng, L.F.P.; Mahalingam, S. Chikungunya virus: An update on the biology and pathogenesis of this emerging pathogen. Lancet Infect. Dis., 2017, 17(4), e107-e117.
[http://dx.doi.org/10.1016/S1473-3099(16)30385-1] [PMID: 28159534]
[7]
Russo, G.; Subissi, L.; Rezza, G. Chikungunya fever in Africa: A systematic review. Pathog. Glob. Health, 2020, 114(3), 111-119.
[http://dx.doi.org/10.1080/20477724.2020.1748965] [PMID: 32308158]
[8]
Natrajan, M.S.; Rojas, A.; Waggoner, J.J. Beyond fever and pain: Diagnostic methods for chikungunya virus. J. Clin. Microbiol., 2019, 57(6), e00350-19.
[http://dx.doi.org/10.1128/JCM.00350-19] [PMID: 30995993]
[9]
Liu, X.; Wang, Y.; Zhao, X.Q. Dynamics of a climate-based periodic Chikungunya model with incubation period. Appl. Math. Model., 2020, 80, 151-168.
[http://dx.doi.org/10.1016/j.apm.2019.11.038]
[10]
Montalvo Zurbia-Flores, G.; Reyes-Sandoval, A.; Kim, Y.C. Chikungunya virus: Priority pathogen or passing trend? Vaccines, 2023, 11(3), 568.
[http://dx.doi.org/10.3390/vaccines11030568] [PMID: 36992153]
[11]
Ganesan, V.; Duan, B.; Reid, S. Chikungunya virus: Pathophysiology, mechanism, and modeling. Viruses, 2017, 9(12), 368.
[http://dx.doi.org/10.3390/v9120368] [PMID: 29194359]
[12]
Mehta, R.; Gerardin, P.; de Brito, C.A.A.; Soares, C.N.; Ferreira, M.L.B.; Solomon, T. The neurological complications of chikungunya virus: A systematic review. Rev. Med. Virol., 2018, 28(3), e1978.
[http://dx.doi.org/10.1002/rmv.1978] [PMID: 29671914]
[13]
World Health Organization (WHO). Chikungunya. 2023. Available from: https://www.who.int/health-topics/chikungunya#tab=tab_1 (accessed 19 October 2023).
[14]
Morrison, T.E. Reemergence of chikungunya virus. J. Virol., 2014, 88(20), 11644-11647.
[http://dx.doi.org/10.1128/JVI.01432-14] [PMID: 25078691]
[15]
Schrauf, S.; Tschismarov, R.; Tauber, E.; Ramsauer, K. Current efforts in the development of vaccines for the prevention of Zika and Chikungunya virus infections. Front. Immunol., 2020, 11, 592.
[http://dx.doi.org/10.3389/fimmu.2020.00592] [PMID: 32373111]
[16]
Nyamwaya, D.K.; Thumbi, S.M.; Bejon, P.; Warimwe, G.M.; Mokaya, J. The global burden of Chikungunya fever among children: A systematic literature review and meta-analysis. PLOS glob. Pub. health, 2022, 2(12), e0000914.
[17]
Mohan, A.; Kiran, D.N.; Manohar, C.; Kumar, P. Epidemiology, clinical manifestations, and diagnosis of chikungunya fever: Lessons learned from the re-emerging epidemic. Indian J. Dermatol., 2010, 55(1), 54-63.
[http://dx.doi.org/10.4103/0019-5154.60355] [PMID: 20418981]
[18]
Nyamwaya, D.K.; Otiende, M.; Omuoyo, D.O.; Githinji, G.; Karanja, H.K.; Gitonga, J.N.R.; R de Laurent, Z.; Otieno, J.R.; Sang, R.; Kamau, E.; Cheruiyot, S.; Otieno, E.; Agoti, C.N.; Bejon, P.; Thumbi, S.M.; Warimwe, G.M. Endemic chikungunya fever in Kenyan children: A prospective cohort study. BMC Infect. Dis., 2021, 21(1), 186.
[http://dx.doi.org/10.1186/s12879-021-05875-5] [PMID: 33602147]
[19]
Chansaenroj, J.; Wanlapakorn, N.; Ngamsaithong, C.; Thongmee, T.; Na nakorn, N.; Siriyasatien, P.; Vongpunsawad, S.; Poovorawan, Y. Genome sequences of chikungunya virus isolates from an outbreak in southwest Bangkok in 2018. Arch. Virol., 2020, 165(2), 445-450.
[http://dx.doi.org/10.1007/s00705-019-04509-1] [PMID: 31834526]
[20]
Pongsiri, P.; Auksornkitti, V.; Theamboonlers, A.; Luplertlop, N.; Rianthavorn, P.; Poovorawan, Y. Entire genome characterization of Chikungunya virus from the 2008-2009 outbreaks in Thailand. Trop. Biomed., 2010, 27(2), 167-176.
[PMID: 20962712]
[21]
Narula, A.; Pandey, R.K.; Khatoon, N.; Mishra, A.; Prajapati, V.K. Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. Infect. Genet. Evol., 2018, 61, 4-15.
[http://dx.doi.org/10.1016/j.meegid.2018.03.007] [PMID: 29535024]
[22]
Bassetto, M.; De Burghgraeve, T.; Delang, L.; Massarotti, A.; Coluccia, A.; Zonta, N.; Gatti, V.; Colombano, G.; Sorba, G.; Silvestri, R.; Tron, G.C.; Neyts, J.; Leyssen, P.; Brancale, A. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Res., 2013, 98(1), 12-18.
[http://dx.doi.org/10.1016/j.antiviral.2013.01.002] [PMID: 23380636]
[23]
Ahola, T.; Merits, Okeoma, C.M., Ed.; A. Functions of Chikungunya virus nonstructural proteins In: Chikungunya Virus; Springer, 2016; pp. 75-98.
[24]
da Silva-Júnior, E.F.; Leoncini, G.O.; Rodrigues, É.E.S.; Aquino, T.M.; Araújo-Júnior, J.X. The medicinal chemistry of Chikungunya virus. Bioorg. Med. Chem., 2017, 25(16), 4219-4244.
[http://dx.doi.org/10.1016/j.bmc.2017.06.049] [PMID: 28689975]
[25]
Frolov, I.; Frolova, E.I. Molecular virology of chikungunya virus. Curr. Top. Microbiol. Immunol., 2022, 435, 1-31.
[PMID: 30599050]
[26]
Müller, M.; Slivinski, N.; Todd, E.J.A.A.; Khalid, H.; Li, R.; Karwatka, M.; Merits, A.; Mankouri, J.; Tuplin, A. Chikungunya virus requires cellular chloride channels for efficient genome replication. PLoS Negl. Trop. Dis., 2019, 13(9), e0007703.
[http://dx.doi.org/10.1371/journal.pntd.0007703] [PMID: 31483794]
[27]
Asner, S.A.; Science, M.E.; Tran, D.; Smieja, M.; Merglen, A.; Mertz, D. Clinical disease severity of respiratory viral co-infection versus single viral infection: A systematic review and meta-analysis. PLoS One, 2014, 9(6), e99392.
[http://dx.doi.org/10.1371/journal.pone.0099392] [PMID: 24932493]
[28]
Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res., 2020, 285, 198005.
[http://dx.doi.org/10.1016/j.virusres.2020.198005] [PMID: 32408156]
[29]
Alter, M.J. Epidemiology of viral hepatitis and HIV co-infection. J. Hepatol., 2006, 44(1)(Suppl.), S6-S9.
[http://dx.doi.org/10.1016/j.jhep.2005.11.004] [PMID: 16352363]
[30]
Soriano, V.; Vispo, E.; Labarga, P.; Medrano, J.; Barreiro, P. Viral hepatitis and HIV co-infection. Antiviral Res., 2010, 85(1), 303-315.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.021] [PMID: 19887087]
[31]
Mandelia, Y.; Procop, G.W.; Richter, S.S.; Worley, S.; Liu, W.; Esper, F. Dynamics and predisposition of respiratory viral co-infections in children and adults. Clin. Microbiol. Infect., 2021, 27(4), 631.e1-631.e6.
[http://dx.doi.org/10.1016/j.cmi.2020.05.042] [PMID: 32540470]
[32]
Machado, L.C.; de Morais-Sobral, M.C.; Campos, T.L.; Pereira, M.R.; De Albuquerque, M.F.P.M.; Gilbert, C.; Franca, R.F.O.; Wallau, G.L. Genome sequencing reveals coinfection by multiple chikungunya virus genotypes in a recent outbreak in Brazil. PLoS Negl. Trop. Dis., 2019, 13(5), e0007332.
[http://dx.doi.org/10.1371/journal.pntd.0007332] [PMID: 31095561]
[33]
Rodríguez-Morales, A.J.; Paniz-Mondolfi, A.E. Venezuela: Far from the path to dengue and chikungunya control. J. Clin. Virol., 2015, 66, 60-61.
[http://dx.doi.org/10.1016/j.jcv.2015.02.020] [PMID: 25866339]
[34]
Prata-Barbosa, A.; Cleto-Yamane, T.L.; Robaina, J.R.; Guastavino, A.B.; De Magalhães-Barbosa, M.C.; Brindeiro, R.M.; Medronho, R.A.; Da Cunha, A.J.L.A. Co-infection with Zika and Chikungunya viruses associated with fetal death-A case report. Int. J. Infect. Dis., 2018, 72, 25-27.
[http://dx.doi.org/10.1016/j.ijid.2018.04.4320] [PMID: 29738826]
[35]
Subudhi, B.; Chattopadhyay, S.; Mishra, P.; Kumar, A. Current strategies for inhibition of Chikungunya infection. Viruses, 2018, 10(5), 235.
[http://dx.doi.org/10.3390/v10050235] [PMID: 29751486]
[36]
Delgado-Maldonado, T.; Moreno-Herrera, A.; Pujadas, G.; Vázquez-Jiménez, L.K.; González-González, A.; Rivera, G. Recent advances in the development of methyltransferase (MTase) inhibitors against (re)emerging arboviruses diseases dengue and Zika. Eur. J. Med. Chem., 2023, 252, 115290.
[http://dx.doi.org/10.1016/j.ejmech.2023.115290] [PMID: 36958266]
[37]
Centers for Disease Control and Prevention (CDC). Chikungunya Virus. 2024. Available from: https://www.cdc.gov/chikungunya/index.html (accessed 04 April 2024).
[38]
Battisti, V.; Urban, E.; Langer, T. Antivirals against the Chikungunya virus. Viruses, 2021, 13(7), 1307.
[http://dx.doi.org/10.3390/v13071307] [PMID: 34372513]
[39]
Delogu, I.; De Lamballerie, X. Chikungunya disease and chloroquine treatment. J. Med. Virol., 2011, 83(6), 1058-1059.
[http://dx.doi.org/10.1002/jmv.22019] [PMID: 21503920]
[40]
Adarsh, M.B.; Sharma, S.K.; Dwivedi, P.; Singh, M.P.; Dhir, V.; Jain, S. Methotrexate in early chikungunya arthritis: A 6 month randomized controlled open-label trial. Curr. Rheumatol. Rev., 2020, 16(4), 319-323.
[http://dx.doi.org/10.2174/1573397115666190925154140] [PMID: 31858912]
[41]
Rothan, H.A.; Bahrani, H.; Mohamed, Z.; Teoh, T.C.; Shankar, E.M.; Rahman, N.A.; Yusof, R. A combination of doxycycline and ribavirin alleviated chikungunya infection. PLoS One, 2015, 10(5), e0126360.
[http://dx.doi.org/10.1371/journal.pone.0126360] [PMID: 25970853]
[42]
Vu, D.M.; Jungkind, D.; LaBeaud, A.D. Chikungunya virus. Clin. Lab. Med., 2017, 37(2), 371-382.
[http://dx.doi.org/10.1016/j.cll.2017.01.008] [PMID: 28457355]
[43]
Delang, L.; Segura Guerrero, N.; Tas, A.; Quérat, G.; Pastorino, B.; Froeyen, M.; Dallmeier, K.; Jochmans, D.; Herdewijn, P.; Bello, F.; Snijder, E.J.; De Lamballerie, X.; Martina, B.; Neyts, J.; van Hemert, M.J.; Leyssen, P. Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. J. Antimicrob. Chemother., 2014, 69(10), 2770-2784.
[http://dx.doi.org/10.1093/jac/dku209] [PMID: 24951535]
[44]
Franco, E.J.; Rodriquez, J.L.; Pomeroy, J.J.; Hanrahan, K.C.; Brown, A.N. The effectiveness of antiviral agents with broad-spectrum activity against Chikungunya virus varies between host cell lines. Antivir. Chem. Chemother., 2018, 26
[http://dx.doi.org/10.1177/2040206618807580] [PMID: 30354193]
[45]
Ferreira, A.C.; Reis, P.A.; de Freitas, C.S.; Sacramento, C.Q.; Villas Bôas Hoelz, L.; Bastos, M.M.; Mattos, M.; Rocha, N.; Gomes de Azevedo Quintanilha, I.; Da Silva Gouveia Pedrosa, C.; Rocha Quintino Souza, L.; Correia Loiola, E.; Trindade, P.; Rangel Vieira, Y.; Barbosa-Lima, G.; de Castro Faria Neto, H.C.; Boechat, N.; Rehen, S.K.; Brüning, K.; Bozza, F.A.; Bozza, P.T.; Souza, T.M.L. Beyond members of the Flaviviridae family, sofosbuvir also inhibits chikungunya virus replication. Antimicrob. Agents Chemother., 2019, 63(2), e01389-18.
[http://dx.doi.org/10.1128/AAC.01389-18] [PMID: 30455237]
[46]
Marra, R.K.F.; Kümmerle, A.E.; Guedes, G.P.; Barros, C.S.; Gomes, R.S.P.; Cirne-Santos, C.C.; Paixão, I.C.N.P.; Neves, A.P. Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(2), 126881.
[http://dx.doi.org/10.1016/j.bmcl.2019.126881] [PMID: 31843348]
[47]
Battini, L.; Fidalgo, D.M.; Álvarez, D.E.; Bollini, M. Discovery of a potent and selective chikungunya virus envelope protein inhibitor through computer-aided drug design. ACS Infect. Dis., 2021, 7(6), 1503-1518.
[http://dx.doi.org/10.1021/acsinfecdis.0c00915] [PMID: 34048233]
[48]
Ivanova, L.; Rausalu, K.; Ošeka, M.; Kananovich, D.G.; Žusinaite, E.; Tammiku-Taul, J.; Lopp, M.; Merits, A.; Karelson, M. Novel analogues of the chikungunya virus protease inhibitor: molecular design, synthesis, and biological evaluation. ACS Omega, 2021, 6(16), 10884-10896.
[http://dx.doi.org/10.1021/acsomega.1c00625] [PMID: 34056242]
[49]
Zhang, S.; Garzan, A.; Haese, N.; Bostwick, R.; Martinez-Gzegozewska, Y.; Rasmussen, L.; Streblow, D.N.; Haise, M.T.; Pathak, A.K.; Augelli-Szafran, C.E.; Wu, M. Pyrimidone inhibitors targeting Chikungunya Virus nsP3 macrodomain by fragment-based drug design. PLoS One, 2021, 16(1), e0245013.
[http://dx.doi.org/10.1371/journal.pone.0245013] [PMID: 33482665]
[50]
Policastro, L.; Dolci, I.; Godoy, A.; Silva Júnior, J.; Ruiz, U.; Santos, I.; Jardim, A.; Samby, K.; Burrows, J.; Wells, T.; Gil, L.; Oliva, G.; Fernandes, R. The antifungal itraconazole is a potent inhibitor of chikungunya virus replication. Viruses, 2022, 14(7), 1351.
[http://dx.doi.org/10.3390/v14071351] [PMID: 35891332]
[51]
Puhl, A.C.; Fernandes, R.S.; Godoy, A.S.; Gil, L.H.V.G.; Oliva, G.; Ekins, S. The protein disulfide isomerase inhibitor 3-methyltoxoflavin inhibits Chikungunya virus. Bioorg. Med. Chem., 2023, 83, 117239.
[http://dx.doi.org/10.1016/j.bmc.2023.117239] [PMID: 36940609]
[52]
Sharma, R.; Fatma, B.; Saha, A.; Bajpai, S.; Sistla, S.; Dash, P.K.; Parida, M.; Kumar, P.; Tomar, S. Inhibition of chikungunya virus by picolinate that targets viral capsid protein. Virology, 2016, 498, 265-276.
[http://dx.doi.org/10.1016/j.virol.2016.08.029] [PMID: 27614702]
[53]
Gaurav, N.; Tripathi, P.K.; Kumar, V.; Chugh, A.; Sundd, M.; Patel, A.K. Role of nuclear localization signals in the DNA delivery function of Chikungunya virus capsid protein. Arch. Biochem. Biophys., 2021, 702, 108822.
[http://dx.doi.org/10.1016/j.abb.2021.108822] [PMID: 33722536]
[54]
Gigante, A.; Canela, M.D.; Delang, L.; Priego, E.M.; Camarasa, M.J.; Querat, G.; Neyts, J.; Leyssen, P.; Pérez-Pérez, M.J. Identification of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones as novel inhibitors of Chikungunya virus replication. J. Med. Chem., 2014, 57(10), 4000-4008.
[http://dx.doi.org/10.1021/jm401844c] [PMID: 24800626]
[55]
Zhang, N.; Zhao, H.; Zhang, L. Fatty acid synthase promotes the palmitoylation of Chikungunya virus nsP1. J. Virol., 2019, 93(3), e01747-18.
[http://dx.doi.org/10.1128/JVI.01747-18] [PMID: 30404808]
[56]
Law, Y.S.; Utt, A.; Tan, Y.B.; Zheng, J.; Wang, S.; Chen, M.W.; Griffin, P.R.; Merits, A.; Luo, D. Structural insights into RNA recognition by the Chikungunya virus nsP2 helicase. Proc. Natl. Acad. Sci., 2019, 116(19), 9558-9567.
[http://dx.doi.org/10.1073/pnas.1900656116] [PMID: 31000599]
[57]
Kumar, P.; Kumar, D.; Giri, R. Targeting the nsp2 cysteine protease of chikungunya virus using FDA approved library and selected cysteine protease inhibitors. Pathogens, 2019, 8(3), 128.
[http://dx.doi.org/10.3390/pathogens8030128] [PMID: 31443266]
[58]
Law, Y.S.; Wang, S.; Tan, Y.B.; Shih, O.; Utt, A.; Goh, W.Y.; Lian, B.J.; Chen, M.W.; Jeng, U.S.; Merits, A.; Luo, D. Inter-domain flexibility of Chikungunya virus nsP2 helicase-protease differentially influences viral RNA replication and infectivity. J. Virol., 2021, 95(6), e01470-20.
[http://dx.doi.org/10.1128/JVI.01470-20] [PMID: 33328310]
[59]
Puranik, N.V.; Rani, R.; Singh, V.A.; Tomar, S.; Puntambekar, H.M.; Srivastava, P. Evaluation of the antiviral potential of halogenated dihydrorugosaflavonoids and molecular modeling with nsp3 protein of Chikungunya virus (CHIKV). ACS Omega, 2019, 4(23), 20335-20345.
[http://dx.doi.org/10.1021/acsomega.9b02900] [PMID: 31815237]
[60]
Wada, Y.; Orba, Y.; Sasaki, M.; Kobayashi, S.; Carr, M.J.; Nobori, H.; Sato, A.; Hall, W.W.; Sawa, H. Discovery of a novel antiviral agent targeting the nonstructural protein 4 (nsP4) of chikungunya virus. Virology, 2017, 505, 102-112.
[http://dx.doi.org/10.1016/j.virol.2017.02.014] [PMID: 28236746]
[61]
Alguridi, H.I.; Alzahrani, F.; Almalki, S.; Zamzami, M.A.; Altayb, H.N. Identification and molecular docking of novel chikungunya virus NSP4 inhibitory peptides from camel milk proteins. J. Biomol. Struct. Dyn., 2023, 5, 1-16.
[http://dx.doi.org/10.1080/07391102.2023.2254398] [PMID: 37668009]
[62]
Ferron, F.; Decroly, E.; Selisko, B.; Canard, B. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res., 2012, 96(1), 21-31.
[http://dx.doi.org/10.1016/j.antiviral.2012.07.007] [PMID: 22841701]
[63]
Kovacikova, K.; Gorostiola González, M.; Jones, R.; Reguera, J.; Gigante, A.; Pérez-Pérez, M.J.; Pürstinger, G.; Moesslacher, J.; Langer, T.; Jeong, L.S.; Delang, L.; Neyts, J.; Snijder, E.J.; van Westen, G.J.P.; Van Hemert, M.J. Structural insights into the mechanisms of action of functionally distinct classes of chikungunya virus nonstructural protein 1 inhibitors. Antimicrob. Agents Chemother., 2021, 65(7), e02566-20.
[http://dx.doi.org/10.1128/AAC.02566-20] [PMID: 33875421]
[64]
Zhang, K.; Law, Y.S.; Law, M.C.Y.; Tan, Y.B.; Wirawan, M.; Luo, D. Structural insights into viral RNA capping and plasma membrane targeting by Chikungunya virus nonstructural protein 1. Cell Host Microbe, 2021, 29(5), 757-764.e3.
[http://dx.doi.org/10.1016/j.chom.2021.02.018] [PMID: 33730549]
[65]
Zhang, K.; Law, M.C.Y.; Nguyen, T.M.; Tan, Y.B.; Wirawan, M.; Law, Y.S.; Jeong, L.S.; Luo, D. Molecular basis of specific viral RNA recognition and 5′-end capping by the Chikungunya virus nsP1. Cell Rep., 2022, 40(4), 111133.
[http://dx.doi.org/10.1016/j.celrep.2022.111133] [PMID: 35905713]
[66]
Bullard-Feibelman, K.M.; Fuller, B.P.; Geiss, B.J. A sensitive and robust high-throughput screening assay for inhibitors of the chikungunya virus nsP1 capping enzyme. PLoS One, 2016, 11(7), e0158923.
[http://dx.doi.org/10.1371/journal.pone.0158923] [PMID: 27427769]
[67]
Pérez-Pérez, M.J.; Delang, L.; Ng, L.F.P.; Priego, E.M. Chikungunya virus drug discovery: Still a long way to go? Expert Opin. Drug Discov., 2019, 14(9), 855-866.
[http://dx.doi.org/10.1080/17460441.2019.1629413] [PMID: 31177861]
[68]
Jones, R.; Hons, M.; Rabah, N.; Zamarreño, N.; Arranz, R.; Reguera, J. Structural basis and dynamics of Chikungunya alphavirus RNA capping by nsP1 capping pores. Proc. Natl. Acad. Sci., 2023, 120(12), e2213934120.
[http://dx.doi.org/10.1073/pnas.2213934120] [PMID: 36913573]
[69]
Jones, R.; Bragagnolo, G.; Arranz, R.; Reguera, J. Capping pores of alphavirus nsP1 gate membranous viral replication factories. Nature, 2021, 589(7843), 615-619.
[http://dx.doi.org/10.1038/s41586-020-3036-8] [PMID: 33328629]
[70]
Delang, L.; Li, C.; Tas, A.; Quérat, G.; Albulescu, I.C.; De Burghgraeve, T.; Guerrero, N.A.S.; Gigante, A.; Piorkowski, G.; Decroly, E.; Jochmans, D.; Canard, B.; Snijder, E.J.; Pérez-Pérez, M.J.; van Hemert, M.J.; Coutard, B.; Leyssen, P.; Neyts, J. The viral capping enzyme nsP1: A novel target for the inhibition of chikungunya virus infection. Sci. Rep., 2016, 6(1), 31819.
[http://dx.doi.org/10.1038/srep31819] [PMID: 27545976]
[71]
Gigante, A.; Gómez-SanJuan, A.; Delang, L.; Li, C.; Bueno, O.; Gamo, A.M.; Priego, E.M.; Camarasa, M.J.; Jochmans, D.; Leyssen, P.; Decroly, E.; Coutard, B.; Querat, G.; Neyts, J.; Pérez-Pérez, M.J. Antiviral activity of [1,2,3]triazolo[4,5- d ]pyrimidin-7(6 H )-ones against Chikungunya virus targeting the viral capping nsP1. Antiviral Res., 2017, 144, 216-222.
[http://dx.doi.org/10.1016/j.antiviral.2017.06.003] [PMID: 28619679]
[72]
Feibelman, K.M.; Fuller, B.P.; Li, L.; LaBarbera, D.V.; Geiss, B.J. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme. Antiviral Res., 2018, 154, 124-131.
[http://dx.doi.org/10.1016/j.antiviral.2018.03.013] [PMID: 29680670]
[73]
Kaur, R.; Mudgal, R.; Narwal, M.; Tomar, S. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme. Virus Res., 2018, 256, 209-218.
[http://dx.doi.org/10.1016/j.virusres.2018.06.013] [PMID: 29958924]
[74]
Mudgal, R.; Mahajan, S.; Tomar, S. Inhibition of Chikungunya virus by an adenosine analog targeting the SAM‐dependent nsP1 methyltransferase. FEBS Lett., 2020, 594(4), 678-694.
[http://dx.doi.org/10.1002/1873-3468.13642] [PMID: 31623018]
[75]
Kovacikova, K.; Morren, B.M.; Tas, A.; Albulescu, I.C.; van Rijswijk, R.; Jarhad, D.B.; Shin, Y.S.; Jang, M.H.; Kim, G.; Lee, H.W.; Jeong, L.S.; Snijder, E.J.; van Hemert, M.J. 6′-β-fluoro-homoaristeromycin and 6′-fluoro-homoneplanocin a are potent inhibitors of Chikungunya virus replication through their direct effect on viral nonstructural protein 1. Antimicrob. Agents Chemother., 2020, 64(4), e02532-19.
[http://dx.doi.org/10.1128/AAC.02532-19] [PMID: 31964798]
[76]
Abdelnabi, R.; Kovacikova, K.; Moesslacher, J.; Donckers, K.; Battisti, V.; Leyssen, P.; Langer, T.; Puerstinger, G.; Quérat, G.; Li, C.; Decroly, E.; Tas, A.; Marchand, A.; Chaltin, P.; Coutard, B.; van Hemert, M.; Neyts, J.; Delang, L. Novel class of Chikungunya virus small molecule inhibitors that targets the viral capping machinery. Antimicrob. Agents Chemother., 2020, 64(7), e00649-20.
[http://dx.doi.org/10.1128/AAC.00649-20] [PMID: 32340991]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy