Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

1,4-Diazabicyclo[2.2.2]octane (DABCO) in Organic Synthesis and Catalysis: A Quinquennial Report (2019-to Date)

Author(s): Ravi Varala*, Vittal Seema, Mohammed Mujahid Alam*, Mohammed Amanullah and Beda Durga Prasad

Volume 28, Issue 17, 2024

Published on: 12 June, 2024

Page: [1307 - 1345] Pages: 39

DOI: 10.2174/0113852728313865240528073519

Price: $65

Abstract

DABCO is one of the more effective basic organocatalysts/reagents that can be used for a range of organic transformations, including C-H functionalization, formation of hetero-hetero bonds, rearrangements, the synthesis of heterocyclic compounds, cyclizations and annulations, other miscellaneous reactions. This quinquennial review aims to critically and perceptively address noteworthy contributions of non chiral catalyst DABCO for regular organic transformations from 2019 onward. The key areas of attention were the advantages and limits of the approach, in addition to the mechanistic pathway, which is required for a specific organic transformation to be performed effectively.

Next »
Graphical Abstract

[1]
Mallavadhani, U.V.; Fleury-Bregeot, N. 1,4-Diazabicyclo [2.2.2]octane. In: Encyclopedia of Reagents for Organic Synthesis (EROS); John Wiley & Sons, Ltd,, 2001.
[http://dx.doi.org/10.1002/047084289X.rd010m]
[2]
Mallavadhani, U.V.; Fleury-Bregeot, N. 1,4-Diazabicyclo [2.2.2]octane. In: Encyclopedia of Reagents for Organic Synthesis (EROS);; John Wiley & Sons, Ltd,, 2010.
[http://dx.doi.org/10.1002/047084289X.rd010m.pub2]
[3]
Oliveira, V.; Cardoso, M.; Forezi, L. Organocatalysis: A brief overview on its evolution and applications. Catalysts, 2018, 8(12), 605.
[http://dx.doi.org/10.3390/catal8120605]
[4]
van der Helm, M.P.; Klemm, B.; Eelkema, R. Organocatalysis in aqueous media. Nat. Rev. Chem., 2019, 3(8), 491-508.
[http://dx.doi.org/10.1038/s41570-019-0116-0]
[5]
Han, B.; He, X.H.; Liu, Y.Q.; He, G.; Peng, C.; Li, J.L. Asymmetric organocatalysis: An enabling technology for medicinal chemistry. Chem. Soc. Rev., 2021, 50(3), 1522-1586.
[http://dx.doi.org/10.1039/D0CS00196A] [PMID: 33496291]
[6]
Meninno, S. Valorization of waste: Sustainable organocatalysts from renewable resources. ChemSusChem, 2020, 13(3), 439-468.
[http://dx.doi.org/10.1002/cssc.201902500] [PMID: 31634413]
[7]
Bita, B. 1,4-Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis. Eur. J. Chem., 2010, 1(1), 54-60.
[http://dx.doi.org/10.5155/eurjchem.1.1.54-60.2]
[8]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22(3), 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[9]
Kozlova, S.G.; Mirzaeva, I.V.; Ryzhikov, M.R. DABCO molecule in the M2(C8H4O4)2•C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic frameworks. Coord. Chem. Rev., 2018, 376, 62-74.
[http://dx.doi.org/10.1016/j.ccr.2018.07.008]
[10]
Jangid, D.K. DABCO as a base and an organocatalyst in organic synthesis: A review. Curr. Green Chem., 2020, 7(2), 146-162.
[http://dx.doi.org/10.2174/2213346107666191227101538]
[11]
Chakraborty, N.; Mitra, A.K. The versatility of DABCO as a reagent in organic synthesis: A review. Org. Biomol. Chem., 2023, 21(34), 6830-6880.
[http://dx.doi.org/10.1039/D3OB00921A] [PMID: 37605948]
[12]
Bugaenko, D.I.; Karchava, A.V.; Yurovskaya, M.A. The versatility of DABCO: Synthetic applications of its basic, nucleophilic, and catalytic properties Part 1. Catalysis of Morita-Baylis-Hillman and Knoevenagel reactions. Chem. Heterocycl. Compd., 2020, 56(2), 128-144.
[http://dx.doi.org/10.1007/s10593-020-02636-1]
[13]
Varala, R.; Seema, V. Recent applications of TEMPO in organic synthesis and catalysis. SynOpen, 2023, 7(3), 408-413.
[http://dx.doi.org/10.1055/a-2155-2950]
[14]
Varala, R.; Alam, M.M.; Vittal, S.; Swamy, D.N.; Rama Devi, V. Iodoxybenzoic acid (IBX) in organic synthesis: A septennial review. Curr. Org. Synth., 2024, 21(05), 607-664.
[http://dx.doi.org/10.2174/0115701794263252230924074035]
[15]
Alam, M.M.; Hussien, M.; Bollikolla, H.B.; Seema, V.; Dubasi, N.; Amanullah, M.; Varala, R. Applications of phenyliodine(III) diacetate in heterocyclic ring formations: An update from 2015 to date. J. Heterocycl. Chem., 2023, 60(8), 1326-1355.
[http://dx.doi.org/10.1002/jhet.4627]
[16]
Alam, M.M.; Seema, V.; Dubasi, N.; Kurra, M.; Varala, R. Applications of polymethylhydrosiloxane (PMHS) in organic synthesis-covering up to march 2022. Mini Rev. Org. Chem., 2023, 20(7), 708-734.
[http://dx.doi.org/10.2174/1570193X20666221021104906]
[17]
Vittal, S.; Alam, M.M.; Hussien, M.; Amanullah, M.; Pisal, P.M.; Ravi, V. Applications of phenyliodine(III)diacetate in C-H functionalization and hetero-hetero bond formations: A septennial update. ChemistrySelect, 2023, 8(1), e202204240.
[http://dx.doi.org/10.1002/slct.202204240]
[18]
Varala, R.; Seema, V.; Dubasi, N. Phenyliodine(III)diacetate (PIDA): Applications in organic synthesis. Organics, 2023, 4(1), 1-40.
[http://dx.doi.org/10.3390/org4010001]
[19]
Alam, M.M.; Bollikolla, H.B.; Amanullah, M.; Hussein, M.; Varala, R. Phenyliodine(III)diacetate (PIDA): Applications in rearrangement/migration reactions. Curr. Org. Chem., 2023, 27(2), 93-107.
[http://dx.doi.org/10.2174/1385272827666230330105241]
[20]
Varala, R.; Dubasi, N.; Seema, V.; Kotra, V. Sodium periodate (NaIO4) in organic synthesis. SynOpen, 2023, 7(4), 548-554.
[http://dx.doi.org/10.1055/a-2183-3678]
[21]
Varala, R.; Seema, V.; Alam, M.M.; Amanullah, M.; Dubasi, N. Dess-martin periodinane (DMP) in organic synthesis-A septennial update (2015-till date). Curr. Org. Chem., 2023, 27(17), 1504-1530.
[http://dx.doi.org/10.2174/0113852728262311231012060626]
[22]
Alam, M.M.; Varala, R.; Seema, V. Zinc acetate in organic synthesis and catalysis: A review. Mini Rev. Org. Chem., 2024, 21(5), 555-587.
[http://dx.doi.org/10.2174/1570193X20666230507213511]
[23]
Alam, M.M.; Varala, R.; Seema, V. A decennial update on the applications of trifluroacetic acid. Mini Rev. Org. Chem., 2024, 21(4), 455-470.
[http://dx.doi.org/10.2174/1570193X20666230511121812]
[24]
Dubasi, N.; Varala, R.; Bollikolla, H.B.; Kotra, V. Applications of alum (KAl(SO4)2.12H2O) in organic synthesis & catalysis: A quinquennial update (2017-2022). J. Chem. Rev., 2023, 5(3), 263-280.
[http://dx.doi.org/10.22034/JCR.2023.390191.1217]
[25]
Varala, R.; Dubasi, N. Applications of sulfated tin oxide (STO) in organic synthesis-update from 2016 to 2021. Heterocycles, 2022, 104(5), 843-853.
[http://dx.doi.org/10.3987/REV-22-978]
[26]
Moschona, F.; Savvopoulou, I.; Tsitopoulou, M.; Tataraki, D.; Rassias, G. Epoxide syntheses and ring-opening reactions in drug development. Catalysts, 2020, 10(10), 1117.
[http://dx.doi.org/10.3390/catal10101117]
[27]
Kumar, V.; Chimni, S.S. Metal-free ring-opening of epoxides. ChemistrySelect, 2023, 8(35), e202301963.
[http://dx.doi.org/10.1002/slct.202301963]
[28]
Magnus, A.; Bertilsson, S.K.; Andersson, P.G. Asymmetric base-mediated epoxide isomerisation. Chem. Soc. Rev., 2002, 31(4), 223-229.
[http://dx.doi.org/10.1039/b104372m] [PMID: 12164068]
[29]
Adapa, S.; Enugala, R.; A, M.; Varala, R. Synthesis of β-amino alcohols by regioselective ring opening of epoxides with aromatic amines catalyzed by Tin (II) chloride. Lett. Org. Chem., 2006, 3(3), 187-190.
[http://dx.doi.org/10.2174/157017806775789930]
[30]
Meinwald, J.; Labana, S.S.; Chadha, M.S. Peracid reactions. III.1 The oxidation of bicyclo[2.2.1]heptadiene. J. Am. Chem. Soc., 1963, 85(5), 582-585.
[http://dx.doi.org/10.1021/ja00888a022]
[31]
Li, S.; Shi, Y.; Li, P.; Xu, J. Nucleophilic organic base DABCO-mediated chemospecific Meinwald rearrangement of terminal epoxides into methyl ketones. J. Org. Chem., 2019, 84(7), 4443-4450.
[http://dx.doi.org/10.1021/acs.joc.8b03171] [PMID: 30807161]
[32]
Levens, A.; An, F.; Breugst, M.; Mayr, H.; Lupton, D.W. Influence of the N-substituents on the nucleophilicity and Lewis basicity of N-heterocyclic carbenes. Org. Lett., 2016, 18(15), 3566-3569.
[http://dx.doi.org/10.1021/acs.orglett.6b01525] [PMID: 27434216]
[33]
Cheng, C.; Othman, E.M.; Reimer, A.; Grüne, M.; Pavlovic, K.V.; Stopper, H.; Hentschel, U.; Ageloline, U.R. A new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Abdelmohsen. Tetrahedron Lett., 2016, 57, 2786-2789.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.042]
[34]
Aguilar, A.A.A.; Avila, B.S.J.; Kaufman, T.S.; Larghi, E.L. Total synthesis of Waltherione F, a nonrutaceous 3-methoxy-4-quinolone, isolated from Waltheria indica L. F. Org. Lett., 2018, 20(16), 5058-5061.
[http://dx.doi.org/10.1021/acs.orglett.8b02221] [PMID: 30079739]
[35]
Koduri, R.G.; Pagadala, R.; Boodida, S.; Varala, R. Ultrasound promoted synthesis of 2-amino-4-h-pyranoquinolines using sulphated tin oxide as a catalyst. Polycycl. Aromat. Compd., 2022, 42(10), 6908-6916.
[http://dx.doi.org/10.1080/10406638.2021.1992456]
[36]
Adapa, S.; Varala, R.; Enugala, R. Efficient and rapid Friedlander synthesis of functionalized quinolines catalyzed by neodymium (III) nitrate hexahydrate. Synthesis, 2006, 2006(22), 3825-3830.
[http://dx.doi.org/10.1055/s-2006-950296]
[37]
Rao, M.S.; Hussain, S. DABCO-mediated decarboxylative cyclization of isatoic anhydride with aroyl/heteroaroyl/alkoylacetonitriles under microwave conditions: Strategy for the synthesis of substituted 4-quinolones. Tetrahedron Lett., 2021, 76, 153187.
[http://dx.doi.org/10.1016/j.tetlet.2021.153187]
[38]
Lu, L.Q.; Li, T.R.; Wang, Q.; Xiao, W.J. Beyond sulfide-centric catalysis: Recent advances in the catalytic cyclization reactions of sulfur ylides. Chem. Soc. Rev., 2017, 46(14), 4135-4149.
[http://dx.doi.org/10.1039/C6CS00276E] [PMID: 28604845]
[39]
McGarrigle, E.M.; Myers, E.L.; Illa, O.; Shaw, M.A.; Riches, S.L.; Aggarwal, V.K. Chalcogenides as organocatalysts. Chem. Rev., 2007, 107(12), 5841-5883.
[http://dx.doi.org/10.1021/cr068402y] [PMID: 18072810]
[40]
Bisag, G.D.; Ruggieri, S.; Fochi, M.; Bernardi, L. Sulfoxonium ylides: Simple compounds with chameleonic reactivity. Org. Biomol. Chem., 2020, 18(43), 8793-8809.
[http://dx.doi.org/10.1039/D0OB01822H] [PMID: 33084717]
[41]
Wang, F.; Liu, B.X.; Rao, W.; Wang, S.Y. Metal-free chemoselective reaction of sulfoxonium ylides and thiosulfonates: Diverse synthesis of 1,4-diketones, arylsulfursulfoxonium ylides, and β-keto thiosulfones derivatives. Org. Lett., 2020, 22(16), 6600-6604.
[http://dx.doi.org/10.1021/acs.orglett.0c02370] [PMID: 32806158]
[42]
Sen, R.; Bhardwaj, S.; Bar, K.; Deshwal, S.; Vaitla, J. Insights into the multifaceted applications of vinyl sulfoxonium ylides. Chem. Commun., 2023, 59(83), 12411-12422.
[http://dx.doi.org/10.1039/D3CC04137A] [PMID: 37753776]
[43]
Khade, V.V.; Thube, A.S.; Warghude, P.K.; Bhat, R.G. DABCO mediated one pot synthesis of sulfoxonium ylides under blue LED. Tetrahedron Lett., 2021, 77, 153258.
[http://dx.doi.org/10.1016/j.tetlet.2021.153258]
[44]
Elguero, J. Pyrazoles: Comprehensive Heterocyclic Chemistry, 2nd ed; Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V., Eds.; Elsevier: Oxford, UK, 1996, 3, pp. 1-75.
[45]
Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P.; Qian, M.; He, X.; Wu, S.; Zhang, Y.; Zheng, X. Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. Eur. J. Med. Chem., 2020, 186, 111893.
[http://dx.doi.org/10.1016/j.ejmech.2019.111893] [PMID: 31761383]
[46]
Khetmalis, Y.M.; Shivani, M.; Murugesan, S.; Sekhar, C.K.V.G. Oxindole and its derivatives: A review on recent progress in biological activities. Biomed. Pharmacother., 2021, 141, 111842.
[http://dx.doi.org/10.1016/j.biopha.2021.111842] [PMID: 34174506]
[47]
Wang, Q.; Li, S.; Yang, G.; Zou, X.; Yin, X.; Feng, J.; Chen, H.; Yang, C.; Zhang, L.; Lu, C.; Yue, G. DABCO-catalyzed mono-/diallylation of N-unsubstituted isatin N,N′-cyclic azomethine imine 1,3-dipoles with morita-baylis-hillman carbonates. Molecules, 2023, 28(7), 3002.
[http://dx.doi.org/10.3390/molecules28073002] [PMID: 37049765]
[48]
Otera, J.; Nishikido, J. Esterification: Methods, reactions, and applications; John Wiley & Sons, 2009.
[http://dx.doi.org/10.1002/9783527627622]
[49]
Das, A.; Theato, P. Activated ester containing polymers: Opportunities and challenges for the design of functional macromolecules. Chem. Rev., 2016, 116(3), 1434-1495.
[http://dx.doi.org/10.1021/acs.chemrev.5b00291] [PMID: 26305991]
[50]
Khan, Z.; Javed, F.; Shamair, Z.; Hafeez, A.; Fazal, T.; Aslam, A.; Zimmerman, W.B.; Rehman, F. Current developments in esterification reaction: A review on process and parameters. J. Ind. Eng. Chem., 2021, 103, 80-101.
[http://dx.doi.org/10.1016/j.jiec.2021.07.018]
[51]
Varala, R.; Nuvula, S.; Adapa, S.R. Efficient synthetic method for β-enamino esters catalyzed by Yb(OTf)3 under solvent-free conditions. Aust. J. Chem., 2006, 59(12), 921-924.
[http://dx.doi.org/10.1071/CH06239]
[52]
Pan, C.; Zhu, J.; Chen, R.; Yu, J.T. Direct arylation of inactivated benzene with aryl acyl peroxides toward biaryls. Org. Biomol. Chem., 2017, 15(31), 6467-6469.
[http://dx.doi.org/10.1039/C7OB01564J] [PMID: 28737180]
[53]
Yan, L.; Zhu, H.; Li, Q.; Yang, L.; Xie, Z.; Le, Z. DABCO-mediated synthesis of aromatic esters from phenols, naphthols or 3-hydroxypyridines and aryl acyl peroxides at room temperature. ARKIVOC, 2022, 2022(9), 40-50.
[http://dx.doi.org/10.24820/ark.5550190.p011.802]
[54]
Liu, Q.; Wu, L.Z. Recent advances in visible-light-driven organic reactions. Natl. Sci. Rev., 2017, 4(3), 359-380.
[http://dx.doi.org/10.1093/nsr/nwx039]
[55]
Yao, H.; Hu, W.; Zhang, W. Difunctionalization of alkenes and alkynes via intermolecular radical and nucleophilic additions. Molecules, 2020, 26(1), 105.
[http://dx.doi.org/10.3390/molecules26010105] [PMID: 33379397]
[56]
Lingampalli, S.R.; Ayyub, M.M.; Rao, C.N.R. Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega, 2017, 2(6), 2740-2748.
[http://dx.doi.org/10.1021/acsomega.7b00721] [PMID: 31457612]
[57]
Hou, J.; Ee, A.; Cao, H.; Ong, H.W.; Xu, J.H.; Wu, J. Visible-light-mediated metal-Free difunctionalization of alkenes with CO2 and silanes or C(sp3)-H alkanes. Angew. Chem. Int. Ed., 2018, 57(52), 17220-17224.
[http://dx.doi.org/10.1002/anie.201811266] [PMID: 30411439]
[58]
Wang, H.; Gao, Y.; Zhou, C.; Li, G. Visible-light-driven reductive carboarylation of styrenes with CO2 and aryl halides. J. Am. Chem. Soc., 2020, 142(18), 8122-8129.
[http://dx.doi.org/10.1021/jacs.0c03144] [PMID: 32309942]
[59]
Bew, S.P.; Stephenson, G.R.; Rouden, J.; Godemert, J.; Seylani, H.; Lozano, M.L.A. Frontispiece: Gaining insight into reactivity differences between malonic acid half thioesters (MAHT) and malonic acid half oxyesters (MAHO). Chemistry, 2017, 23(19), 4557-4569.
[http://dx.doi.org/10.1002/chem.201605148] [PMID: 27966245]
[60]
Mao, S.; Chen, K.; Yan, G.; Huang, D. β-Keto acids in organic synthesis. Eur. J. Org. Chem., 2020, 2020(5), 525-538.
[http://dx.doi.org/10.1002/ejoc.201901605]
[61]
Liu, P.; Zhang, G.; Sun, P. Transition metal-free decarboxylative alkylation reactions. Org. Biomol. Chem., 2016, 14(46), 10763-10777.
[http://dx.doi.org/10.1039/C6OB02101H] [PMID: 27805211]
[62]
Xavier, T.; Condon, S.; Pichon, C.; Le Gall, E.; Presset, M. Presset. decarboxylative Mannich reactions with substituted malonic acid half-oxyesters. J. Org. Chem., 2021, 86(8), 5452-5462.
[http://dx.doi.org/10.1021/acs.joc.0c02895] [PMID: 33822615]
[63]
Lu, M.; Fan, H.; Liu, Q.; Sun, X. A facile synthetic method for anhydride from carboxylic Acid with the promotion of triphenylphosphine oxide and oxaloyl chloride. ACS Omega, 2022, 7(38), 34352-34358.
[http://dx.doi.org/10.1021/acsomega.2c03991] [PMID: 36188305]
[64]
Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Amide activation: An emerging tool for chemoselective synthesis. Chem. Soc. Rev., 2018, 47(21), 7899-7925.
[http://dx.doi.org/10.1039/C8CS00335A] [PMID: 30152510]
[65]
Bashir, I.A.; Lee, S. Base-mediated synthesis of anhydrides from activated amides. J. Org. Chem., 2023, 88(9), 6159-6167.
[http://dx.doi.org/10.1021/acs.joc.2c03098] [PMID: 37067431]
[66]
Hamama, W.S.; Ghaith, E.A.; Ibrahim, M.E.; Sawamura, M.; Zoorob, H.H. Synthesis of 4-hydroxy-2-pyridinone derivatives and evaluation of their antioxidant/anticancer activities. ChemistrySelect, 2021, 6(7), 1430-1439.
[http://dx.doi.org/10.1002/slct.202004682]
[67]
Borkar, M.R.; Nandan, S.; Nagaraj, H.K.M.; Puttur, J.; Manniyodath, J.; Chatterji, D.; Coutinho, E.C. 4-Hydroxy-2-pyridone derivatives and the δ-pyrone isostere as novel agents against Mycobacterium smegmatis biofilm inhibitors. Med. Chem., 2019, 15(1), 28-37.
[http://dx.doi.org/10.2174/1573406414666180525075755] [PMID: 29793410]
[68]
Li, J.; Tan, H.R.; An, Y.L.; Shao, Z.Y.; Zhao, S.Y. Synthesis and DABCO‐induced demethylation of 3‐cyano‐4‐methoxy‐2‐pyridone derivatives. J. Heterocycl. Chem., 2020, 57(1), 486-496.
[http://dx.doi.org/10.1002/jhet.3783]
[69]
Rakshit, A.; Dhara, H.N.; Sahoo, A.K.; Patel, B.K. The renaissance of organo nitriles in organic synthesis. Chem. Asian J., 2022, 17(21), e202200792.
[http://dx.doi.org/10.1002/asia.202200792] [PMID: 36047749]
[70]
Das, S.; Maity, J.; Panda, T.K. Metal/non-metal catalyzed activation of organic nitriles. Chem. Rec., 2022, 22(12), e202200192.
[http://dx.doi.org/10.1002/tcr.202200192] [PMID: 36126180]
[71]
Tejedor, D.; Hernández, D.S.; Colella, L.; Tellado, G.F. Catalytic hydrocyanation of activated terminal alkynes. Chemistry, 2019, 25(66), 15046-15049.
[http://dx.doi.org/10.1002/chem.201903402] [PMID: 31553088]
[72]
Hintermann, L.; Labonne, A. Catalytic hydration of alkynes and its application in synthesis. Synthesis, 2007, 2007(8), 1121-1150.
[http://dx.doi.org/10.1055/s-2007-966002]
[73]
Clerget, C.M.; Yu, J.; Kincaid, J.R.A.; Walde, P.; Gallou, F.; Lipshutz, B.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend. Chem. Sci., 2021, 12(12), 4237-4266.
[http://dx.doi.org/10.1039/D0SC06000C] [PMID: 34163692]
[74]
Medvedeva, A.S. Effect of a heteroatom on the reactivity of silicon and germanum acetilenic alcohols, ethers, and carbonyl compounds. Russ. J. Org. Chem., 1996, 32, 272-287.
[75]
Mareev, A.V.; Andreev, M.V.; Ushakov, I.A. Base-catalyzed hydration of silicon-containing activated alkynes: The effect of substituents at the triple bond. ChemistrySelect, 2020, 5(34), 10736-10742.
[http://dx.doi.org/10.1002/slct.202002410]
[76]
Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H coupling reactions between two (hetero)arenes. Chem. Rev., 2017, 117(13), 8787-8863.
[http://dx.doi.org/10.1021/acs.chemrev.6b00567] [PMID: 28085272]
[77]
Funes-Ardoiz, I.; Maseras, F. Oxidative coupling mechanisms: Current state of understanding. ACS Catal., 2018, 8(2), 1161-1172.
[http://dx.doi.org/10.1021/acscatal.7b02974]
[78]
Wu, J.; Gu, J.; Chen, Q.; Ma, H.; Li, Y. Ni(II)-Catalyzed oxidative coupling of arenes. Youji Huaxue, 2020, 40(9), 2772-2777.
[http://dx.doi.org/10.6023/cjoc202005073]
[79]
Swain, B.; Singh, P.; Angeli, A.; Sahoo, S.K.; Yaddanapudi, V.M.; T. Supuran, C.; Arifuddin, M. Efficient one-pot synthesis of 3,3-di(indolyl)indolin-2-ones from isatin and indole catalyzed by VOSO4 as non-sulfonamide carbonic anhydrase inhibitors. Anticancer. Agents Med. Chem., 2022, 22(13), 2358-2366.
[http://dx.doi.org/10.2174/1871520622666220202112014] [PMID: 35114927]
[80]
Li, Y.; Liang, D.; Li, X.; Huang, W.; Yuan, L.; Wang, B.; Cheng, P. Br 2-or HBr-catalyzed synthesis of asymmetric 3,3-di(indolyl)indolin-2-ones. Heterocycl. Commun., 2017, 23(1), 29-34.
[http://dx.doi.org/10.1515/hc-2016-0071]
[81]
Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[82]
Kaur, G.; Kumar, H.; Singla, M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq., 2022, 351, 118556.
[http://dx.doi.org/10.1016/j.molliq.2022.118556]
[83]
Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Rana, P.; Yadav, P.; Adholeya, A.; Sharma, R.K. Silica-coated magnetic-nanoparticle-supported DABCO-derived acidic ionic liquid for the efficient synthesis of bioactive 3,3-di(indolyl)indolin-2-ones. ACS Omega, 2019, 4(25), 21529-21539.
[http://dx.doi.org/10.1021/acsomega.9b03237] [PMID: 31867549]
[84]
Cao, H.; Tang, X.; Tang, H.; Yuan, Y.; Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem Catalysis, 2021, 1(3), 523-598.
[http://dx.doi.org/10.1016/j.checat.2021.04.008]
[85]
Capaldo, L.; Ravelli, D.; Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C-H bonds elaboration. Chem. Rev., 2022, 122(2), 1875-1924.
[http://dx.doi.org/10.1021/acs.chemrev.1c00263] [PMID: 34355884]
[86]
Matsumoto, A.; Yamamoto, M.; Maruoka, K. Cationic DABCO-based catalyst for site-selective C-H alkylation via photoinduced hydrogen-atom transfer. ACS Catal., 2022, 12(3), 2045-2051.
[http://dx.doi.org/10.1021/acscatal.1c05484]
[87]
Qin, Y.; Zhu, L.; Luo, S. Organocatalysis in inert C-H bond functionalization. Chem. Rev., 2017, 117(13), 9433-9520.
[http://dx.doi.org/10.1021/acs.chemrev.6b00657] [PMID: 28697602]
[88]
Li, Y.; Yuan, B.; Sun, Z.; Zhang, W. C-H bond functionalization reactions enabled by photobiocatalytic cascades. Green Synthesis and Catalysis, 2021, 2(3), 267-274.
[http://dx.doi.org/10.1016/j.gresc.2021.06.001]
[89]
Capaldo, L.; Ravelli, D. Hydrogen atom transfer (HAT): A versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem., 2017, 2017(15), 2056-2071.
[http://dx.doi.org/10.1002/ejoc.201601485] [PMID: 30147436]
[90]
Maia da Santos, S.B.; dos Dupim, S.M.; de Souza, P.C.; Cardozo, M.T.; Finelli, G.F. DABCO-promoted photocatalytic C-H functionalization of aldehydes. Beilstein J. Org. Chem., 2021, 17, 2959-2967.
[http://dx.doi.org/10.3762/bjoc.17.205] [PMID: 35003372]
[91]
Davies, H.M.L.; Morton, D. Recent advances in C-H functionalization. J. Org. Chem., 2016, 81(2), 343-350.
[http://dx.doi.org/10.1021/acs.joc.5b02818] [PMID: 26769355]
[92]
Godula, K.; Sames, D. C-H bond functionalization in complex organic synthesis. Science, 2006, 312(5770), 67-72.
[http://dx.doi.org/10.1126/science.1114731] [PMID: 16601184]
[93]
Bortolato, T.; Cuadros, S.; Simionato, G.; Dell’Amico, L. The advent and development of organophotoredox catalysis. Chem. Commun., 2022, 58, 1263-1283.
[http://dx.doi.org/10.1039/D1CC05850A]
[94]
Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev., 2016, 116(17), 10075-10166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582]
[95]
Mamone, M.; Gentile, G.; Dosso, J.; Prato, M.; Filippini, G. Direct C2-H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes. Beilstein J. Org. Chem., 2023, 19, 575-581.
[http://dx.doi.org/10.3762/bjoc.19.42] [PMID: 37153645]
[96]
Gurry, M.; Aldabbagh, F. A new era for homolytic aromatic substitution: Replacing Bu3SnH with efficient light-induced chain reactions. Org. Biomol. Chem., 2016, 14(16), 3849-3862.
[http://dx.doi.org/10.1039/C6OB00370B] [PMID: 27056571]
[97]
Liu, J.; Qiu, X.; Huang, X.; Luo, X.; Zhang, C.; Wei, J.; Pan, J.; Liang, Y.; Zhu, Y.; Qin, Q.; Song, S.; Jiao, N. From alkylarenes to anilines via site-directed carbon-carbon amination. Nat. Chem., 2019, 11(1), 71-77.
[http://dx.doi.org/10.1038/s41557-018-0156-y] [PMID: 30374038]
[98]
Fan, G.G.; Jiang, B.W.; Sang, W.; Cheng, H.; Zhang, R.; Yu, B.Y.; Yuan, Y.; Chen, C.; Verpoort, F. Metal-free synthesis of heteroaryl amines or their hydrochlorides via an external-base-free and solvent-free C-N coupling protocol. J. Org. Chem., 2021, 86(21), 14627-14639.
[http://dx.doi.org/10.1021/acs.joc.1c01467] [PMID: 34658240]
[99]
Conn, E.L.; Perry, M.A.; Shi, K.; Wang, G.; Hoy, S.; Sach, N.W.; Qi, W.; Qu, L.; Gao, Y.; Xu, Y.; Schmitt, D.C. Identification of parallel medicinal chemistry protocols to expand branched amine design space. Org. Biomol. Chem., 2022, 20(18), 3747-3754.
[http://dx.doi.org/10.1039/D2OB00155A] [PMID: 35448901]
[100]
Chen, B.; Wu, L.Z.; Tung, C.H. Photocatalytic activation of less reactive bonds and their functionalization via hydrogen-Evolution cross-couplings. Acc. Chem. Res., 2018, 51(10), 2512-2523.
[http://dx.doi.org/10.1021/acs.accounts.8b00267] [PMID: 30280898]
[101]
Dhandabani, G.; Hsieh, P.W.; Wang, J.J. Opportunities and challenges in photochemical activation of π-bond system using common transition-metal-catalyzes as a seminal photosensitizer. J. Photochem. Photobiol. Photochem. Rev., 2023, 55, 100589.
[http://dx.doi.org/10.1016/j.jphotochemrev.2023.100589]
[102]
Zhou, C.; Lei, T.; Wei, X.Z.; Ye, C.; Liu, Z.; Chen, B.; Tung, C.H.; Wu, L.Z. Metal-free, redox-neutral, site-selective access to heteroarylamine via direct radical-radical cross-coupling powered by visible light photocatalysis. J. Am. Chem. Soc., 2020, 142(39), 16805-16813.
[http://dx.doi.org/10.1021/jacs.0c07600] [PMID: 32897073]
[103]
Khan, E. Pyridine derivatives as biologically active precursors; Organics and selected coordination complexes. ChemistrySelect, 2021, 6(13), 3041-3064.
[http://dx.doi.org/10.1002/slct.202100332]
[104]
Allais, C.; Grassot, J.M.; Rodriguez, J.; Constantieux, T. Metal-free multicomponent syntheses of pyridines. Chem. Rev., 2014, 114(21), 10829-10868.
[http://dx.doi.org/10.1021/cr500099b] [PMID: 25302420]
[105]
Goud, S.B.; Guin, S.; Prakash, M.; Samanta, S. Cu(OAc)2/DABCO-mediated domino reaction of vinyl malononitriles with cyclic sulfamidate imines: Access to 6-hydroxyaryl-2-aminonicotinonitriles. Org. Biomol. Chem., 2022, 20(2), 352-357.
[http://dx.doi.org/10.1039/D1OB02095A] [PMID: 34931209]
[106]
Ali, M.; Ali, S.; Khan, M.; Rashid, U.; Ahmad, M.; Khan, A.; Al-Harrasi, A.; Ullah, F.; Latif, A. Synthesis, biological activities, and molecular docking studies of 2-mercaptobenzimidazole based derivatives. Bioorg. Chem., 2018, 80, 472-479.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.032] [PMID: 29990895]
[107]
Devi, P.; Shahnaz, M.; Prasad, D.N. Recent overview on synthesis of 2-mercaptobenzimidazole derivatives and its activities. J. Drug Deliv. Ther., 2022, 12(1), 203-207.
[http://dx.doi.org/10.22270/jddt.v12i1.5166]
[108]
Ford, A.; Miel, H.; Ring, A.; Slattery, C.N.; Maguire, A.R.; McKervey, M.A. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev., 2015, 115(18), 9981-10080.
[http://dx.doi.org/10.1021/acs.chemrev.5b00121] [PMID: 26284754]
[109]
Xiang, Y.; Wang, C.; Ding, Q.; Peng, Y. Diazo compounds: Versatile synthons for the synthesis of nitrogen heterocycles via transition netal-catalyzed cascade C-H activation/carbene insertion/annulation reactions. Adv. Synth. Catal., 2019, 361(5), 919-944.
[http://dx.doi.org/10.1002/adsc.201800960]
[110]
Luo, J.; Chen, G.S.; Chen, S.J.; Li, Z.D.; Zhao, Y.L.; Liu, Y.L. One-pot tandem protocol for the synthesis of 1,3-bis(β-aminoacrylate)-substituted 2-mercaptoimidazole scaffolds. Adv. Synth. Catal., 2020, 362(17), 3635-3643.
[http://dx.doi.org/10.1002/adsc.202000789]
[111]
Kagatikar, S.; Sunil, D. A systematic review on 1,8-naphthalimide derivatives as emissive materials in organic light-emitting diodes. J. Mater. Sci., 2022, 57(1), 105-139.
[http://dx.doi.org/10.1007/s10853-021-06602-w]
[112]
Tandon, R.; Luxami, V.; Tandon, N.; Paul, K. Recent developments on 1,8-Naphthalimide moiety as potential target for anticancer agents. Bioorg. Chem., 2022, 121, 105677.
[http://dx.doi.org/10.1016/j.bioorg.2022.105677] [PMID: 35202852]
[113]
Sirgamalla, R.; Adem, K.; Boda, S.; Kommakula, A.; Neradi, S.; Perka, S.; Bojja, K.; Arifuddin, M. DABCO mediated one pot synthesis of 2‐(3‐benzyl‐2, 6‐dioxo‐3, 6‐dihydropyrimidin‐1[2H]‐yl)‐N‐(4‐(1, 3‐DIOXO‐1H‐benzo [de]isoquinolin‐2[3H]‐yl) aryl) acetamides as antimicrobial agents. J. Heterocycl. Chem., 2020, 57(9), 3375-3383.
[http://dx.doi.org/10.1002/jhet.4055]
[114]
Evano, G.; Wang, J.; Nitelet, A. Metal-mediated C-O bond forming reactions in natural product synthesis. Org. Chem. Front., 2017, 4(12), 2480-2499.
[http://dx.doi.org/10.1039/C7QO00671C]
[115]
Zhang, R.; Song, C.Y.; Sui, Z.; Yuan, Y.; Gu, Y.C.; Chen, C. Recent advances in carbon-nitrogen/carbon-oxygen bond formation under transition-metal-free conditions. Chem. Rec., 2023, 23(5), e202300020.
[http://dx.doi.org/10.1002/tcr.202300020] [PMID: 36995073]
[116]
Dombrowski, A.W.; Gesmundo, N.J.; Aguirre, A.L.; Sarris, K.A.; Young, J.M.; Bogdan, A.R.; Martin, M.C.; Gedeon, S.; Wang, Y. Expanding the medicinal chemist toolbox: Comparing seven C(sp2)-C(sp3) cross-coupling methods by library synthesis. ACS Med. Chem. Lett., 2020, 11(4), 597-604.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00093] [PMID: 32292569]
[117]
Wu, H-Q.; Luo, S-H.; Cao, L.; Shi, H-N.; Wang, B-W.; Wang, Z-Y. DABCO-catalyzed C-O bond formation from Csp2-X (X=Br, Cl) compounds and alkyl alcohol. Asian J. Org. Chem., 2018, 7(12), 2479-2483.
[http://dx.doi.org/10.1002/ajoc.201800517]
[118]
Dong, J.; Krasnova, L.; Finn, M.G.; Sharpless, K.B. Sulfur(VI) fluoride exchange (SuFEx): Another good reaction for click chemistry. Angew. Chem. Int. Ed., 2014, 53(36), 9430-9448.
[http://dx.doi.org/10.1002/anie.201309399] [PMID: 25112519]
[119]
Barrow, A.S.; Smedley, C.J.; Zheng, Q.; Li, S.; Dong, J.; Moses, J.E. The growing applications of SuFEx click chemistry. Chem. Soc. Rev., 2019, 48(17), 4731-4758.
[http://dx.doi.org/10.1039/C8CS00960K] [PMID: 31364998]
[120]
Scott, K.A.; Njardarson, J.T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem., 2018, 376(1), 5.
[http://dx.doi.org/10.1007/s41061-018-0184-5] [PMID: 29356979]
[121]
Spillane, W.; Malaubier, J.B. Sulfamic acid and its N- and O-substituted derivatives. Chem. Rev., 2014, 114(4), 2507-2586.
[http://dx.doi.org/10.1021/cr400230c] [PMID: 24341435]
[122]
Mahapatra, S.; Woroch, C.P.; Butler, T.W.; Carneiro, S.N.; Kwan, S.C.; Khasnavis, S.R.; Gu, J.; Dutra, J.K.; Vetelino, B.C.; Bellenger, J. am Ende, C.W.; Ball, N.D. SuFEx activation with Ca(NTf2)2: A unified strategy to access sulfamides, sulfamates, and sulfonamides from S(VI) fluorides. Org. Lett., 2020, 22(11), 4389-4394.
[http://dx.doi.org/10.1021/acs.orglett.0c01397] [PMID: 32459499]
[123]
Han, B.; Khasnavis, S.R.; Nwerem, M.; Bertagna, M.; Ball, N.D.; Ogba, O.M. Calcium bistriflimide-mediated sulfur(VI)-fluoride exchange (SuFEx): Mechanistic insights toward instigating catalysis. Inorg. Chem., 2022, 61(25), 9746-9755.
[http://dx.doi.org/10.1021/acs.inorgchem.2c01230] [PMID: 35700314]
[124]
Otero, A.; Chapela, M.J.; Atanassova, M.; Vieites, J.M.; Cabado, A.G. Cyclic imines: Chemistry and mechanism of action: A review. Chem. Res. Toxicol., 2011, 24(11), 1817-1829.
[http://dx.doi.org/10.1021/tx200182m] [PMID: 21739960]
[125]
Iwanejko, J.; Wojaczyńska, E. Cyclic imines - Preparation and application in synthesis. Org. Biomol. Chem., 2018, 16(40), 7296-7314.
[http://dx.doi.org/10.1039/C8OB01874J] [PMID: 30229794]
[126]
Ajay, K.K.; Lokeshwari, D.M.; Chandramouly, M.; Vasanth, K.G. Synthetic strategies and significance of pyrroline analogs. Research J. Pharm. and Tech., 2013, 6(2), 137-142.
[127]
Rodríguez, R.I.; Mollari, L.; Alemán, J. Light-driven enantioselective synthesis of pyrroline derivatives by a radical/polar cascade reaction. Angew. Chem. Int. Ed., 2021, 60(9), 4555-4560.
[http://dx.doi.org/10.1002/anie.202013020] [PMID: 33180379]
[128]
Mandal, B.; Karmakar, I.; Brahmachari, G. An updated review on biologically promising natural oxepines. Chem. Biodivers., 2022, 19(10), e202200484.
[http://dx.doi.org/10.1002/cbdv.202200484] [PMID: 36039468]
[129]
Liu, S.; Hu, W.; Hao, W.; Xia, J.; Cai, M. Regio- and diastereoselective construction of functionalized benzo[b]oxepines and benzo[b]azepines via recyclable gold(I)-catalyzed cyclizations. J. Org. Chem., 2022, 87(11), 7239-7252.
[http://dx.doi.org/10.1021/acs.joc.2c00446] [PMID: 35593503]
[130]
Yang, B.; Gao, S. Recent advances in the application of Diels-Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem. Soc. Rev., 2018, 47(21), 7926-7953.
[http://dx.doi.org/10.1039/C8CS00274F] [PMID: 29993045]
[131]
Singh, M.S.; Nagaraju, A.; Anand, N.; Chowdhury, S. ortho-Quinone methide (o-QM): A highly reactive, ephemeral and versatile intermediate in organic synthesis. RSC Advances, 2014, 4(99), 55924-55959.
[http://dx.doi.org/10.1039/C4RA11444B]
[132]
Du, J.Y.; Ma, Y.H.; Meng, F.X.; Zhang, R.R.; Wang, R.N.; Shi, H.L.; Wang, Q.; Fan, Y.X.; Huang, H.L.; Cui, J.C.; Ma, C.L. Lewis base-Catalyzed [4+3] annulation of ortho-quinone methides and MBH carbonates: Synthesis of functionalized benzo[b]oxepines bearing oxindole scaffolds. Org. Lett., 2019, 21(2), 465-468.
[http://dx.doi.org/10.1021/acs.orglett.8b03709] [PMID: 30618260]
[133]
Basavanna, V.; Puttappa, S.; Chandramouli, M.; Ningaiah, S. Green synthetic methods for the cycloaddition reactions: A mini review. Polycycl. Aromat. Compd., 2023, 43(10), 9377-9398.
[http://dx.doi.org/10.1080/10406638.2022.2162933]
[134]
Xu, X.; Doyle, M.P. The [3 + 3]-cycloaddition alternative for heterocycle syntheses: Catalytically generated metalloenolcarbenes as dipolar adducts. Acc. Chem. Res., 2014, 47(4), 1396-1405.
[http://dx.doi.org/10.1021/ar5000055] [PMID: 24650430]
[135]
Guo, K.; Fang, T.; Wang, J.; Wu, A.; Wang, Y.; Jiang, J.; Wu, X.; Song, S.; Su, W.; Xu, Q.; Deng, X. Two new spirooxindole alkaloids from rhizosphere strain Streptomyces sp. xzqh-9. Bioorg. Med. Chem. Lett., 2014, 24(21), 4995-4998.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.026] [PMID: 25278238]
[136]
Jaiswal, M.K.; Singh, B.; De, S.; Singh, N.; Singh, R.P. Stereoselective formal [3 + 3] annulation of 3-alkylidene-2-oxindoles with β,γ-unsaturated α-keto esters. Org. Biomol. Chem., 2020, 18(48), 9852-9862.
[http://dx.doi.org/10.1039/D0OB02046J] [PMID: 33295933]
[137]
Wei, Y.; Shi, M. Recent advances in organocatalytic asymmetric Morita-Baylis-Hillman/aza-Morita-Baylis-Hillman reactions. Chem. Rev., 2013, 113(8), 6659-6690.
[http://dx.doi.org/10.1021/cr300192h] [PMID: 23679920]
[138]
Xie, P.; Huang, Y. Morita-Baylis-Hillman adduct derivatives (MBHADs): Versatile reactivity in Lewis base-promoted annulation. Org. Biomol. Chem., 2015, 13(32), 8578-8595.
[http://dx.doi.org/10.1039/C5OB00865D] [PMID: 26133693]
[139]
Cai, W.; Zhou, Y.; He, Y.; Huang, Y. DABCO catalyzed [4+2] annulations of Morita-Baylis-Hillman carbonates with isocyanates. Chem. Commun., 2021, 57(71), 8985-8988.
[http://dx.doi.org/10.1039/D1CC03502A] [PMID: 34486589]
[140]
Maleki, B.; Veisi, H. Facile and efficient synthesis of bicyclic ortho-aminocarbonitrile derivatives using nanostructured diphosphate Na2CaP2O7. Org. Prep. Proced. Int., 2020, 52(3), 232-237.
[http://dx.doi.org/10.1080/00304948.2020.1752606]
[141]
Gaikwad, D.S.; Undale, K.A.; Patil, D.B.; Patravale, A.A.; Kamble, A.A. A task-specific biodegradable ionic liquid: A novel catalyst for synthesis of bicyclic ortho-aminocarbonitriles. J. Indian Chem. Soc., 2018, 15(5), 1175-1180.
[http://dx.doi.org/10.1007/s13738-018-1315-1]
[142]
Yan, S.; Dong, D.; Xie, C.; Wang, W.; Wang, Z. Synthesis of bicyclic ortho-aminocarbonitrile derivatives catalyzed by 1,4-diazabicyclo[2.2.2]octane. Youji Huaxue, 2019, 39(9), 2560-2566.
[http://dx.doi.org/10.6023/cjoc201901023]
[143]
Sikandar, S.; Zahoor, A.F. Synthesis of pyrano[2,3‐c]pyrazoles: A review. J. Heterocycl. Chem., 2021, 58(3), 685-705.
[http://dx.doi.org/10.1002/jhet.4191]
[144]
Nguyen, H.T.; Truong, M.N.H.; Le, T.V.; Vo, N.T.; Nguyen, H.D.; Tran, P.H. A new pathway for the preparation of pyrano[2,3-c]pyrazoles and molecular docking as inhibitors of p38 MAP kinase. ACS Omega, 2022, 7(20), 17432-17443.
[http://dx.doi.org/10.1021/acsomega.2c01814] [PMID: 35647469]
[145]
Salehi, N.; Mirjalili, B.B.F. Green synthesis of pyrano[2,3-c]pyrazoles and Spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using nano-silica supported 1,4-diazabicyclo[2.2.2]octane as a novel catalyst. Org. Prep. Proced. Int., 2018, 50(6), 578-587.
[http://dx.doi.org/10.1080/00304948.2018.1537748]
[146]
Li, S.; Yu, A.; Li, J.; Meng, X. Synthesis of benzothiophene-fused pyran derivatives via piperidine promoted domino reaction. Heteroatom Chem., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/4361410]
[147]
Deng, Q.; Yu, A.; Zhang, S.; Meng, X. Tunable synthesis of benzothiophene fused pyranone and thiochromen fused furan derivatives via a domino process. Org. Chem. Front., 2021, 8(5), 936-940.
[http://dx.doi.org/10.1039/D0QO01269F]
[148]
Jia, J.; Yu, A.; Liu, X.; Meng, X. 1,4-Diazabicyclo[2.2.2]octane (DABCO)-catalyzed [4+2] domino reaction of allenoates: Synthesis of benzo[4,5]thieno-[3,2-b]pyran derivatives. Youji Huaxue, 2019, 39(8), 2175-2182.
[http://dx.doi.org/10.6023/cjoc201904082]
[149]
Varala, R.; Bollikolla, H.B.; Kurmarayuni, C.M. Synthesis of pharmacological relevant 1,2,3-triazole and its analogues-A review. Curr. Org. Synth., 2021, 18(2), 101-124.
[http://dx.doi.org/10.2174/18756271MTA54OTEc0] [PMID: 32928090]
[150]
Vala, D.P.; Vala, R.M.; Patel, H.M. Versatile synthetic platform for 1,2,3-triazole chemistry. ACS Omega, 2022, 7(42), 36945-36987.
[http://dx.doi.org/10.1021/acsomega.2c04883] [PMID: 36312377]
[151]
Tourani, H.; Naimi-Jamal, M.; Panahi, L.; Dekamin, M.G. Nanoporous metal-organic framework Cu2(BDC)2(DABCO) as an efficient heterogeneous catalyst for one-pot facile synthesis of 1,2,3-triazole derivatives in ethanol: Evaluating antimicrobial activity of the novel derivatives. Scientia Iranica C, 2019, 26(3), 1485-1496.
[http://dx.doi.org/10.24200/sci.2018.50731.1841]
[152]
Mir, R.H.; Mir, P.A. Mohi-ud-din, R.; Sabreen, S.; Maqbool, M.; Shah, A.J.; Shenmar, K.; Raza, S.N.; Pottoo, F.H. A comprehensive review on journey of pyrrole scaffold against multiple therapeutic targets. Anticancer. Agents Med. Chem., 2022, 22(19), 3291-3303.
[http://dx.doi.org/10.2174/1871520622666220613140607] [PMID: 35702764]
[153]
Shi, T.; Yin, G.; Wang, X.; Xiong, Y.; Peng, Y.; Li, S.; Zeng, Y.; Wang, Z. Recent advances in the syntheses of pyrroles. Green Synth. Catal., 2023, 4(1), 20-34.
[http://dx.doi.org/10.1016/j.gresc.2022.06.004]
[154]
Sheikh, A.R.; Arif, A.; Khan, M.M. Aryl glyoxal: A prime synthetic equivalent for multicomponent reactions in the designing of oxygen heterocycles. RSC Advances, 2023, 13(17), 11652-11684.
[http://dx.doi.org/10.1039/D2RA08315A] [PMID: 37063730]
[155]
Chang, X.; Yang, X.; Chen, Z.; Zhong, W. 1,4-Diazabicyclo[2.2.2]octane-catalyzed multicomponent domino strategy for the synthesis of tetrasubstituted NH-pyrroles. Synlett, 2019, 30(12), 1431-1436.
[http://dx.doi.org/10.1055/s-0037-1611857]
[156]
Patil, S.B. Recent medicinal approaches of novel pyrimidine analogs: A review. Heliyon, 2023, 9(6), e16773.
[http://dx.doi.org/10.1016/j.heliyon.2023.e16773] [PMID: 37346348]
[157]
Ebenezer, O.; Shapi, M.; Tuszynski, J.A. A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives. Biomedicines, 2022, 10(5), 1124.
[http://dx.doi.org/10.3390/biomedicines10051124] [PMID: 35625859]
[158]
Patil, P.; Yadav, A.; Bavkar, L. N, N.B.; Satyanarayan, N.D.; Mane, A.; Gurav, A.; Hangirgekar, S.; Sankpal, S. [MerDABCO-SO3H]Cl catalyzed synthesis, antimicrobial and antioxidant evaluation and molecular docking study of pyrazolopyranopyrimidines. J. Mol. Struct., 2021, 1242, 130672.
[http://dx.doi.org/10.1016/j.molstruc.2021.130672]
[159]
Sharma, V.; Amarnath, N.; Shukla, S.; Ayana, R.; Kumar, N.; Yadav, N.; Kannan, D.; Sehrawat, S.; Pati, S.; Lochab, B.; Singh, S. Benzoxazine derivatives of phytophenols show anti-plasmodial activity via sodium homeostasis disruption. Bioorg. Med. Chem. Lett., 2018, 28(9), 1629-1637.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.047] [PMID: 29615339]
[160]
Sahn, J.J.; Martin, S.F. Facile syntheses of substituted, conformationally-constrained benzoxazocines and benzazocines via sequential multicomponent assembly and cyclization. Tetrahedron Lett., 2011, 52(51), 6855-6858.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.022] [PMID: 22711939]
[161]
Qamsari, F.M.; Shahram, M.; Reza, F.A. DABCO-Catalyzed easy access to Benzo[d]naphtho[2,3-g][1,3]-oxazocine-8,13(6H,14H)-diones in aqueous media. Iran. J. Chem. Chem. Eng., 2021, 40(2), 437-443.
[http://dx.doi.org/10.30492/IJCCE.2020.37863]
[162]
He, X.; Zhou, Y.; Shang, Y.; Yang, C.; Zuo, Y. Synthesis of 2-arylimino-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-ones via Rh2(OAc)4-catalyzed reactions of cyclic 2-diazo-1,3-diketones with aryl isothiocyanates. ACS Omega, 2016, 1(6), 1277-1283.
[http://dx.doi.org/10.1021/acsomega.6b00295] [PMID: 31457195]
[163]
Chazin, E.; Sanches, P.; Lindgren, E.; Júnior, V.W.; Pinto, L.; Burbano, R.; Yoneda, J.; Leal, K.; Gomes, C.; Wardell, J.; Wardell, S.; Montenegro, R.; Vasconcelos, T. Synthesis and biological evaluation of novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases as potential anticancer agents. Molecules, 2015, 20(2), 1968-1983.
[http://dx.doi.org/10.3390/molecules20021968] [PMID: 25633329]
[164]
Nguyen, T.B.; Retailleau, P. DABCO-Catalyzed reaction of 2-naphthols with aryl isothiocyanates: Access to 2-iminonaphtho-1,3-oxathioles. Org. Lett., 2022, 24(36), 6676-6680.
[http://dx.doi.org/10.1021/acs.orglett.2c02736] [PMID: 36048584]
[165]
Kallander, L.S.; Lu, Q.; Chen, W.; Tomaszek, T.; Yang, G.; Tew, D.; Meek, T.D.; Hofmann, G.A.; Schulz-Pritchard, C.K.; Smith, W.W.; Janson, C.A.; Ryan, M.D.; Zhang, G.F.; Johanson, K.O.; Kirkpatrick, R.B.; Ho, T.F.; Fisher, P.W.; Mattern, M.R.; Johnson, R.K.; Hansbury, M.J.; Winkler, J.D.; Ward, K.W.; Veber, D.F.; Thompson, S.K. 4-Aryl-1,2,3-triazole: A novel template for a reversible methionine aminopeptidase 2 inhibitor, optimized to inhibit angiogenesis in vivo. J. Med. Chem., 2005, 48(18), 5644-5647.
[http://dx.doi.org/10.1021/jm050408c] [PMID: 16134930]
[166]
Mosbat, M.M.; Vaghei, G.R.; Sarmast, N. One-pot synthesis of 4-aryl-NH-1,2,3-triazoles in presence of Fe3O4@SiO2@propyl-HMTA as a new basic catalyst. ChemistrySelect, 2019, 4(5), 1731-1737.
[http://dx.doi.org/10.1002/slct.201803545]
[167]
Jadidi Nejad, M.; Pazoki, F.; Bagheri, S.; Yazdani, E.; Heydari, A. 1, 4-Diazabicyclo[2.2.2]octane-sulfonic acid immobilized on magnetic Fe3O4@SiO2 nanoparticles: A novel and recyclable catalyst for the one-pot synthesis of 4-aryl-NH-1, 2, 3-triazoles. J. Chem. Sci., 2020, 132(1), 62.
[http://dx.doi.org/10.1007/s12039-020-01761-w]
[168]
Kumar, S. Ritika, A brief review of the biological potential of indole derivatives. Fut. J. Pharmaceut. Sci., 2020, 6(1), 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[169]
Enugala, R.; Nuvvula, S.; Kotra, V.; Varala, R.; Adapa, S.R. Green approach for the efficient synthesis of quinolines promoted by citric acid. Heterocycles, 2008, 75, 2523-2533.
[http://dx.doi.org/10.3987/COM-08-11405]
[170]
Raithak, P.V.; Dhabe, A.S.; Atkore, S.T.; Alam, M.M.; Kotra, V.; Varala, R. Synthesis and anti-oxidant evaluation of indole quinoline derived chalcones. Asian J. Chem., 2021, 34(1), 235-238.
[http://dx.doi.org/10.14233/ajchem.2022.23541]
[171]
Mekheimer, R.A.; Al-Sheikh, M.A.; Medrasi, H.Y.; Sadek, K.U. Advancements in the synthesis of fused tetracyclic quinoline derivatives. RSC Advances, 2020, 10(34), 19867-19935.
[http://dx.doi.org/10.1039/D0RA02786C] [PMID: 35520416]
[172]
Singh, S.; Chauhan, S.S.; Sharma, N.K.; Dutt, S.; Ameta, K.L. Diverse routes for the synthesis of indole-fused complex architecture from simple molecules. Mini Rev. Org. Chem., 2021, 18(2), 237-258.
[http://dx.doi.org/10.2174/1570193X17999200521101255]
[173]
Wang, K.K.; Li, Y.L.; Li, L.X.; Yao, W.W.; Li, Y.F.; Wang, W.F.; Chen, R.; Hu, Y.F.; Sun, A. Dearomative [4 + 2] cycloaddition of 3‐nitroindoles with ortho‐amino morita-baylis-hillman carbonates to forge indole‐fused quinolines. J. Heterocycl. Chem., 2024, 61(3), 528-537.
[http://dx.doi.org/10.1002/jhet.4781]
[174]
Pashirova, T.N.; Sapunova, A.S.; Lukashenko, S.S.; Burilova, E.A.; Lubina, A.P.; Shaihutdinova, Z.M.; Gerasimova, T.P.; Kovalenko, V.I.; Voloshina, A.D.; Souto, E.B.; Zakharova, L.Y. Synthesis, structure-activity relationship and biological evaluation of tetracationic gemini Dabco-surfactants for transdermal liposomal formulations. Int. J. Pharm., 2020, 575, 118953.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118953] [PMID: 31843548]
[175]
Fernandes, A.R.; Sanchez-Lopez, E.; Santini, A.; Santos, T.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Mono- and dicationic DABCO/quinuclidine composed nanomaterials for the loading of steroidal drug: 32 Factorial design and physicochemical characterization. Nanomaterials, 2021, 11(10), 2758.
[http://dx.doi.org/10.3390/nano11102758] [PMID: 34685199]
[176]
Rahvar, Y.; Motakef-Kazemi, N.; Doust, R.H. Synthesis of Zn2(BDC)2(DABCO) MOF by solution and solvothermal methods and evaluation of its anti-bacterial. Nanomed. Res. J., 2021, 6(4), 360-368.
[http://dx.doi.org/10.22034/nmrj.2021.04.006]
[177]
Fernandes, A.R.; Santos, T.; Granja, P.L.; Sanchez-Lopez, E.; Santini, A.; Garcia, M.L.; Silva, A.M.; Souto, E.B. DABCO-customized nanoemulsions: Characterization, cell viability and genotoxicity in retinal pigmented epithelium and microglia cells. Pharmaceutics, 2021, 13(10), 1652.
[http://dx.doi.org/10.3390/pharmaceutics13101652] [PMID: 34683945]
[178]
Ebadati, A.; Oshaghi, M.; Saeedi, S.; Parsa, P.; Mahabadi, V.P.; Karimi, M.; Hajiebrahimdehi, A.J.; Hamblin, M.R.; Karimi, M. Mechanism and antibacterial synergies of poly(Dabco-BBAC) nanoparticles against multi-drug resistant Pseudomonas aeruginosa isolates from human burns. Bioorg. Chem., 2023, 140, 106718.
[http://dx.doi.org/10.1016/j.bioorg.2023.106718] [PMID: 37566942]
[179]
Burakova, E.A.; Saranina, I.V.; Tikunova, N.V.; Nazarkina, Z.K.; Laktionov, P.P.; Karpinskaya, L.A.; Anikin, V.B.; Zarubaev, V.V.; Silnikov, V.N. Biological evaluation of tetracationic compounds based on two 1,4-diazabicyclo[2.2.2]octane moieties connected by different linkers. Bioorg. Med. Chem., 2016, 24(22), 6012-6020.
[http://dx.doi.org/10.1016/j.bmc.2016.09.064] [PMID: 27720324]
[180]
Herman, J.L.; Wang, Y.; Lilly, E.A.; Lallier, T.E.; Peters, B.M.; Hamdan, S.; Xu, X.; Fidel, P.L., Jr; Noverr, M.C. Synthesis, antifungal activity, and biocompatibility of novel 1,4-diazabicyclo[2.2.2]octane (DABCO) compounds and DABCO-containing denture base resins. Antimicrob. Agents Chemother., 2017, 61(4), e02575-e16.
[http://dx.doi.org/10.1128/AAC.02575-16] [PMID: 28115357]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy