Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Exploring the Mechanism of Zhishi-Xiebai-Guizhi Decoction for the Treatment of Hypoxic Pulmonary Hypertension based on Network Pharmacology and Experimental Analyses

Author(s): Pan Huang, Yuxiang Wang, Chuanchuan Liu, Qingqing Zhang, Yougang Ma, Hong Liu, Xiaobo Wang, Yating Wang, Minmin Wei and Lan Ma*

Volume 30, Issue 26, 2024

Published on: 11 June, 2024

Page: [2059 - 2074] Pages: 16

DOI: 10.2174/0113816128293601240523063527

Price: $65

Abstract

Background: Hypoxic Pulmonary Hypertension (HPH), a prevalent disease in highland areas, is a crucial factor in various complex highland diseases with high mortality rates. Zhishi-Xiebai-Guizhi decoction (ZXGD), traditional Chinese medicine with a long history of use in treating heart and lung diseases, lacks a clear understanding of its pharmacological mechanism.

Objective: This study aimed to investigate the pharmacological effects and mechanisms of ZXGD on HPH.

Methods: We conducted a network pharmacological prediction analysis and molecular docking to predict the effects, which were verified through in vivo experiments.

Results: Network pharmacological analysis revealed 51 active compounds of ZXGD and 701 corresponding target genes. Additionally, there are 2,116 targets for HPH, 311 drug-disease co-targets, and 17 core-targets. GO functional annotation analysis revealed that the core targets primarily participate in biological processes such as apoptosis and cellular response to hypoxia. Furthermore, KEGG pathway enrichment analysis demonstrated that the core targets are involved in several pathways, including the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway and Hypoxia Inducible Factor 1 (HIF1) signaling pathway. In vivo experiments, the continuous administration of ZXGD demonstrated a significant improvement in pulmonary artery pressure, right heart function, pulmonary vascular remodeling, and pulmonary vascular fibrosis in HPH rats. Furthermore, ZXGD was found to inhibit the expression of PI3K, Akt, and HIF1α proteins in rat lung tissue.

Conclusion: In summary, this study confirmed the beneficial effects and mechanism of ZXGD on HPH through a combination of network pharmacology and in vivo experiments. These findings provided a new insight for further research on HPH in the field of traditional Chinese medicine.

[1]
Swenson ER. Chronic mountain sickness evolving over time. Chest 2022; 161(5): 1136-7.
[http://dx.doi.org/10.1016/j.chest.2022.01.024] [PMID: 35526884]
[2]
Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: A review. JAMA 2022; 327(14): 1379-91.
[http://dx.doi.org/10.1001/jama.2022.4402] [PMID: 35412560]
[3]
Rosenkranz S, Gibbs JSR, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry JL. Left ventricular heart failure and pulmonary hypertension. Eur Heart J 2016; 37(12): 942-54.
[http://dx.doi.org/10.1093/eurheartj/ehv512] [PMID: 26508169]
[4]
Pullamsetti SS, Mamazhakypov A, Weissmann N, Seeger W, Savai R. Hypoxia-inducible factor signaling in pulmonary hypertension. J Clin Invest 2020; 130(11): 5638-51.
[http://dx.doi.org/10.1172/JCI137558] [PMID: 32881714]
[5]
Xu X-Q, Jing Z-C. High-altitude pulmonary hypertension. Eur Respir Rev 2009; 18(111): 13-7.
[http://dx.doi.org/10.1183/09059180.00011104] [PMID: 20956117]
[6]
Padang R, Chandrashekar N, Indrabhinduwat M, et al. Aetiology and outcomes of severe right ventricular dysfunction. Eur Heart J 2020; 41(12): 1273-82.
[http://dx.doi.org/10.1093/eurheartj/ehaa037] [PMID: 32047900]
[7]
Johnson S, Sommer N, Cox-Flaherty K, Weissmann N, Ventetuolo CE, Maron BA. Pulmonary hypertension: A contemporary review. Am J Respir Crit Care Med 2023; 208(5): 528-48.
[http://dx.doi.org/10.1164/rccm.202302-0327SO] [PMID: 37450768]
[8]
He M, Tao K, Xiang M, Sun J. Hpgd affects the progression of hypoxic pulmonary hypertension by regulating vascular remodeling. BMC Pulm Med 2023; 23(1): 116.
[http://dx.doi.org/10.1186/s12890-023-02401-y] [PMID: 37055764]
[9]
Benek O, Korabecny J, Soukup O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol Sci 2020; 41(7): 434-45.
[http://dx.doi.org/10.1016/j.tips.2020.04.008] [PMID: 32448557]
[10]
Zhang JR, Ouyang X, Hou C, et al. Natural ingredients from Chinese materia medica for pulmonary hypertension. Chin J Nat Med 2021; 19(11): 801-14.
[http://dx.doi.org/10.1016/S1875-5364(21)60092-4] [PMID: 34844719]
[11]
Xue Z, Li Y, Zhou M, et al. Traditional herbal medicine discovery for the treatment and prevention of pulmonary arterial hypertension. Front Pharmacol 2021; 12: 720873.
[http://dx.doi.org/10.3389/fphar.2021.720873] [PMID: 34899290]
[12]
Liu Y, He X, Di Z, Du X. Study on the active constituents and molecular mechanism of Zhishi Xiebai Guizhi decoction in the treatment of CHD based on UPLC-UESI-Q exactive focus, gene expression profiling, network pharmacology, and experimental validation. ACS Omega 2022; 7(5): 3925-39.
[http://dx.doi.org/10.1021/acsomega.1c04491] [PMID: 35155889]
[13]
Jianmei W, Ranran W, Tianyi Y, et al. Effect and mechanism of Gualou Xiebai decoction in preventing hypoxic pulmonary hypertension. Pharmacol Clin Chin Materia Medica 2023; 39: 8-15.
[14]
Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol 2023; 309: 116306.
[http://dx.doi.org/10.1016/j.jep.2023.116306] [PMID: 36858276]
[15]
Zhang P, Zhang D, Zhou W, et al. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief Bioinform 2023; 25(1): bbad518.
[http://dx.doi.org/10.1093/bib/bbad518] [PMID: 38197310]
[16]
Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[17]
Zhang W, Tian W, Wang Y, et al. Explore the mechanism and substance basis of Mahuang FuziXixin decoction for the treatment of lung cancer based on network pharmacology and molecular docking. Comput Biol Med 2022; 151(Pt A): 106293.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106293]
[18]
Kim S. Getting the most out of PubChem for virtual screening. Expert Opin Drug Discov 2016; 11(9): 843-55.
[http://dx.doi.org/10.1080/17460441.2016.1216967] [PMID: 27454129]
[19]
Tang B, Dong Y. Network pharmacology and bioinformatics analysis on the underlying mechanisms of baicalein against oral squamous cell carcinoma. J Gene Med 2023; 25(6): e3490.
[http://dx.doi.org/10.1002/jgm.3490] [PMID: 36843559]
[20]
Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2002; 30(1): 52-5.
[http://dx.doi.org/10.1093/nar/30.1.52] [PMID: 11752252]
[21]
Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: A novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 1998; 14(8): 656-64.
[http://dx.doi.org/10.1093/bioinformatics/14.8.656] [PMID: 9789091]
[22]
Zhang Z, Wang X, Wang S, Jia Z, Mao J. Network pharmacology and molecular docking analysis of shufeiya recipe in the treatment of pulmonary hypertension. BioMed Res Int 2022; 2022: 1-12.
[http://dx.doi.org/10.1155/2022/7864976] [PMID: 36756383]
[23]
Tang D, Chen M, Huang X, et al. SRplot: A free online platform for data visualization and graphing. PLoS One 2023; 18(11): e0294236.
[http://dx.doi.org/10.1371/journal.pone.0294236] [PMID: 37943830]
[24]
Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 51(D1): D638-46.
[http://dx.doi.org/10.1093/nar/gkac1000] [PMID: 36370105]
[25]
Doncheva NT, Morris JH, Holze H, et al. Cytoscape stringApp 2.0: Analysis and visualization of heterogeneous biological networks. J Proteome Res 2023; 22(2): 637-46.
[http://dx.doi.org/10.1021/acs.jproteome.2c00651] [PMID: 36512705]
[26]
Zhang L, Shi X, Huang Z, et al. Network pharmacology approach to uncover the mechanism governing the effect of radix achyranthis bidentatae on osteoarthritis. BMC Comple Med Therap 2020; 20(1): 121.
[http://dx.doi.org/10.1186/s12906-020-02909-4] [PMID: 32316966]
[27]
Sherman BT, Hao M, Qiu J, et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022; 50(W1): W216-21.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[28]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[29]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[30]
Arcon JP, Modenutti CP, Avendaño D, et al. AutoDock Bias: Improving binding mode prediction and virtual screening using known protein–ligand interactions. Bioinformatics 2019; 35(19): 3836-8.
[http://dx.doi.org/10.1093/bioinformatics/btz152] [PMID: 30825370]
[31]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[32]
Li J, Miao B, Wang S, et al. Hiplot: A comprehensive and easy- to-use web service for boosting publication-ready biomedical data visualization. Brief Bioinform 2022; 23(4): bbac261.
[http://dx.doi.org/10.1093/bib/bbac261] [PMID: 35788820]
[33]
Yuan S, Chan HCS, Filipek S, Vogel H. PyMOL and inkscape bridge the data and the data visualization. Structure 2016; 24(12): 2041-2.
[http://dx.doi.org/10.1016/j.str.2016.11.012] [PMID: 27926832]
[34]
Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011; 51(10): 2778-86.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[35]
Chen J, Sun S, Zhou Q. Direct and model-free detection of carbohydrate excipients in traditional Chinese medicine formula granules by ATR-FTIR microspectroscopic imaging. Anal Bioanal Chem 2017; 409(11): 2893-904.
[http://dx.doi.org/10.1007/s00216-017-0234-9] [PMID: 28188353]
[36]
Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev Res 2018; 79(8): 373-82.
[http://dx.doi.org/10.1002/ddr.21461] [PMID: 30343496]
[37]
Wu Z, Zhu L, Nie X, Wei L, Qi Y. USP15 promotes pulmonary vascular remodeling in pulmonary hypertension in a YAP1/TAZ-dependent manner. Exp Mol Med 2023; 55(1): 183-95.
[http://dx.doi.org/10.1038/s12276-022-00920-y] [PMID: 36635430]
[38]
Ogden BE, Pang William W, Agui T, Lee BH. Laboratory Animal Laws, Regulations, Guidelines and Standards in China Mainland, Japan, and Korea. ILAR J 2016; 57(3): 301-11.
[http://dx.doi.org/10.1093/ilar/ilw018] [PMID: 29117401]
[39]
Umar S, Iorga A, Matori H, et al. Estrogen rescues preexisting severe pulmonary hypertension in rats. Am J Respir Crit Care Med 2011; 184(6): 715-23.
[http://dx.doi.org/10.1164/rccm.201101-0078OC] [PMID: 21700911]
[40]
Abdulkareem AO, Tiwari P, Lone ZR, et al. Ormeloxifene, a selective estrogen receptor modulator, protects against pulmonary hypertension. Eur J Pharmacol 2023; 943: 175558.
[http://dx.doi.org/10.1016/j.ejphar.2023.175558] [PMID: 36731722]
[41]
Liu H, Wang Y, Zhang Q, et al. Macrophage-derived inflammation promotes pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension mice. Immunol Lett 2023; 263: 113-22.
[http://dx.doi.org/10.1016/j.imlet.2023.10.005] [PMID: 37875238]
[42]
Krompa A, Marino P. Diagnosis and management of pulmonary hypertension related to chronic respiratory disease. Breathe 2022; 18(4): 220205.
[http://dx.doi.org/10.1183/20734735.0205-2022] [PMID: 36865930]
[43]
Vanderpool RR, Gorelova A, Ma Y, et al. Reversal of right ventricular hypertrophy and dysfunction by prostacyclin in a rat model of severe pulmonary arterial hypertension. Int J Mol Sci 2022; 23(10): 5426.
[http://dx.doi.org/10.3390/ijms23105426] [PMID: 35628236]
[44]
Mandras SA, Mehta HS, Vaidya A. Pulmonary hypertension: A brief guide for clinicians. Mayo Clin Proc 2020; 95(9): 1978-88.
[http://dx.doi.org/10.1016/j.mayocp.2020.04.039] [PMID: 32861339]
[45]
Yang L, Tian J, Wang J, et al. The protective role of EP300 in monocrotaline-induced pulmonary hypertension. Front Cardiovasc Med 2023; 10: 1037217.
[http://dx.doi.org/10.3389/fcvm.2023.1037217] [PMID: 36910531]
[46]
Ferrara F, Zhou X, Gargani L, et al. Echocardiography in pulmonary arterial hypertension. Curr Cardiol Rep 2019; 21(4): 22.
[http://dx.doi.org/10.1007/s11886-019-1109-9] [PMID: 30828743]
[47]
Labrada L, Vaidy A, Vaidya A. Right ventricular assessment in pulmonary hypertension. Curr Opin Pulm Med 2023; 29(5): 348-54.
[http://dx.doi.org/10.1097/MCP.0000000000000980] [PMID: 37410491]
[48]
Liu Y, Tang BL, Lu ML, Wang HX. Astragaloside IV improves pulmonary arterial hypertension by increasing the expression of CCN1 and activating the ERK1/2 pathway. J Cell Mol Med 2023; 27(5): 622-33.
[http://dx.doi.org/10.1111/jcmm.17681] [PMID: 36762748]
[49]
Pei J, Cai L, Wang F, et al. LPA2 contributes to vascular endothelium homeostasis and cardiac remodeling after myocardial infarction. Circ Res 2022; 131(5): 388-403.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.321036] [PMID: 35920162]
[50]
Zuo W, Liu N, Zeng Y, et al. Luteolin ameliorates experimental pulmonary arterial hypertension via suppressing hippo-YAP/PI3K/AKT signaling pathway. Front Pharmacol 2021; 12: 663551.
[http://dx.doi.org/10.3389/fphar.2021.663551] [PMID: 33935785]
[51]
Wang J, Zhang P, Zhang J, et al. Atractylenolide-1 targets FLT3 to regulate PI3K/AKT/HIF1-α pathway to inhibit osteogenic differentiation of human valve interstitial cells. Front Pharmacol 2022; 13: 899775.
[http://dx.doi.org/10.3389/fphar.2022.899775] [PMID: 35571096]
[52]
Naeije R, Richter MJ, Rubin LJ. The physiological basis of pulmonary arterial hypertension. Eur Respir J 2022; 59(6): 2102334.
[http://dx.doi.org/10.1183/13993003.02334-2021] [PMID: 34737219]
[53]
Deng H, Tian X, Sun H, Liu H, Lu M, Wang H. Calpain-1 mediates vascular remodelling and fibrosis via HIF-1α in hypoxia-induced pulmonary hypertension. J Cell Mol Med 2022; 26(10): 2819-30.
[http://dx.doi.org/10.1111/jcmm.17295] [PMID: 35365973]
[54]
Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci 2019; 20(24): 6140.
[http://dx.doi.org/10.3390/ijms20246140] [PMID: 31817513]
[55]
Luks AM, Hackett PH. Medical conditions and high-altitude travel. N Engl J Med 2022; 386(4): 364-73.
[http://dx.doi.org/10.1056/NEJMra2104829] [PMID: 35081281]
[56]
Pena E, El Alam S, Siques P, Brito J. Oxidative stress and diseases associated with high-altitude exposure. Antioxidants 2022; 11(2): 267.
[http://dx.doi.org/10.3390/antiox11020267] [PMID: 35204150]
[57]
Gao L, Cao M, Li JQ, Qin XM, Fang J. Traditional Chinese medicine network pharmacology in cardiovascular precision medicine. Curr Pharm Des 2021; 27(26): 2925-33.
[http://dx.doi.org/10.2174/18734286MTExhNDUh4] [PMID: 33183189]
[58]
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov 2021; 20(3): 200-16.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[59]
Hao P, Jiang F, Cheng J, Ma L, Zhang Y, Zhao Y. Traditional Chinese medicine for cardiovascular disease. J Am Coll Cardiol 2017; 69(24): 2952-66.
[http://dx.doi.org/10.1016/j.jacc.2017.04.041] [PMID: 28619197]
[60]
Ahmed LA, Obaid AAZ, Zaki HF, Agha AM. Naringenin adds to the protective effect of l-arginine in monocrotaline-induced pulmonary hypertension in rats: Favorable modulation of oxidative stress, inflammation and nitric oxide. Eur J Pharm Sci 2014; 62: 161-70.
[http://dx.doi.org/10.1016/j.ejps.2014.05.011] [PMID: 24878387]
[61]
Liu Y, Xu XH, Liu Z, et al. Effects of the natural flavone trimethylapigenin on cardiac potassium currents. Biochem Pharmacol 2012; 84(4): 498-506.
[http://dx.doi.org/10.1016/j.bcp.2012.05.002] [PMID: 22583923]
[62]
Shao D, Liu X, Wu J, et al. Identification of the active compounds and functional mechanisms of Jinshui Huanxian formula in pulmonary fibrosis by integrating serum pharmacochemistry with network pharmacology. Phytomedicine 2022; 102: 154177.
[http://dx.doi.org/10.1016/j.phymed.2022.154177] [PMID: 35636171]
[63]
Han Jie L, Jantan I, Yusoff SD, Jalil J, Husain K. Sinensetin: An insight on its pharmacological activities, mechanisms of action and toxicity. Front Pharmacol 2021; 11: 553404.
[http://dx.doi.org/10.3389/fphar.2020.553404] [PMID: 33628166]
[64]
An P, Wan S, Luo Y, et al. Micronutrient supplementation to reduce cardiovascular risk. J Am Coll Cardiol 2022; 80(24): 2269-85.
[http://dx.doi.org/10.1016/j.jacc.2022.09.048] [PMID: 36480969]
[65]
Zhou DC, Zheng G, Jia LY, et al. Comprehensive evaluation on anti-inflammatory and anti-angiogenic activities in vitro of fourteen flavonoids from Daphne Genkwa based on the combination of efficacy coefficient method and principal component analysis. J Ethnopharmacol 2021; 268: 113683.
[http://dx.doi.org/10.1016/j.jep.2020.113683] [PMID: 33301910]
[66]
Mitra R, Nersesyan A, Pentland K, Melin MM, Levy RM, Ebong EE. Diosmin and its glycocalyx restorative and anti-inflammatory effects on injured blood vessels. FASEB J 2022; 36(12): e22630.
[http://dx.doi.org/10.1096/fj.202200053RR] [PMID: 36315163]
[67]
Alamri A, Burzangi A, Coats P, Watson D. Untargeted metabolic profiling cell-based approach of pulmonary artery smooth muscle cells in response to high glucose and the effect of the antioxidant vitamins D and E. Metabolites 2018; 8(4): 87.
[http://dx.doi.org/10.3390/metabo8040087] [PMID: 30513640]
[68]
Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22(1): 138.
[http://dx.doi.org/10.1186/s12943-023-01827-6] [PMID: 37596643]
[69]
Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 2011; 4: 51.
[http://dx.doi.org/10.3389/fnmol.2011.00051] [PMID: 22144946]
[70]
Waypa GB, Schumacker PT. Roles of HIF1 and HIF2 in pulmonary hypertension: It all depends on the context. Eur Respir J 2019; 54(6): 1901929.
[http://dx.doi.org/10.1183/13993003.01929-2019] [PMID: 31831673]
[71]
Lee SH, Golinska M, Griffiths JR. HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells. Cells 2021; 10(9): 2371.
[http://dx.doi.org/10.3390/cells10092371] [PMID: 34572020]
[72]
Ren M, Liu H, Jiang W, et al. Melatonin repairs osteoporotic bone defects in iron-overloaded rats through PI3K/AKT/GSK-3β/P70S6k signaling pathway. Oxid Med Cell Longev 2023; 2023: 1-14.
[http://dx.doi.org/10.1155/2023/7718155] [PMID: 36703914]
[73]
Mazurakova A, Koklesova L, Csizmár SH, et al. Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells - A potential contribution to the predictive, preventive, and personalized medicine. J Adv Res 2024; 55: 103-18.
[http://dx.doi.org/10.1016/j.jare.2023.02.015] [PMID: 36871616]
[74]
Kilic-Eren M, Boylu T, Tabor V. Targeting PI3K/Akt represses Hypoxia inducible factor-1α activation and sensitizes Rhabdomyosarcoma and Ewing’s sarcoma cells for apoptosis. Cancer Cell Int 2013; 13(1): 36.
[http://dx.doi.org/10.1186/1475-2867-13-36] [PMID: 23305405]
[75]
Fu M, Luo F, Wang E, et al. Magnolol attenuates right ventricular hypertrophy and fibrosis in hypoxia-induced pulmonary arterial hypertensive rats through inhibition of the JAK2/STAT3 signaling pathway. Front Pharmacol 2021; 12: 755077.
[http://dx.doi.org/10.3389/fphar.2021.755077] [PMID: 34764873]
[76]
Song K, Duan Q, Ren J, et al. Targeted metabolomics combined with network pharmacology to reveal the protective role of luteolin in pulmonary arterial hypertension. Food Funct 2022; 13(20): 10695-709.
[http://dx.doi.org/10.1039/D2FO01424F] [PMID: 36172851]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy