Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Research Article

Significance of Ribonucleoside-diphosphate Reductase Subunit M2 in Lung Adenocarcinoma

In Press, (this is not the final "Version of Record"). Available online 12 June, 2024
Author(s): Xiao-Jun Wang, Yun-Xia Huo, Peng-Jun Yang, Jing Gao* and Wei-Dong Hu*
Published on: 12 June, 2024

DOI: 10.2174/0115665232286359240611051307

Price: $95

Abstract

Introduction: The Ribonucleoside-diphosphate Reductase subunit M2 (RRM2) is known to be overexpressed in various cancers, though its specific functional implications remain unclear. This aims to elucidate the role of RRM2 in the progression of Lung Adenocarcinoma (LUAD) by exploring its involvement and potential impact.

Methods: RRM2 data were sourced from multiple databases to assess its diagnostic and prognostic significance in LUAD. We evaluated the association between RRM2 expression and immune cell infiltration, analyzed its function, and explored the effects of modulating RRM2 expression on LUAD cell characteristics through laboratory experiments.

Results: RRM2 was significantly upregulated in LUAD tissues and cells compared to normal counterparts (p<0.05), with rare genetic alterations noted (approximately 2%). This overexpression clearly distinguished LUAD from normal tissue (area under the curve (AUC): 0.963, 95% confidence intervals (CI): 0.946-0.981). Elevated RRM2 expression was significantly associated with adverse clinicopathological characteristics and poor prognosis in LUAD patients. Furthermore, a positive association was observed between RRM2 expression and immune cell infiltration. Pathway analysis revealed a critical connection between RRM2 and the cell cycle signaling pathway within LUAD. Targeting RRM2 inhibition effectively suppressed LUAD cell proliferation, migration, and invasion while promoting apoptosis. This intervention also modified the expression of several crucial proteins, including the downregulation of CDC25A, CDC25C, RAD1, Bcl-2, and PPM1D and the upregulation of TP53 and Bax (p < 0.05).

Conclusion: Our findings highlight the potential utility of RRM2 expression as a biomarker for diagnosing and predicting prognosis in LUAD, shedding new light on the role of RRM2 in this malignancy.

[1]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[2]
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018; 553(7689): 446-54.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[3]
Lamort AS, Kaiser JC, Pepe MAA, et al. Prognostic phenotypes of early-stage lung adenocarcinoma. Eur Respir J 2022; 60(1): 2101674. Available from: https://erj.ersjournals.com/content/60/1/2101674
[http://dx.doi.org/10.1183/13993003.01674-2021] [PMID: 34887322]
[4]
Vokes NI, Pan K, Le X. Efficacy of immunotherapy in oncogene-driven non-small-cell lung cancer. Ther Adv Med Oncol 2023; 15: 17588359231161409.
[http://dx.doi.org/10.1177/17588359231161409] [PMID: 36950275]
[5]
Lahiri A, Maji A, Potdar PD, et al. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol Cancer 2023; 22(1): 40.
[http://dx.doi.org/10.1186/s12943-023-01740-y] [PMID: 36810079]
[6]
Santarpia M, Aguilar A, Chaib I, et al. Non-small-cell lung cancer signaling pathways, metabolism, and PD-1/PD-L1 antibodies. Cancers 2020; 12(6): 1475.
[http://dx.doi.org/10.3390/cancers12061475] [PMID: 32516941]
[7]
Yang SR, Schultheis AM, Yu H, Mandelker D, Ladanyi M, Büttner R. Precision medicine in non-small cell lung cancer: Current applications and future directions. Semin Cancer Biol 2022; 84: 184-98.
[http://dx.doi.org/10.1016/j.semcancer.2020.07.009] [PMID: 32730814]
[8]
Xie B, Chen X, Deng Q, et al. Development and validation of a prognostic nomogram for lung adenocarcinoma: A population-based study. J Healthc Eng 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/5698582] [PMID: 36536690]
[9]
Blons H, Garinet S, Puig LP, Oudart JB. Molecular markers and prediction of response to immunotherapy in non-small cell lung cancer, an update. J Thorac Dis 2019; 11(S1): S25-36. Available from: https://jtd.amegroups.org/article/view/26414/19776
[http://dx.doi.org/10.21037/jtd.2018.12.48] [PMID: 30775025]
[10]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[11]
Feitelson MA, Arzumanyan A, Kulathinal RJ, et al. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol 2015; 35(S1): S25-54.
[http://dx.doi.org/10.1016/j.semcancer.2015.02.006] [PMID: 25892662]
[12]
Zhang BN, Venegas BA, Hickson ID, Chu WK. DNA replication stress and its impact on chromosome segregation and tumorigenesis. Semin Cancer Biol 2019; 55: 61-9.
[http://dx.doi.org/10.1016/j.semcancer.2018.04.005] [PMID: 29692334]
[13]
Tan J, Chen F, Ouyang B, Li X, Zhang W, Gao X. CDCA4 as a novel molecular biomarker of poor prognosis in patients with lung adenocarcinoma. Front Oncol 2022; 12: 865756.
[http://dx.doi.org/10.3389/fonc.2022.865756] [PMID: 36185189]
[14]
Yang Y, Cui H, Li D, et al. Prognosis and immunological characteristics of PGK1 in lung adenocarcinoma: A systematic analysis. Cancers 2022; 14(21): 5228.
[http://dx.doi.org/10.3390/cancers14215228] [PMID: 36358653]
[15]
Zhan Y, Jiang L, Jin X, et al. Inhibiting RRM2 to enhance the anticancer activity of chemotherapy. Biomed Pharmacother 2021; 133: 110996.
[http://dx.doi.org/10.1016/j.biopha.2020.110996] [PMID: 33227712]
[16]
Wiśniewska KA, Buchholz K, Długosz NI, et al. Expression of genomic instability-related molecules: Cyclin F, RRM2 and SPDL1 and their prognostic significance in pancreatic adenocarcinoma. Cancers 2021; 13(4): 859.
[http://dx.doi.org/10.3390/cancers13040859] [PMID: 33670609]
[17]
Zhou Z, Song Q, Yang Y, Wang L, Wu Z. Comprehensive landscape of RRM2 with immune infiltration in pan-cancer. Cancers 2022; 14(12): 2938.
[http://dx.doi.org/10.3390/cancers14122938] [PMID: 35740608]
[18]
Xiong W, Zhang B, Yu H, Zhu L, Yi L, Jin X. RRM2 regulates sensitivity to sunitinib and PD-1 blockade in renal cancer by stabilizing ANXA1 and activating the AKT pathway. Adv Sci 2021; 8(18): 2100881.
[http://dx.doi.org/10.1002/advs.202100881] [PMID: 34319001]
[19]
Tang B, Xu W, Wang Y, et al. Identification of critical ferroptosis regulators in lung adenocarcinoma that RRM2 facilitates tumor immune infiltration by inhibiting ferroptotic death. Clin Immunol 2021; 232: 108872.
[http://dx.doi.org/10.1016/j.clim.2021.108872] [PMID: 34648954]
[20]
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 2022; 22(7): 381-96. Available from: https://www.nature.com/articles/s41568-022-00459-0
[http://dx.doi.org/10.1038/s41568-022-00459-0] [PMID: 35338310]
[21]
Jin CY, Du L, Nuerlan AH, Wang XL, Yang YW, Guo R. High expression of RRM2 as an independent predictive factor of poor prognosis in patients with lung adenocarcinoma. Aging 2021; 13(3): 3518-35.
[http://dx.doi.org/10.18632/aging.202292] [PMID: 33411689]
[22]
Ma C, Luo H, Cao J, Gao C, Fa X, Wang G. Independent prognostic implications of RRM2 in lung adenocarcinoma. J Cancer 2020; 11(23): 7009-22. Available from: https://www.jcancer.org/v11p7009.htm
[http://dx.doi.org/10.7150/jca.47895] [PMID: 33123291]
[23]
Jiang X, Li Y, Zhang N, et al. RRM2 silencing suppresses malignant phenotype and enhances radiosensitivity via activating cGAS/STING signaling pathway in lung adenocarcinoma. Cell Biosci 2021; 11(1): 74.
[http://dx.doi.org/10.1186/s13578-021-00586-5] [PMID: 33858512]
[24]
Deng B, Xiang J, Liang Z, Luo L. Identification and validation of a ferroptosis-related gene to predict survival outcomes and the immune microenvironment in lung adenocarcinoma. Cancer Cell Int 2022; 22(1): 292.
[http://dx.doi.org/10.1186/s12935-022-02699-4] [PMID: 36153508]
[25]
Goldman MJ, Zhang J, Fonseca NA, et al. A user guide for the online exploration and visualization of PCAWG data. Nat Commun 2020; 11(1): 3400.
[http://dx.doi.org/10.1038/s41467-020-16785-6] [PMID: 32636365]
[26]
Vivian J, Rao AA, Nothaft FA, et al. Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol 2017; 35(4): 314-6.
[http://dx.doi.org/10.1038/nbt.3772] [PMID: 28398314]
[27]
Fang H, Sheng S, Chen B, et al. A pan-cancer analysis of the oncogenic role of cell division cycle-associated protein 4 (CDCA4) in human tumors. Front Immunol 2022; 13: 826337.
[http://dx.doi.org/10.3389/fimmu.2022.826337] [PMID: 35251007]
[28]
Zhang Y, Chen F, Chandrashekar DS, Varambally S, Creighton CJ. Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways. Nat Commun 2022; 13(1): 2669.
[http://dx.doi.org/10.1038/s41467-022-30342-3] [PMID: 35562349]
[29]
Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6(269): pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[30]
Cui X, Zhang X, Liu M, et al. A pan-cancer analysis of the oncogenic role of staphylococcal nuclease domain-containing protein 1 (SND1) in human tumors. Genomics 2020; 112(6): 3958-67.
[http://dx.doi.org/10.1016/j.ygeno.2020.06.044] [PMID: 32645525]
[31]
Liu J, Lichtenberg T, Hoadley KA, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 2018; 173(2): 400-416.e11.
[http://dx.doi.org/10.1016/j.cell.2018.02.052] [PMID: 29625055]
[32]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[33]
Li C, Tang Z, Zhang W, Ye Z, Liu F. GEPIA2021: Integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res 2021; 49(W1): W242-6.
[http://dx.doi.org/10.1093/nar/gkab418] [PMID: 34050758]
[34]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[35]
Wang XJ, Gao J, Wang Z, Yu Q. Identification of a potentially functional microRNA–mRNA regulatory network in lung adenocarcinoma using a bioinformatics analysis. Front Cell Dev Biol 2021; 9: 641840.
[http://dx.doi.org/10.3389/fcell.2021.641840] [PMID: 33681226]
[36]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[37]
Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013; 14(1): 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[38]
Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009; 462(7269): 108-12. Available from: https://www.nature.com/articles/nature08460
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[39]
Wang X, Duanmu J, Fu X, Li T, Jiang Q. Analyzing and validating the prognostic value and mechanism of colon cancer immune microenvironment. J Transl Med 2020; 18(1): 324.
[http://dx.doi.org/10.1186/s12967-020-02491-w] [PMID: 32859214]
[40]
Xia S, Lin Y, Lin J, Li X, Tan X, Huang Z. Increased expression of TICRR predicts poor clinical outcomes: A potential therapeutic target for papillary renal cell carcinoma. Front Genet 2021; 11: 605378.
[http://dx.doi.org/10.3389/fgene.2020.605378] [PMID: 33505430]
[41]
Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39(4): 782-95.
[http://dx.doi.org/10.1016/j.immuni.2013.10.003] [PMID: 24138885]
[42]
Li W, Xu L, Cao J, et al. DACH1 regulates macrophage activation and tumour progression in hypopharyngeal squamous cell carcinoma. Immunology 2023; 170(2): 253-69.
[http://dx.doi.org/10.1111/imm.13667] [PMID: 37243970]
[43]
Cao X, Xue F, Chen H, et al. MiR-202-3p inhibits the proliferation and metastasis of lung adenocarcinoma cells by targeting RRM2. Ann Transl Med 2022; 10(24): 1374. Available from: https://atm.amegroups.org/article/view/107046/html
[http://dx.doi.org/10.21037/atm-22-6089] [PMID: 36660663]
[44]
Bokhari AA, Lai W-Y, Le AT, et al. Novel human-derived EML4-ALK fusion cell lines identify ribonucleotide reductase RRM2 as a target of activated ALK in NSCLC. Lung Cancer 2022; 171: 103-14.
[http://dx.doi.org/10.1016/j.lungcan.2022.07.010] [PMID: 35933914]
[45]
Lee SK, Hwang Y, Han JH, Haam S, Lee HW, Koh YW. Characteristics of the immune microenvironment associated with RRM2 expression and its application to PD-L1/PD-1 inhibitors in lung adenocarcinoma. Am J Cancer Res 2023; 13(11): 5443-54. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695782/
[PMID: 38058821]
[46]
Lin X, Zhou M, Xu Z, Chen Y, Lin F. Bioinformatics study on genes related to a high-risk postoperative recurrence of lung adenocarcinoma. Sci Prog 2021; 104(3): 00368504211018053.
[http://dx.doi.org/10.1177/00368504211018053] [PMID: 34304612]
[47]
Cheng WC, Chang CY, Lo CC, et al. Identification of theranostic factors for patients developing metastasis after surgery for early-stage lung adenocarcinoma. Theranostics 2021; 11(8): 3661-75. Available from: https://www.thno.org/v11p3661.htm
[http://dx.doi.org/10.7150/thno.53176] [PMID: 33664854]
[48]
Li HL, Wang JX, Dai HW, et al. Prognostic prediction value and biological functions of non-apoptotic regulated cell death genes in lung adenocarcinoma. Chin Med Sci J 2023; 38(3): 178-90. Available from: http://cmsj.cams.cn/EN/10.24920/004222
[PMID: 37622313]
[49]
Jiang Y, Hu X, Pang M, et al. RRM2-mediated Wnt/β-catenin signaling pathway activation in lung adenocarcinoma: A potential prognostic biomarker. Oncol Lett 2023; 26(4): 417.
[http://dx.doi.org/10.3892/ol.2023.14003] [PMID: 37664657]
[50]
Liu K, Wang L, Lou Z, et al. E2F8 exerts cancer-promoting effects by transcriptionally activating RRM2 and E2F8 knockdown synergizes with WEE1 inhibition in suppressing lung adenocarcinoma. Biochem Pharmacol 2023; 218: 115854.
[http://dx.doi.org/10.1016/j.bcp.2023.115854] [PMID: 37863324]
[51]
Paul S, Lal G. Regulatory and effector functions of gamma–delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer 2016; 139(5): 976-85.
[http://dx.doi.org/10.1002/ijc.30109] [PMID: 27012367]
[52]
Fridman WH, Pagès F, Fridman SC, Galon J. The immune contexture in human tumours: Impact on clinical outcome. Nat Rev Cancer 2012; 12(4): 298-306.
[http://dx.doi.org/10.1038/nrc3245] [PMID: 22419253]
[53]
Hong S, Qian J, Yang J, Li H, Kwak LW, Yi Q. Roles of idiotype-specific t cells in myeloma cell growth and survival: Th1 and CTL cells are tumoricidal while Th2 cells promote tumor growth. Cancer Res 2008; 68(20): 8456-64.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2213] [PMID: 18922919]
[54]
Sultana N, Elford HL, Faridi JS. Targeting the cell cycle, RRM2 and NF-κB for the treatment of breast cancers. Cancers 2024; 16(5): 975.
[http://dx.doi.org/10.3390/cancers16050975] [PMID: 38473336]
[55]
Zuo Z, Zhou Z, Chang Y, et al. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11(1): 218-33.
[http://dx.doi.org/10.1016/j.gendis.2022.11.022] [PMID: 37588202]
[56]
Cheng B, Li L, Wu Y, et al. The key cellular senescence related molecule RRM2 regulates prostate cancer progression and resistance to docetaxel treatment. Cell Biosci 2023; 13(1): 211.
[http://dx.doi.org/10.1186/s13578-023-01157-6] [PMID: 37968699]
[57]
Qin Z, Xie B, Qian J, et al. Over-expression of RRM2 predicts adverse prognosis correlated with immune infiltrates: A potential biomarker for hepatocellular carcinoma. Front Oncol 2023; 13: 1144269.
[http://dx.doi.org/10.3389/fonc.2023.1144269] [PMID: 37056349]
[58]
Griesshammer M, Wille K, Sadjadian P, Stegelmann F, Döhner K. A review of hydroxyurea-related cutaneous adverse events. Expert Opin Drug Saf 2021; 20(12): 1515-21.
[http://dx.doi.org/10.1080/14740338.2021.1945032] [PMID: 34181494]
[59]
Asperti M, Cantamessa L, Ghidinelli S, et al. The antitumor didox acts as an iron chelator in hepatocellular carcinoma cells. Pharmaceuticals 2019; 12(3): 129.
[http://dx.doi.org/10.3390/ph12030129] [PMID: 31480699]
[60]
Fontecave M, Lepoivre M, Elleingand E, Gerez C, Guittet O. Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett 1998; 421(3): 277-9.
[http://dx.doi.org/10.1016/S0014-5793(97)01572-X] [PMID: 9468322]
[61]
Wilson MB, Schreiner SJ, Choi HJ, Kamens J, Smithgall TE. Selective pyrrolo-pyrimidine inhibitors reveal a necessary role for Src family kinases in Bcr–Abl signal transduction and oncogenesis. Oncogene 2002; 21(53): 8075-88. Available from: https://www.nature.com/articles/1206008
[http://dx.doi.org/10.1038/sj.onc.1206008] [PMID: 12444544]
[62]
Mannargudi MB, Deb S. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: Is it a viable cancer therapy? J Cancer Res Clin Oncol 2017; 143(8): 1499-529.
[http://dx.doi.org/10.1007/s00432-017-2457-8] [PMID: 28624910]
[63]
Aimiuwu J, Wang H, Chen P, et al. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood 2012; 119(22): 5229-38.
[http://dx.doi.org/10.1182/blood-2011-11-382226] [PMID: 22517893]
[64]
Chen P, Wu JN, Shu Y, et al. Gemcitabine resistance mediated by ribonucleotide reductase M2 in lung squamous cell carcinoma is reversed by GW8510 through autophagy induction. Clin Sci 2018; 132(13): 1417-33.
[http://dx.doi.org/10.1042/CS20180010] [PMID: 29853661]
[65]
Pasqualetti G, Ricciardi S, Mey V, Del Tacca M, Danesi R. Synergistic cytotoxicity, inhibition of signal transduction pathways and pharmacogenetics of sorafenib and gemcitabine in human NSCLC cell lines. Lung Cancer 2011; 74(2): 197-205.
[http://dx.doi.org/10.1016/j.lungcan.2011.03.003] [PMID: 21529991]
[66]
Chen CW, Li Y, Hu S, et al. DHS (trans−4,4′-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2). Oncogene 2019; 38(13): 2364-79.
[http://dx.doi.org/10.1038/s41388-018-0584-6] [PMID: 30518875]
[67]
Zhang H, Liu X, Warden CD, et al. Prognostic and therapeutic significance of ribonucleotide reductase small subunit M2 in estrogen-negative breast cancers. BMC Cancer 2014; 14(1): 664.
[http://dx.doi.org/10.1186/1471-2407-14-664] [PMID: 25213022]
[68]
Tang Q, Wu L, Xu M, Yan D, Shao J, Yan S. Osalmid, a novel identified RRM2 inhibitor, enhances radiosensitivity of esophageal cancer. Int J Radiat Oncol Biol Phys 2020; 108(5): 1368-79.
[http://dx.doi.org/10.1016/j.ijrobp.2020.07.2322] [PMID: 32763454]
[69]
Wu Z, Zhan Y, Wang L, et al. Identification of osalmid metabolic profile and active metabolites with anti-tumor activity in human hepatocellular carcinoma cells. Biomed Pharmacother 2020; 130: 110556.
[http://dx.doi.org/10.1016/j.biopha.2020.110556] [PMID: 32763815]
[70]
Ma X, Fu T, Ke ZY, et al. MiR-17- 5p/RRM2 regulated gemcitabine resistance in lung cancer A549 cells. Cell Cycle 2023; 22(11): 1367-79.
[http://dx.doi.org/10.1080/15384101.2023.2207247] [PMID: 37115505]
[71]
Khan S, Setua S, Kumari S, et al. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials 2019; 208: 83-97.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.005] [PMID: 30999154]
[72]
Zheng S, Wang X, Weng YH, et al. siRNA knockdown of RRM2 effectively suppressed pancreatic tumor growth alone or synergistically with doxorubicin. Mol Ther Nucleic Acids 2018; 12: 805-16.
[http://dx.doi.org/10.1016/j.omtn.2018.08.003] [PMID: 30153565]
[73]
Wang H, He X, Zhang L, et al. Disruption of dNTP homeostasis by ribonucleotide reductase hyperactivation overcomes AML differentiation blockade. Blood 2022; 139(26): 3752-70. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247363/
[http://dx.doi.org/10.1182/blood.2021015108] [PMID: 35439288]
[74]
Wang S, Wang R, Hu D, Zhang C, Cao P, Huang J. Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy. NPJ Precis Oncol 2024; 8(1): 49.
[http://dx.doi.org/10.1038/s41698-024-00538-5] [PMID: 38409471]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy