Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Research Article

Design, Optimization, and Evaluation of Chitosan-2-mercaptobenzoic Acid as a Dual-functionalized Thiomer

Author(s): Tejinder K. Marwaha*, Ashwini Madgulkar and Mangesh Bhalekar

Volume 7, Issue 1, 2024

Published on: 14 June, 2024

Page: [46 - 60] Pages: 15

DOI: 10.2174/0124522716309066240611094851

Price: $65

Abstract

Aims: This study aimed to develop and evaluate mucoadhesive microspheres for the controlled release of zidovudine using a novel dual-functionalized polymer.

Background: Mucoadhesive polymers have recently been widely used to prolong the GI residence time and to modulate the release impact of various mucoadhesive dosage forms. In the present study, a recently synthesized chitosan derivative, chitosan-2-mercapto benzoic acid, was used as a mucoadhesive polymer, which was further developed as a dosage form for improving oral bioavailability of zidovudine drug.

Objective: The objective of this study is to evaluate the impact of a novel thiolated derivative, chitosan-2-mercaptobenzoic acid, on the oral bioavailability of the drug zidovudine.

Methods: The microspheres were prepared using an emulsification crosslinking method with TPP as the crosslinking agent. Techniques such as FTIR, and DSC were employed to analyze the microspheres, along with drug content, entrapment efficiency, dissolution studies, mucoadhesion, ex vivo permeation, and in vivo evaluations.

Results: Results from FTIR spectroscopy and DSC analysis revealed no interaction between the drug and polymers. The release kinetics and characterization assessments indicated a zero-order release profile with anomalous and super case-II transport types. Ex vivo permeation studies on goat intestinal mucosa demonstrated enhanced mucoadhesive properties and permeability with the optimized microspheres fabricated using thiomers compared to conventional oral therapy. Pharmacokinetic investigations showed higher zidovudine plasma levels and Cmax with the administration of microspheres, particularly those composed of thiomers. The AUC0-24h values for thiomer microspheres were significantly greater than controls and chitosan microspheres, indicating improved oral bioavailability potential.

Conclusion: In conclusion, zidovudine-loaded thiomer-based mucoadhesive microspheres showed promising results with the ability to enhance the drug's oral bioavailability.

« Previous
Graphical Abstract

[1]
Velmurugan S, Ashraf Ali M. Formulation and evaluation of ritonavir mucoadhesive microspheres. J Chem Pharm Res 2014; 6: 952-60. Available from: www.jocpr.com
[2]
Gada SYA, Setty CM. Preparation, evaluation and stability of lamivudine loaded alginate-tamarind mucilage microspheres. Int J Appl Pharmac 2019; 11: 365-70.
[http://dx.doi.org/10.22159/ijap.2019v11i4.33808]
[3]
Ma N, Xu L, Wang Q, et al. Development and evaluation of new sustained-release floating microspheres. Int J Pharm 2008; 358(1-2): 82-90.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.024] [PMID: 18407442]
[4]
Chandra Basak S, Senthil Kumar K, Ramalingam M, Basak SC. Design and release characteristics of sustained release tablet containing metformin HCl, Rev. Bras. Ciências Farm. Braz J Pharm Sci 2008; 5: 44.
[5]
Raffin R, Colomé L, Schapoval E, Pohlmann A, Guterres S. Increasing sodium pantoprazole photostability by microencapsulation: Effect of the polymer and the preparation technique. Eur J Pharm Biopharm 2008; 69(3): 1014-8.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.024] [PMID: 18374552]
[6]
Chowdary KPR, Srinivasa Rao Y. Mucoadhesive microspheres for controlled drug delivery. Biol Pharm Bull 2004; 27(11): 1717-24.
[http://dx.doi.org/10.1248/bpb.27.1717] [PMID: 15516712]
[7]
Patil S, Sawant K. Mucoadhesive microspheres: A promising tool in drug delivery. Curr Drug Deliv 2008; 5(4): 312-8.
[http://dx.doi.org/10.2174/156720108785914970] [PMID: 18855602]
[8]
Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm 2003; 255(1-2): 13-32.
[http://dx.doi.org/10.1016/S0378-5173(03)00087-5] [PMID: 12672598]
[9]
Yadav SK, Khan G, Bonde GV, Bansal M, Mishra B. Design, optimization and characterizations of chitosan fortified calcium alginate microspheres for the controlled delivery of dual drugs. Artif Cells Nanomed Biotechnol 2018; 46(6): 1180-93.
[http://dx.doi.org/10.1080/21691401.2017.1366331] [PMID: 28830256]
[10]
Bisen A, Pal Jain A, Jain S. Formulation and evaluation of zidovudine loaded microsphere. Asian J Res Pharm Sci 2013; 3(4): 200-5. Available from: www.asianpharmaonline.org
[11]
Anjana Anil PS. Mucoadhesive polymers: A review. J Pharm Res 2018; 17: 47-55.
[http://dx.doi.org/10.18579/jpcrkc/2018/17/1/119566]
[12]
de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A review on chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment. Materials 2020; 13(21): 4995.
[http://dx.doi.org/10.3390/ma13214995]
[13]
Sinha VR, Singla AK, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm 2004; 274(1-2): 1-33.
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.026] [PMID: 15072779]
[14]
Kaş HS. Chitosan: Properties, preparations and application to microparticulate systems. J Microencapsul 1997; 14(6): 689-711.
[http://dx.doi.org/10.3109/02652049709006820] [PMID: 9394251]
[15]
Patel K, Patel M. Preparation and evaluation of chitosan microspheres containing nicorandil. Int J Pharm Investig 2014; 4(1): 32-7.
[http://dx.doi.org/10.4103/2230-973X.127738] [PMID: 24678460]
[16]
Marwaha TK, Madgulkar A, Bhalekar M, Asgaonkar K. Molecular docking, synthesis, and characterization of chitosan‐graft‐2‐mercaptobenzoic acid derivative as potential drug carrier. J Appl Polym Sci 2020; 137(47): 49551.
[http://dx.doi.org/10.1002/app.49551]
[17]
Dhawan S, Singla AK, Sinha VR. Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech 2004; 5(4): 122-8.
[http://dx.doi.org/10.1208/pt050467] [PMID: 15760064]
[18]
Millotti G, Samberger C, Fröhlich E, Bernkop-Schnürch A. Chitosan-graft-6-mercaptonicotinic acid: Synthesis, characterization, and biocompatibility. Biomacromolecules 2009; 10(11): 3023-7.
[http://dx.doi.org/10.1021/bm9006248] [PMID: 19821557]
[19]
Schmitz T, Grabovac V, Palmberger TF, Hoffer MH, Bernkop-Schnürch A. Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate. Int J Pharm 2008; 347(1-2): 79-85.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.040] [PMID: 17681439]
[20]
Nanaki S, Tseklima M, Christodoulou E, Triantafyllidis K, Kostoglou M, Bikiaris DN. Thiolated chitosan masked polymeric microspheres with incorporated mesocellular silica foam (MCF) for intranasal delivery of paliperidone. Polymers 2017; 9(11): 617.
[http://dx.doi.org/10.3390/polym9110617]
[21]
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated chitosans: A multi-talented class of polymers for various applications. Biomacromolecules 2021; 22(1): 24-56.
[http://dx.doi.org/10.1021/acs.biomac.0c00663] [PMID: 32567846]
[22]
Mythri G, Kavitha K, Kumar MR, Jagadeesh Singh SD. Novel mucoadhesive polymers: A review. J Appl Pharm Sci 2011; 1(8): 37-42.
[23]
Sarti F, Bernkop-Schnürch A. Chitosan and thiolated chitosan. Adv Polym Sci 2011; 243: 93-110.
[http://dx.doi.org/10.1007/12_2011_109]
[24]
Albrecht K, Bernkop-Schnürch A. Thiomers: Forms, functions and applications to nanomedicine. Nanomedicine 2007; 2(1): 41-50.
[http://dx.doi.org/10.2217/17435889.2.1.41] [PMID: 17716189]
[25]
Sakloetsakun D, Iqbal J, Millotti G, Vetter A, Bernkop-Schnürch A. Thiolated chitosans: Influence of various sulfhydryl ligands on permeation-enhancing and P-gp inhibitory properties. Drug Dev Ind Pharm 2011; 37(6): 648-55.
[http://dx.doi.org/10.3109/03639045.2010.534484] [PMID: 21561400]
[26]
Marwaha TK, Madgulkar A, Bhalekar M, Asgaonkar K, Gachche R, Shewale P. Tailoring the properties of chitosan by grafting with 2-mercaptobenzoic acid to improve mucoadhesion: In silico studies, synthesis and characterization. Prog Biomater 2022; 11(4): 397-408.
[http://dx.doi.org/10.1007/s40204-022-00201-x] [PMID: 36205916]
[27]
Santosh Gada G, Anand Kumar Y, Mallikarjun C. Preparation and evaluation of zidovudine mucoadhesive microspheres. Eur J Pharm Med Res 2017; 4: 570-6. Available from: www.ejpmr.com
[28]
Asha K, Vikash D. Formulation and evaluation of zidovudine loaded chitosan microspheres for controlled release. Int J Drug Dev Res 2012; 4: 96-105. Available from: http://www.ijddr.in
[29]
Bhandari N, Raghavan V, Himadri S, Surva K. Long acting composition containing zidovudine and zidovudine. US patent 20050175694A1, 2005.
[30]
Guedes MDV, Marques MS, Berlitz SJ, et al. Lamivudine and zidovudine-loaded nanostructures: Green chemistry preparation for pediatric oral administration. Nanomaterials 2023; 13(4): 770.
[http://dx.doi.org/10.3390/nano13040770]
[31]
Maculotti K, Genta I, Perugini P, Imam M, Bernkop-Schnürch A, Pavanetto F. Preparation and in vitro evaluation of thiolated chitosan microparticles. J Microencapsul 2005; 22(5): 459-70.
[http://dx.doi.org/10.1080/02652040500162220] [PMID: 16361190]
[32]
Elhassan Imam M, Bernkop-Schnürch A. Controlled drug delivery systems based on thiolated chitosan microspheres. Drug Dev Ind Pharm 2005; 31(6): 557-65.
[http://dx.doi.org/10.1080/03639040500214753] [PMID: 16109629]
[33]
Abu-Izza K, Garcia-Contreras L, Lu DR. Preparation and evaluation of zidovudine-loaded sustained-release microspheres. 2. Optimization of multiple response variables. J Pharm Sci 1996; 85(6): 572-6.
[http://dx.doi.org/10.1021/js960021k] [PMID: 8773951]
[34]
Padala NR, Prakash K, Bonepally CSR, Krishnaveni B, Shantakumari K, Lakshmi NM. Stavudine loaded microcapsules using various cellulose polymers: Preparation and in-vitro evaluation. Int J Pharmac Sci Nanotechnol 2009; 2(2): 551-6.
[http://dx.doi.org/10.37285/ijpsn.2009.2.2.9]
[35]
Adlin Jino Nesalin J, Anton Smith A. Preparation and evaluation of stavudine loaded chitosan nanoparticles. J Pharm Res 2013; 6(2): 268-74.
[http://dx.doi.org/10.1016/j.jopr.2013.02.004]
[36]
Salehi S, Boddohi S. New formulation and approach for mucoadhesive buccal film of rizatriptan benzoate. Prog Biomater 2017; 6(4): 175-87.
[http://dx.doi.org/10.1007/s40204-017-0077-7] [PMID: 29110144]
[37]
Dalpiaz A, Fogagnolo M, Ferraro L, et al. Nasal chitosan microparticles target a zidovudine prodrug to brain HIV sanctuaries. Antiviral Res 2015; 123: 146-57.
[http://dx.doi.org/10.1016/j.antiviral.2015.09.013] [PMID: 26427553]
[38]
Jain RS, Biswal I, Dinda A, Kohli S. Modified sustained release chitosan-coated zidovudine microspheres. Int J Pharm Pharmac Sci 2011; 3: 95-7.
[39]
Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci 2017; 7(1-2): 47-57.
[http://dx.doi.org/10.1007/s13204-017-0547-1]
[40]
Magalhães MCRS, Castro BFM, de Castro W V, et al. Permeability and in vivo distribution of poly(Ɛ-caprolactone) nanoparticles loaded with zidovudine. J Nanopart Res 2018; 20: 176.
[http://dx.doi.org/10.1007/s11051-018-4280-9]
[41]
Parthiban S, Senthil Kumar G, Tamizh Mani T. Formulation and evaluation of microspheres encapsulating zidovudine by ionic gelation techniques. Int J Res Pharm Nano Sci 2014; 3: 461-8. Available from: www.uptodateresearchpublication.com
[42]
Salehi S, Boddohi S. Design and optimization of kollicoat ® IR based mucoadhesive buccal film for co-delivery of rizatriptan benzoate and propranolol hydrochloride. Mater Sci Eng C 2019; 97: 230-44.
[http://dx.doi.org/10.1016/j.msec.2018.12.036] [PMID: 30678908]
[43]
Rao PS, Vijayabhaskar K. Formulation and evaluation of Zidovudine alginate microspheres. J Drug Deliv Ther 2019; 9(5-s): 57-64.
[http://dx.doi.org/10.22270/jddt.v9i5-s.3607]
[44]
Garg Y, Pathak K. Design and in vitro performance evaluation of purified microparticles of pravastatin sodium for intestinal delivery. AAPS PharmSciTech 2011; 12(2): 673-82.
[http://dx.doi.org/10.1208/s12249-011-9626-x] [PMID: 21594729]
[45]
Patel A, Shah D, Desai TR, Noolvi MN. Mucoadhesive buccal films based on chitosan and carboxymethylated feronia limonia fruit pulp mucilage interpolymer complex for delivery of opioid analgesics. Asian J Pharm 2016; 10: 137.
[46]
Nair AB, Shah J, Jacob S, et al. Development of mucoadhesive buccal film for rizatriptan: In vitro and in vivo evaluation. Pharmaceutics 2021; 13(5): 728.
[http://dx.doi.org/10.3390/pharmaceutics13050728] [PMID: 34063402]
[47]
Seema S, Kapil K, Deepak T. A comprehensive review on buccal patches. GSC Biol Pharmac Sci 2020; 13(1): 130-5.
[http://dx.doi.org/10.30574/gscbps.2020.13.1.0308]
[48]
Henze LJ, Koehl NJ, O’Shea JP, Kostewicz ES, Holm R, Griffin BT. The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: A pearrl review. J Pharm Pharmacol 2019; 71(4): 581-602.
[http://dx.doi.org/10.1111/jphp.12912] [PMID: 29635685]
[49]
Nayak UY, Gopal S, Mutalik S, et al. Glutaraldehyde cross-linked chitosan microspheres for controlled delivery of Zidovudine. J Microencapsul 2009; 26(3): 214-22.
[http://dx.doi.org/10.1080/02652040802246325] [PMID: 18819029]
[50]
Gedam S, Jadhav P, Talele S, Jadhav A. Effect of crosslinking agent on development of gastroretentive mucoadhesive microspheres of risedronate sodium. Int J ApplPharmac 2018; 10(4): 133-40.
[http://dx.doi.org/10.22159/ijap.2018v10i4.26071]
[51]
Swamy NGN, Abbas Z. Preparation and in vitro characterization of mucoadhesive hydroxypropyl guar microspheres containing amlodipine besylate for nasal administration. Indian J Pharm Sci 2011; 73(6): 608-14.
[http://dx.doi.org/10.4103/0250-474X.100233] [PMID: 23112393]
[52]
Kayan GÖ, Kayan A. Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions. J Polym Environ 2021; 29(11): 3477-96.
[http://dx.doi.org/10.1007/s10924-021-02154-x]
[53]
Kumar P, Lakshmi YS, C B, Golla K, Kondapi AK. Improved safety, bioavailability and pharmacokinetics of zidovudine through lactoferrin nanoparticles during oral administration in rats. PLoS One 2015; 10(10): e0140399.
[http://dx.doi.org/10.1371/journal.pone.0140399] [PMID: 26461917]
[54]
Sathyamoorthy N, Sundar VD, Rajendran V, Sirikonda N, Narayanaswamy H. Utility of different lipids and effect of soya lecithin on sustained delivery of zidovudine via biodegradable solid lipid microparticles: Formulation and in-vitro characterization. Ind JPharmac Educ Res 2022; 56(3): 689-96.
[http://dx.doi.org/10.5530/ijper.56.3.117]
[55]
PVenugopalaiah S, Vinay bhargava M, Chandra Yp, Ramesh Y, Venugopalaiah MPharm P. Formulation of zidovudine proniosomes for oral drug delivery. J Xi’an Shiyou Univ 2022; 18: 1083-110. Available from: http://xisdxjxsu.asia
[56]
Ngilirabanga JB, Aucamp M, Samsodien H. Mechanochemical synthesis and characterization of zidovudine-lamivudine solid dispersion (binary eutectic mixture). J Drug Deliv Sci Technol 2021; 64: 102639.
[http://dx.doi.org/10.1016/j.jddst.2021.102639]
[57]
Mukhopadhyay P, Kundu PP. Chitosan-graft-PAMAM–alginate core–shell nanoparticles: A safe and promising oral insulin carrier in an animal model. RSC Adv 2015; 5(114): 93995-4007.
[http://dx.doi.org/10.1039/C5RA17729D]
[58]
Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057]
[59]
Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics 2016; 10(5): 054107.
[http://dx.doi.org/10.1063/1.4962992] [PMID: 27703593]
[60]
Lince F, Marchisio DL, Barresi AA. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interface Sci 2008; 322(2): 505-15.
[http://dx.doi.org/10.1016/j.jcis.2008.03.033] [PMID: 18402975]
[61]
Rodriguez-Emmenegger C, Jäger A, Jäger E, et al. Polymeric nanocapsules ultra stable in complex biological media. Colloids Surf B Biointerfaces 2011; 83(2): 376-81.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.013] [PMID: 21208786]
[62]
Esquivel R, Juárez J, Almada M, Ibarra J, Valdez MA. Synthesis and characterization of new thiolated chitosan nanoparticles obtained by ionic gelation method. Int J Polym Sci 2015; 2015: 1-18.
[http://dx.doi.org/10.1155/2015/502058]
[63]
Araújo A, Storpirtis S, Mercuri LP, Carvalho FMS, dos Santos Filho M, Matos JR. Thermal analysis of the antiretroviral zidovudine (AZT) and evaluation of the compatibility with excipients used in solid dosage forms. Int J Pharm 2003; 260(2): 303-14.
[http://dx.doi.org/10.1016/S0378-5173(03)00288-6] [PMID: 12842349]
[64]
Chieng N, Zujovic Z, Bowmaker G, Rades T, Saville D. Effect of milling conditions on the solid-state conversion of ranitidine hydrochloride form 1. Int J Pharm 2006; 327(1-2): 36-44.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.032] [PMID: 16949221]
[65]
Kumar A, Sawant K. Encapsulation of exemestane in polycaprolactone nanoparticles: optimization, characterization, and release kinetics. Cancer Nanotechnol 2013; 4(4-5): 57-71.
[http://dx.doi.org/10.1007/s12645-013-0037-4] [PMID: 26069501]
[66]
Dubernet C. Thermoanalysis of microspheres. Thermochim Acta 1995; 248: 259-69.
[http://dx.doi.org/10.1016/0040-6031(94)01947-F]
[67]
Roy S. Effect formulation variables on physicochemical characteristics and drug release potential of oral glipizide microspheres. Int J Adv Sci Res 2011; 2: 46-54. Available from: https://sciensage.info/index.php/JASR/article/view/58
[68]
Pachuau L, Mazumder B. A study on the effects of different surfactants on ethylcellulose microspheres. Int J Pharm Tech Res 2009; 1: 966-71.
[69]
Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci 2018; 114: 199-209.
[http://dx.doi.org/10.1016/j.ejps.2017.12.012] [PMID: 29269322]
[70]
Subedi G, Shrestha AK, Shakya S. Study of effect of different factors in formulation of micro and nanospheres with solvent evaporation technique. Open Pharm Sci J 2016; 3(1): 182-95.
[http://dx.doi.org/10.2174/1874844901603010182]
[71]
Srikar G, Rani AP. Study on influence of polymer and surfactant on in vitro performance of biodegradable aqueous-core nanocapsules of tenofovirdisoproxil fumarate by response surface methodology. Braz J Pharm Sci 2019; 55: 1590.
[72]
Tatiya GD, Basarkar GD. Formulation development and in vitro evaluation of mucoadhesive microspheres of simvastatin for nasal delivery. Int J Pharm Sci Rev Res 2013; 21: 334-41.
[73]
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152: 191-221.
[http://dx.doi.org/10.1016/j.addr.2019.04.007] [PMID: 31028759]
[74]
Kulkarni AD, Patel HM, Surana SJ, Vanjari YH, Belgamwar VS, Pardeshi CV. N,N,N-trimethyl chitosan: An advanced polymer with myriad of opportunities in nanomedicine. Carbohydr Polym 2017; 157: 875-902.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.041] [PMID: 27988003]
[75]
Bernkop-Schnürch A, Kast CE, Guggi D. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: Thiomer/GSH systems. J Control Release 2003; 93(2): 95-103.
[http://dx.doi.org/10.1016/j.jconrel.2003.05.001] [PMID: 14636716]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy