Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Systematic Review Article

The Effects of Sumac Consumption on Inflammatory and Oxidative Stress Factors: A Systematic Review of Randomized Clinical Trials

Author(s): Hossein Bahari, Sheida Zeraattalab-Motlagh, Zohreh Sajadi Hezaveh, Zahra Namkhah, Haniyeh Golafrouz, Shaghayegh Taheri and Amirhossein Sahebkar*

Volume 30, Issue 27, 2024

Published on: 12 June, 2024

Page: [2142 - 2151] Pages: 10

DOI: 10.2174/0113816128305609240529114411

Price: $65

Abstract

Background: Rhus coriaria L., commonly known as Sumac, is a plant from the Anacardiaceae family that is known for its high phytochemical content. These phytochemicals have the potential to effectively manage inflammation and oxidative stress. To explore the existing evidence on the impact of Sumac consumption on inflammation and oxidative stress, we conducted a systematic review of randomized controlled trials.

Methods: We conducted a comprehensive search of Medline/PubMed, Scopus, and Web of Science from inception to August 2023 to identify relevant studies examining the effects of Sumac on biomarkers of inflammation and oxidative stress. The selected studies were assessed for risk of bias using the Cochrane tool.

Results: A total of seven trials were included in this review. Among these trials, three focused on diabetes patients, while the remaining four involved individuals with fatty liver, overweight individuals with depression, and those with polycystic ovary or metabolic syndrome. Five studies reported the effects of Sumac on oxidative stress, with four of them demonstrating a significant reduction in malondialdehyde (MDA) levels and an increase in total antioxidant capacity (TAC) and paraoxonase 1 (PON1). Regarding inflammation, one study reported no significant difference in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels between the intervention and control groups. The results for high-sensitivity C-reactive protein levels, reported in five trials, were inconsistent.

Conclusion: Sumac consumption over time may positively affect oxidative stress, although short-term use shows minimal impact. While one study found no significant effect on IL-6 and TNF-α, hs-CRP levels could decrease or remain unchanged. Further meta-analyses are needed to fully understand Sumac's potential benefits in managing metabolic diseases.

[1]
Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol 2015; 4: 180-3.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[2]
Tan BL, Norhaizan ME, Liew WPP. Nutrients and oxidative stress: Friend or foe? Oxid Med Cell Longev 2018; 2018: 1-24.
[http://dx.doi.org/10.1155/2018/9719584] [PMID: 29643982]
[3]
Roe K. An inflammation classification system using cytokine parameters. Scand J Immunol 2021; 93(2): e12970.
[http://dx.doi.org/10.1111/sji.12970] [PMID: 32892387]
[4]
Bahari H, Rafiei H, Goudarzi K, et al. The effects of pomegranate consumption on inflammatory and oxidative stress biomarkers in adults: A systematic review and meta-analysis. Inflammopharmacology 2023; 31(5): 2283-301.
[http://dx.doi.org/10.1007/s10787-023-01294-x] [PMID: 37507609]
[5]
Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[6]
Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016; 2016: 5698931.
[http://dx.doi.org/10.1155/2016/5698931]
[7]
Singh V, Ubaid S. Role of Silent Information Regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation 2020; 43(5): 1589-98.
[http://dx.doi.org/10.1007/s10753-020-01242-9] [PMID: 32410071]
[8]
Azzi A. Oxidative stress: What is it? Can it be measured? Where is it located? Can it be good or bad? Can it be prevented? Can it be cured? Antioxidants 2022; 11(8): 1431.
[http://dx.doi.org/10.3390/antiox11081431] [PMID: 35892633]
[9]
Dandekar A, Mendez R, Zhang K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol 2015; 1292: 205-14.
[http://dx.doi.org/10.1007/978-1-4939-2522-3_15] [PMID: 25804758]
[10]
Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther 2021; 227: 107879.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107879] [PMID: 33915177]
[11]
Soehnlein O, Libby P. Targeting inflammation in atherosclerosis - From experimental insights to the clinic. Nat Rev Drug Discov 2021; 20(8): 589-610.
[http://dx.doi.org/10.1038/s41573-021-00198-1] [PMID: 33976384]
[12]
Ndrepepa G. Myeloperoxidase – A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta 2019; 493: 36-51.
[http://dx.doi.org/10.1016/j.cca.2019.02.022] [PMID: 30797769]
[13]
Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol 2017; 16(1): 120.
[http://dx.doi.org/10.1186/s12933-017-0604-9] [PMID: 28962617]
[14]
Pajares M, I Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells 2020; 9(7): 1687.
[http://dx.doi.org/10.3390/cells9071687] [PMID: 32674367]
[15]
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181: 154-65.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.02.004] [PMID: 35149216]
[16]
Yaribeygi H, Panahi Y, Javadi B, Sahebkar A. The underlying role of oxidative stress in neurodegeneration: A mechanistic review. CNS Neurol Disord Drug Targets 2018; 17(3): 207-15.
[http://dx.doi.org/10.2174/1871527317666180425122557] [PMID: 29692267]
[17]
Khandia R, Munjal A. Interplay between inflammation and cancer. Adv Protein Chem Struct Biol 2020; 119: 199-245.
[http://dx.doi.org/10.1016/bs.apcsb.2019.09.004] [PMID: 31997769]
[18]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[19]
Asgary S, Kelishadi R, Rafieian-Kopaei M, Najafi S, Najafi M, Sahebkar A. Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr Cardiol 2013; 34(7): 1729-35.
[http://dx.doi.org/10.1007/s00246-013-0693-5] [PMID: 23625305]
[20]
Iranshahi M, Askari M, Sahebkar A, Hadjipavlou-Litina D. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. Daru 2009; 17(2): 99-103.
[21]
Kahkhaie KR, Mirhosseini A, Aliabadi A, et al. Curcumin: A modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology 2019; 27(5): 885-900.
[http://dx.doi.org/10.1007/s10787-019-00607-3] [PMID: 31140036]
[22]
Panahi Y, Sahebkar A, Amiri M, et al. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: Results of a randomised, double-blind, placebo-controlled trial. Br J Nutr 2012; 108(7): 1272-9.
[http://dx.doi.org/10.1017/S0007114511006544] [PMID: 22099425]
[23]
Yaribeygi H, Mohammadi MT, Sahebkar A. Crocin potentiates antioxidant defense system and improves oxidative damage in liver tissue in diabetic rats. Biomed Pharmacother 2018; 98: 333-7.
[http://dx.doi.org/10.1016/j.biopha.2017.12.077] [PMID: 29274590]
[24]
Ahmadi A, Jamialahmadi T, Sahebkar A. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation. Pharmacol Res 2022; 184: 106414.
[http://dx.doi.org/10.1016/j.phrs.2022.106414] [PMID: 36028188]
[25]
Heidari H, Bagherniya M, Majeed M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother Res 2023; 37(4): 1462-87.
[http://dx.doi.org/10.1002/ptr.7737] [PMID: 36720711]
[26]
Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pulmonary fibrosis: Therapeutic and mechanistic insights into the role of phytochemicals. Biofactors 2021; 47(3): 250-69.
[http://dx.doi.org/10.1002/biof.1713] [PMID: 33548106]
[27]
Bielecka-Dabrowa A, Banach M, Wittczak A, et al. The role of nutraceuticals in heart failure muscle wasting as a result of inflammatory activity. Arch Med Sci 2023; 19(4): 841-64.
[PMID: 37560745]
[28]
Farag RS, Abdel-Latif MS, Abd El Baky HH, Tawfeek LS. Phytochemical screening and antioxidant activity of some medicinal plants’ crude juices. Biotechnol Rep (Amst) 2020; 28: e00536.
[http://dx.doi.org/10.1016/j.btre.2020.e00536] [PMID: 33088732]
[29]
Rayne S, Mazza G. Biological activities of extracts from Sumac (Rhus spp.): A review. Nature precedings 2007.
[30]
Shidfar F, Rahideh ST, Rajab A, et al. The effect of Sumac (Rhus coriaria L.) powder on serum glycemic status, ApoB, ApoA-I and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res 2014; 13(4): 1249-55.
[PMID: 25587314]
[31]
Rahideh ST, Shidfar F, Khandozi N, Rajab A, Hosseini SP, Mirtaher SM. The effect of Sumac (Rhus coriaria L.) powder on insulin resistance, malondialdehyde, high sensitive C-reactive protein and paraoxonase 1 activity in type 2 diabetic patients J Res Med Sci 2014; 19(10): 933-8.
[32]
Zargham H, Zargham R. Tannin extracted from Sumac inhibits vascular smooth muscle cell migration. McGill J Med 2008; 11(2): 119-23.
[PMID: 19148309]
[33]
Pourahmad J, Eskandari MR, Shakibaei R, Kamalinejad M. A search for hepatoprotective activity of aqueous extract of Rhus coriaria L. against oxidative stress cytotoxicity. Food Chem Toxicol 2010; 48(3): 854-8.
[http://dx.doi.org/10.1016/j.fct.2009.12.021] [PMID: 20036300]
[34]
Mohammadi S, Montasser Kouhsari S, Monavar Feshani A. Antidiabetic properties of the ethanolic extract of Rhus coriaria fruits in rats. Daru 2010; 18(4): 270-5.
[PMID: 22615627]
[35]
Abbasalipour H, Hajizadeh Moghaddam A, Ranjbar M. Sumac and gallic acid-loaded nanophytosomes ameliorate hippocampal oxidative stress via regulation of Nrf2/Keap1 pathway in autistic rats. J Biochem Mol Toxicol 2022; 36(6): e23035.
[http://dx.doi.org/10.1002/jbt.23035] [PMID: 35307911]
[36]
Chakraborty A, Ferk F, Simić T, et al. DNA-protective effects of sumach (Rhus coriaria L.), a common spice: Results of human and animal studies. Mutat Res 2009; 661(1-2): 10-7.
[http://dx.doi.org/10.1016/j.mrfmmm.2008.10.009] [PMID: 19022266]
[37]
Batiha GES, Ogunyemi OM, Shaheen HM, et al. Rhus coriaria L. (Sumac), a versatile and resourceful food spice with cornucopia of polyphenols. Molecules 2022; 27(16): 5179.
[http://dx.doi.org/10.3390/molecules27165179] [PMID: 36014419]
[38]
Afandak F, Aryaeian N, Kashanian M, et al. Effect of Sumac powder on clinical symptoms, hyperandrogenism, inflammation, blood glucose, lipid profiles in women with polycystic ovary syndrome: A double-blind randomized clinical trial. Phytother Res 2023; 37(6): 2315-25.
[http://dx.doi.org/10.1002/ptr.7744] [PMID: 36724890]
[39]
Ghafouri A, Estêvão MD, Alibakhshi P, et al. Sumac fruit supplementation improve glycemic parameters in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis. Phytomedicine 2021; 90: 153661.
[http://dx.doi.org/10.1016/j.phymed.2021.153661] [PMID: 34334274]
[40]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg 2021; 88: 105906.
[http://dx.doi.org/10.1016/j.ijsu.2021.105906] [PMID: 33789826]
[41]
Higgins JP. Cochrane handbook for systematic reviews of interventions. 2011. Available from: https://handbook-5-1.cochrane.org/
[42]
Hajhashemy Z, Mirenayat FS, Siavash M, Saneei P. The effect of Sumac supplementation on insulin resistance, inflammation, oxidative stress, and antioxidant capacity in adults with metabolic syndrome: A randomized crossover clinical trial. Phytother Res 2023; 37(4): 1319-29.
[http://dx.doi.org/10.1002/ptr.7688] [PMID: 36428227]
[43]
Hariri N, Darafshi Ghahroudi S, Jahangiri S, Borumandnia N, Narmaki E, Saidpour A. The beneficial effects of Sumac (Rhus coriaria L.) supplementation along with restricted calorie diet on anthropometric indices, oxidative stress, and inflammation in overweight or obese women with depression: A randomized clinical trial. Phytother Res 2020; 34(11): 3041-51.
[http://dx.doi.org/10.1002/ptr.6737] [PMID: 32940404]
[44]
Kazemi S, Shidfar F, Ehsani S, Adibi P, Janani L, Eslami O. The effects of Sumac (Rhus coriaria L.) powder supplementation in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complement Ther Clin Pract 2020; 41: 101259.
[http://dx.doi.org/10.1016/j.ctcp.2020.101259] [PMID: 33190008]
[45]
Ghorbanian B, Mohammadi H. Effects of 10-weeks aerobic training with Rhus coriaria. L Supplementation on TAC, insulin resistance and anthropometric indices in women with type 2 diabetes. Complement Med J 2017; 7(1): 1805-5.
[46]
Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50(4): 1088-101.
[http://dx.doi.org/10.2307/2533446] [PMID: 7786990]
[47]
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315(7109): 629-34.
[http://dx.doi.org/10.1136/bmj.315.7109.629] [PMID: 9310563]
[48]
Świątkiewicz I, Wróblewski M, Nuszkiewicz J, Sutkowy P, Wróblewska J, Woźniak A. The role of oxidative stress enhanced by adiposity in cardiometabolic diseases. Int J Mol Sci 2023; 24(7): 6382.
[http://dx.doi.org/10.3390/ijms24076382] [PMID: 37047352]
[49]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757-72.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[50]
Schauren BC, Portal VL, Beltrami FG, dos Santos TJ, Pellanda LC. Postprandial metabolism and inflammatory markers in overweight adolescents. J Dev Orig Health Dis 2014; 5(4): 299-306.
[http://dx.doi.org/10.1017/S2040174414000269] [PMID: 24965136]
[51]
Ferk F, Chakraborty A, Simic T, Kundi M, Knasmüller S, Eds. Antioxidant and free radical scavenging activities of Sumac (Rhus coriaria) and identification of gallic acid as its active principle. BMC Pharmacol 2007; 7(Suppl 2): A71.
[52]
Kade IJ, Rocha JBT. Gallic acid modulates cerebral oxidative stress conditions and activities of enzyme-dependent signaling systems in streptozotocin-treated rats. Neurochem Res 2013; 38(4): 761-71.
[http://dx.doi.org/10.1007/s11064-013-0975-6] [PMID: 23381106]
[53]
Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem 2013; 138(2-3): 1028-33.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.022] [PMID: 23411210]
[54]
Shabbir A. Rhus coriaria Linn, a plant of medicinal, nutritional and industrial importance: A review. J Anim Plant Sci 2012; 22(2): 505-12.
[55]
Jung CH, Jun CY, Lee S, Park CH, Cho K, Ko SG. Rhus verniciflua stokes extract: Radical scavenging activities and protective effects on H2O2-induced cytotoxicity in macrophage RAW 264.7 cell lines. Biol Pharm Bull 2006; 29(8): 1603-7.
[http://dx.doi.org/10.1248/bpb.29.1603] [PMID: 16880612]
[56]
Giancarlo S, Rosa LM, Nadjafi F, Francesco M. Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bunium persicum Boiss. Nat Prod Res 2006; 20(9): 882-6.
[http://dx.doi.org/10.1080/14786410500520186] [PMID: 16753927]
[57]
Skopec MM, Green AK, Karasov WH. Flavonoids have differential effects on glucose absorption in rats (Rattus norvegicus) and American robins (Rhus coriaria). J Chem Ecol 2010; 36(2): 236-43.
[http://dx.doi.org/10.1007/s10886-010-9747-9] [PMID: 20145981]
[58]
Doğan A, Çelik İ. Healing effects of Sumac (Rhus coriaria) in streptozotocin-induced diabetic rats. Pharm Biol 2016; 54(10): 2092-102.
[http://dx.doi.org/10.3109/13880209.2016.1145702] [PMID: 26957014]
[59]
Heidari H, Ahangarpour A, Junghani M, Absari R, Khoogar M, Ghaedi E. Effects of hydroalcoholic extract of Rhus coriaria seed on glucose and insulin related biomarkers, lipid profile, and hepatic enzymes in nicotinamide-streptozotocin-induced type II diabetic male mice. Res Pharm Sci 2017; 12(5): 416-24.
[http://dx.doi.org/10.4103/1735-5362.213987] [PMID: 28974980]
[60]
Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25(12): 1822-32.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[61]
Momeni A, Maghsoodi H, Rezapour S, Shiravand M, Mardani M. Reduction of expression of IL-18, IL-1β genes in the articular joint by Sumac fruit extract (Rhus coriaria L.). Mol Genet Genomic Med 2019; 7(6): e664.
[http://dx.doi.org/10.1002/mgg3.664] [PMID: 30941930]
[62]
Gabr SA, Alghadir AH. Evaluation of the biological effects of lyophilized hydrophilic extract of Rhus coriaria on Myeloperoxidase (MPO) activity, wound healing, and microbial infections of skin wound tissues. Evid Based Complement Alternat Med 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/5861537] [PMID: 31379964]
[63]
El Hasasna H, Saleh A, Samri HA, et al. Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways. Sci Rep 2016; 6(1): 21144.
[http://dx.doi.org/10.1038/srep21144] [PMID: 26888313]
[64]
Bujtor M, Turner A, Torres S, Esteban-Gonzalo L, Pariante C, Borsini A. Associations of dietary intake on biological markers of inflammation in children and adolescents: A systematic review. Nutrients 2021; 13(2): 356.
[http://dx.doi.org/10.3390/nu13020356] [PMID: 33503979]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy