Animated Abstract
[1]
Peng, X.L.; Cheng, J.S.Y.; Gong, H.L.; Yuan, M.D.; Zhao, X.H.; Li, Z.; Wei, D.X. Advances in the design and development of SARS-CoV-2 vaccines. Mil. Med. Res., 2021, 8(1), 67.
[http://dx.doi.org/10.1186/s40779-021-00360-1] [PMID: 34911569]
[http://dx.doi.org/10.1186/s40779-021-00360-1] [PMID: 34911569]
[2]
Polatoğlu, I.; Oncu-Oner, T.; Dalman, I.; Ozdogan, S. COVID-19 in early 2023: structure, replication mechanism, variants of SARS-CoV-2, diagnostic tests, and vaccine & drug development studies. MedComm, 2023, 4(2), e228.
[http://dx.doi.org/10.1002/mco2.228] [PMID: 37041762]
[http://dx.doi.org/10.1002/mco2.228] [PMID: 37041762]
[3]
Sabbah, D.A.; Hajjo, R.; Sunoqrot, S. A Critical Assessment of COVID-19 Genomic Vaccines. Curr. Top. Med. Chem., 2023, 23(27), 2552-2589.
[http://dx.doi.org/10.2174/1568026623666230825094341] [PMID: 37622697]
[http://dx.doi.org/10.2174/1568026623666230825094341] [PMID: 37622697]
[4]
Shi, Y.; Wang, G.; Cai, X.; Deng, J.; Zheng, L.; Zhu, H.; Zheng, M.; Yang, B.; Chen, Z. An overview of COVID-19. J. Zhejiang Univ. Sci. B, 2020, 21(5), 343-360.
[http://dx.doi.org/10.1631/jzus.B2000083] [PMID: 32425000]
[http://dx.doi.org/10.1631/jzus.B2000083] [PMID: 32425000]
[5]
Contini, C.; Rotondo, J.C.; Perna, B.; Guarino, M.; De Giorgio, R. Special Issue: Advances in SARS-CoV-2 Infection. Microorganisms, 2023, 11(4), 1048.
[http://dx.doi.org/10.3390/microorganisms11041048] [PMID: 37110471]
[http://dx.doi.org/10.3390/microorganisms11041048] [PMID: 37110471]
[6]
Thirumugam, G.; Radhakrishnan, Y.; Ramamurthi, S.; Bhaskar, J.P.; Krishnaswamy, B. A systematic review on impact of SARS- CoV-2 infection. Microbiol. Res., 2023, 271, 127364.
[http://dx.doi.org/10.1016/j.micres.2023.127364] [PMID: 36989761]
[http://dx.doi.org/10.1016/j.micres.2023.127364] [PMID: 36989761]
[7]
Rotondo, J.C.; Martini, F.; Maritati, M.; Mazziotta, C.; Di Mauro, G.; Lanzillotti, C.; Barp, N.; Gallerani, A.; Tognon, M.; Contini, C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses, 2021, 13(9), 1687.
[http://dx.doi.org/10.3390/v13091687] [PMID: 34578269]
[http://dx.doi.org/10.3390/v13091687] [PMID: 34578269]
[8]
Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health, 2020, 25(3), 278-280.
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[9]
Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[10]
Carfì, A.; Bernabei, R.; Landi, F. Persistent symptoms in patients after acute COVID-19. JAMA, 2020, 324(6), 603-605.
[http://dx.doi.org/10.1001/jama.2020.12603] [PMID: 32644129]
[http://dx.doi.org/10.1001/jama.2020.12603] [PMID: 32644129]
[11]
Tenforde, M.W.; Kim, S.S.; Lindsell, C.J.; Billig Rose, E.; Shapiro, N.I.; Files, D.C.; Gibbs, K.W.; Erickson, H.L.; Steingrub, J.S.; Smithline, H.A.; Gong, M.N.; Aboodi, M.S.; Exline, M.C.; Henning, D.J.; Wilson, J.G.; Khan, A.; Qadir, N.; Brown, S.M.; Peltan, I.D.; Rice, T.W.; Hager, D.N.; Ginde, A.A.; Stubblefield, W.B.; Patel, M.M.; Self, W.H.; Feldstein, L.R.; Hart, K.W.; McClellan, R.; Dorough, L.; Dzuris, N.; Griggs, E.P.; Kassem, A.M.; Marcet, P.L.; Ogokeh, C.E.; Sciarratta, C.N.; Siddula, A.; Smith, E.R.; Wu, M.J. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network—United States, March–June 2020. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(30), 993-998.
[http://dx.doi.org/10.15585/mmwr.mm6930e1] [PMID: 32730238]
[http://dx.doi.org/10.15585/mmwr.mm6930e1] [PMID: 32730238]
[12]
Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; Luo, J.; Huang, Z.; Tu, S.; Zhao, Y.; Chen, L.; Xu, D.; Li, Y.; Li, C.; Peng, L.; Li, Y.; Xie, W.; Cui, D.; Shang, L.; Fan, G.; Xu, J.; Wang, G.; Wang, Y.; Zhong, J.; Wang, C.; Wang, J.; Zhang, D.; Cao, B. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, 2021, 397(10270), 220-232.
[http://dx.doi.org/10.1016/S0140-6736(20)32656-8] [PMID: 33428867]
[http://dx.doi.org/10.1016/S0140-6736(20)32656-8] [PMID: 33428867]
[13]
Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; Ahluwalia, N.; Bikdeli, B.; Dietz, D.; Der-Nigoghossian, C.; Liyanage-Don, N.; Rosner, G.F.; Bernstein, E.J.; Mohan, S.; Beckley, A.A.; Seres, D.S.; Choueiri, T.K.; Uriel, N.; Ausiello, J.C.; Accili, D.; Freedberg, D.E.; Baldwin, M.; Schwartz, A.; Brodie, D.; Garcia, C.K.; Elkind, M.S.V.; Connors, J.M.; Bilezikian, J.P.; Landry, D.W.; Wan, E.Y. Post-acute COVID-19 syndrome. Nat. Med., 2021, 27(4), 601-615.
[http://dx.doi.org/10.1038/s41591-021-01283-z] [PMID: 33753937]
[http://dx.doi.org/10.1038/s41591-021-01283-z] [PMID: 33753937]
[14]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[15]
de Wilde, A.H.; Snijder, E.J.; Kikkert, M.; van Hemert, M.J. Host Factors in Coronavirus Replication. Curr. Top. Microbiol. Immunol., 2018, 419, 1-42.
[PMID: 28643204]
[PMID: 28643204]
[16]
Han, Q.; Lin, Q.; Jin, S.; You, L. Coronavirus 2019-nCoV: A brief perspective from the front line. J. Infect., 2020, 80(4), 373-377.
[http://dx.doi.org/10.1016/j.jinf.2020.02.010] [PMID: 32109444]
[http://dx.doi.org/10.1016/j.jinf.2020.02.010] [PMID: 32109444]
[17]
Liu, D.X.; Liang, J.Q.; Fung, T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In: Encyclopedia of Virology; , 2021; pp. 428-440.
[18]
Goyal, R.; Gautam, R.K.; Chopra, H.; Dubey, A.K.; Singla, R.K.; Rayan, R.A.; Kamal, M.A. Comparative highlights on MERS- CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV. EXCLI J., 2022, 21, 1245-1272.
[PMID: 36483910]
[PMID: 36483910]
[19]
Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci., 2020, 6(5), 672-683.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[20]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[21]
Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[22]
Plebani, M. Antibody responses in mild COVID-19 hospital staff. EBioMedicine, 2020, 59, 102940.
[http://dx.doi.org/10.1016/j.ebiom.2020.102940] [PMID: 32807702]
[http://dx.doi.org/10.1016/j.ebiom.2020.102940] [PMID: 32807702]
[23]
Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J.; Xiao, H.; Yang, Y.; Qu, J.; Qing, L.; Chen, L.; Xu, Z.; Peng, L.; Li, Y.; Zheng, H.; Chen, F.; Huang, K.; Jiang, Y.; Liu, D.; Zhang, Z.; Liu, Y.; Liu, L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA, 2020, 323(16), 1582-1589.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[24]
Belete, T. M. A review on Promising vaccine development progress for COVID-19. Vacunas, 2020, 21(2), 121-128.
[25]
Sachs, J.D.; Karim, S.S.A.; Aknin, L.; Allen, J.; Brosbøl, K.; Colombo, F.; Barron, G.C.; Espinosa, M.F.; Gaspar, V.; Gaviria, A.; Haines, A.; Hotez, P.J.; Koundouri, P.; Bascuñán, F.L.; Lee, J.K.; Pate, M.A.; Ramos, G.; Reddy, K.S.; Serageldin, I.; Thwaites, J.; Vike-Freiberga, V.; Wang, C.; Were, M.K.; Xue, L.; Bahadur, C.; Bottazzi, M.E.; Bullen, C.; Laryea-Adjei, G.; Ben Amor, Y.; Karadag, O.; Lafortune, G.; Torres, E.; Barredo, L.; Bartels, J.G.E.; Joshi, N.; Hellard, M.; Huynh, U.K.; Khandelwal, S.; Lazarus, J.V.; Michie, S. The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet, 2022, 400(10359), 1224-1280.
[http://dx.doi.org/10.1016/S0140-6736(22)01585-9] [PMID: 36115368]
[http://dx.doi.org/10.1016/S0140-6736(22)01585-9] [PMID: 36115368]
[26]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[27]
Cyranoski, D. Mystery deepens over animal source of coronavirus. Nature, 2020, 579(7797), 18-19.
[http://dx.doi.org/10.1038/d41586-020-00548-w] [PMID: 32127703]
[http://dx.doi.org/10.1038/d41586-020-00548-w] [PMID: 32127703]
[28]
Ge, H.; Wang, X.; Yuan, X.; Xiao, G.; Wang, C.; Deng, T.; Yuan, Q.; Xiao, X. The epidemiology and clinical information about COVID-19. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(6), 1011-1019.
[http://dx.doi.org/10.1007/s10096-020-03874-z] [PMID: 32291542]
[http://dx.doi.org/10.1007/s10096-020-03874-z] [PMID: 32291542]
[29]
Lam, T.T.Y.; Jia, N.; Zhang, Y.W.; Shum, M.H.H.; Jiang, J.F.; Zhu, H.C.; Tong, Y.G.; Shi, Y.X.; Ni, X.B.; Liao, Y.S.; Li, W.J.; Jiang, B.G.; Wei, W.; Yuan, T.T.; Zheng, K.; Cui, X.M.; Li, J.; Pei, G.Q.; Qiang, X.; Cheung, W.Y.M.; Li, L.F.; Sun, F.F.; Qin, S.; Huang, J.C.; Leung, G.M.; Holmes, E.C.; Hu, Y.L.; Guan, Y.; Cao, W.C. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 2020, 583(7815), 282-285.
[http://dx.doi.org/10.1038/s41586-020-2169-0] [PMID: 32218527]
[http://dx.doi.org/10.1038/s41586-020-2169-0] [PMID: 32218527]
[30]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[31]
Cohen, C.; Kleynhans, J.; von Gottberg, A.; McMorrow, M.L.; Wolter, N.; Bhiman, J.N.; Moyes, J.; du Plessis, M.; Carrim, M.; Buys, A.; Martinson, N.A.; Kahn, K.; Tollman, S.; Lebina, L.; Wafawanaka, F.; du Toit, J.D.; Gómez-Olivé, F.X.; Dawood, F.S.; Mkhencele, T.; Sun, K.; Viboud, C.; Tempia, S.; Bhiman, J.N.; Buys, A.; Carrim, M.; Cohen, C.; de Gouveia, L.; du Plessis, M.; du Toit, J.; Gómez-Olivé, F.X.; Kahn, K.; Kgasago, K.P.; Kleynhans, J.; Kotane, R.; Lebina, L.; Martinson, N.A.; McMorrow, M.L.; Moloantoa, T.; Moyes, J.; Tempia, S.; Tollman, S.; von Gottberg, A.; Wafawanaka, F.; Wolter, N. SARS-CoV-2 incidence, transmission, and reinfection in a rural and an urban setting: results of the PHIRST-C cohort study, South Africa, 2020–21. Lancet Infect. Dis., 2022, 22(6), 821-834.
[http://dx.doi.org/10.1016/S1473-3099(22)00069-X] [PMID: 35298900]
[http://dx.doi.org/10.1016/S1473-3099(22)00069-X] [PMID: 35298900]
[32]
Tsang, H.F.; Chan, L.W.C.; Cho, W.C.S.; Yu, A.C.S.; Yim, A.K.Y.; Chan, A.K.C.; Ng, L.P.W.; Wong, Y.K.E.; Pei, X.M.; Li, M.J.W.; Wong, S.C.C. An update on COVID-19 pandemic: The epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev. Anti Infect. Ther., 2021, 19(7), 877-888.
[http://dx.doi.org/10.1080/14787210.2021.1863146] [PMID: 33306423]
[http://dx.doi.org/10.1080/14787210.2021.1863146] [PMID: 33306423]
[33]
Zhu, F.C.; Li, Y.H.; Guan, X.H.; Hou, L.H.; Wang, W.J.; Li, J.X.; Wu, S.P.; Wang, B.S.; Wang, Z.; Wang, L.; Jia, S.Y.; Jiang, H.D.; Wang, L.; Jiang, T.; Hu, Y.; Gou, J.B.; Xu, S.B.; Xu, J.J.; Wang, X.W.; Wang, W.; Chen, W. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 2020, 395(10240), 1845-1854.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[34]
Weiss, S.R.; Leibowitz, J.L. Coronavirus Pathogenesis. Adv. Virus Res., 2011, 81, 85-164.
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[35]
Zheng, J. SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[36]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0]
[http://dx.doi.org/10.1186/s40779-020-00240-0]
[37]
Munster, V.J.; Koopmans, M.; van Doremalen, N.; van Riel, D.; de Wit, E. A novel coronavirus emerging in China—key questions for impact assessment. N. Engl. J. Med., 2020, 382(8), 692-694.
[http://dx.doi.org/10.1056/NEJMp2000929] [PMID: 31978293]
[http://dx.doi.org/10.1056/NEJMp2000929] [PMID: 31978293]
[38]
Reuben, R.C.; Danladi, M.M.A.; Saleh, D.A.; Ejembi, P.E. Knowledge, attitudes and practices towards COVID-19: An epidemiological survey in North-Central Nigeria. J. Community Health, 2021, 46(3), 457-470.
[http://dx.doi.org/10.1007/s10900-020-00881-1] [PMID: 32638198]
[http://dx.doi.org/10.1007/s10900-020-00881-1] [PMID: 32638198]
[39]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd-Smith, J.O.; de Wit, E.; Munster, V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[40]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[41]
Sawicki, S.G. Coronavirus genome replication. In: Viral Genome Replication; Springer: Boston, MA, 2009; pp. 25-39.
[http://dx.doi.org/10.1007/b135974_2]
[http://dx.doi.org/10.1007/b135974_2]
[42]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv, , 2020.2001.2022
[43]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[44]
Li, B.; Si, H.R.; Zhu, Y.; Yang, X.L.; Anderson, D.E.; Shi, Z.L.; Wang, L.F.; Zhou, P. Discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing. MSphere, 2020, 5(1), e00807-19.
[http://dx.doi.org/10.1128/mSphere.00807-19] [PMID: 31996413]
[http://dx.doi.org/10.1128/mSphere.00807-19] [PMID: 31996413]
[45]
Riker, A.I.; Zea, N.; Trinh, T. The epidemiology, prevention, and detection of melanoma. Ochsner J., 2010, 10(2), 56-65.
[PMID: 21603359]
[PMID: 21603359]
[46]
Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human- pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[47]
Cheng, Z.J.; Shan, J. 2019 Novel coronavirus: Where we are and what we know. Infection, 2020, 48(2), 155-163.
[http://dx.doi.org/10.1007/s15010-020-01401-y] [PMID: 32072569]
[http://dx.doi.org/10.1007/s15010-020-01401-y] [PMID: 32072569]
[48]
Savarino, A.; Buonavoglia, C.; Norelli, S.; Trani, L.D.; Cassone, A. Potential therapies for coronaviruses. Expert Opin. Ther. Pat., 2006, 16(9), 1269-1288.
[http://dx.doi.org/10.1517/13543776.16.9.1269]
[http://dx.doi.org/10.1517/13543776.16.9.1269]
[49]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol., 2020, 94(7), e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[50]
Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; Wang, T.T.; Schwartz, R.E.; Lim, J.K.; Albrecht, R.A.; tenOever, B.R. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 2020, 181(5), 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[51]
Foresta, C.; Rocca, M.S.; Di Nisio, A. Gender susceptibility to COVID-19: A review of the putative role of sex hormones and X chromosome. J. Endocrinol. Invest., 2021, 44(5), 951-956.
[http://dx.doi.org/10.1007/s40618-020-01383-6] [PMID: 32936429]
[http://dx.doi.org/10.1007/s40618-020-01383-6] [PMID: 32936429]
[52]
Mascola, J.R.; Graham, B.S.; Fauci, A.S. SARS-CoV-2 viral variants—tackling a moving target. JAMA, 2021, 325(13), 1261-1262.
[http://dx.doi.org/10.1001/jama.2021.2088] [PMID: 33571363]
[http://dx.doi.org/10.1001/jama.2021.2088] [PMID: 33571363]
[53]
dos Santos, W.G. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed. Pharmacother., 2021, 136, 111272.
[http://dx.doi.org/10.1016/j.biopha.2021.111272] [PMID: 33486212]
[http://dx.doi.org/10.1016/j.biopha.2021.111272] [PMID: 33486212]
[54]
Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; Hastie, K.M.; Parker, M.D.; Partridge, D.G.; Evans, C.M.; Freeman, T.M.; de Silva, T.I.; McDanal, C.; Perez, L.G.; Tang, H.; Moon-Walker, A.; Whelan, S.P.; LaBranche, C.C.; Saphire, E.O.; Montefiori, D.C.; Angyal, A.; Brown, R.L.; Carrilero, L.; Green, L.R.; Groves, D.C.; Johnson, K.J.; Keeley, A.J.; Lindsey, B.B.; Parsons, P.J.; Raza, M.; Rowland-Jones, S.; Smith, N.; Tucker, R.M.; Wang, D.; Wyles, M.D. Tracking Changes in SARS- CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 2020, 182(4), 812-827.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.043] [PMID: 32697968]
[http://dx.doi.org/10.1016/j.cell.2020.06.043] [PMID: 32697968]
[55]
Hou, Y.J.; Chiba, S.; Halfmann, P.; Ehre, C.; Kuroda, M.; Dinnon, K.H., III; Leist, S.R.; Schäfer, A.; Nakajima, N.; Takahashi, K.; Lee, R.E.; Mascenik, T.M.; Graham, R.; Edwards, C.E.; Tse, L.V.; Okuda, K.; Markmann, A.J.; Bartelt, L.; de Silva, A.; Margolis, D.M.; Boucher, R.C.; Randell, S.H.; Suzuki, T.; Gralinski, L.E.; Kawaoka, Y.; Baric, R.S. SARS-CoV-2 D614G variant exhibits efficient replication ex-vivo and transmission in vivo. Science, 2020, 370(6523), 1464-1468.
[http://dx.doi.org/10.1126/science.abe8499] [PMID: 33184236]
[http://dx.doi.org/10.1126/science.abe8499] [PMID: 33184236]
[56]
Yurkovetskiy, L.; Wang, X.; Pascal, K.E.; Tomkins-Tinch, C.; Nyalile, T.P.; Wang, Y.; Baum, A.; Diehl, W.E.; Dauphin, A.; Carbone, C.; Veinotte, K.; Egri, S.B.; Schaffner, S.F.; Lemieux, J.E.; Munro, J.B.; Rafique, A.; Barve, A.; Sabeti, P.C.; Kyratsous, C.A.; Dudkina, N.V.; Shen, K.; Luban, J. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell, 2020, 183(3), 739-751.e8.
[http://dx.doi.org/10.1016/j.cell.2020.09.032] [PMID: 32991842]
[http://dx.doi.org/10.1016/j.cell.2020.09.032] [PMID: 32991842]
[57]
Lauring, A.S.; Hodcroft, E.B. Genetic Variants of SARS-CoV-2—What Do They Mean? JAMA, 2021, 325(6), 529-531.
[http://dx.doi.org/10.1001/jama.2020.27124] [PMID: 33404586]
[http://dx.doi.org/10.1001/jama.2020.27124] [PMID: 33404586]
[58]
van Oosterhout, C.; Hall, N.; Ly, H.; Tyler, K.M. COVID-19 evolution during the pandemic – Implications of new SARS-CoV-2 variants on disease control and public health policies. Virulence, 2021, 12(1), 507-508.
[http://dx.doi.org/10.1080/21505594.2021.1877066] [PMID: 33494661]
[http://dx.doi.org/10.1080/21505594.2021.1877066] [PMID: 33494661]
[59]
Zapatero Gaviria, A.; Barba Martin, R. What do we know about the origin of COVID-19 three years later? Rev. Clin. Esp. (Barc.), 2023, 223(4), 240-243.
[http://dx.doi.org/10.1016/j.rceng.2023.02.010] [PMID: 36933695]
[http://dx.doi.org/10.1016/j.rceng.2023.02.010] [PMID: 36933695]
[60]
Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol., 2023, 21(6), 361-379.
[http://dx.doi.org/10.1038/s41579-023-00878-2] [PMID: 37020110]
[http://dx.doi.org/10.1038/s41579-023-00878-2] [PMID: 37020110]
[61]
Liu, Y.; Liu, J.; Johnson, B.A.; Xia, H.; Ku, Z.; Schindewolf, C.; Widen, S.G.; An, Z.; Weaver, S.C.; Menachery, V.D.; Xie, X.; Shi, P.Y. Delta spike , 681R.bioRxiv, 2021
[62]
Jangra, S.; Ye, C.; Rathnasinghe, R.; Stadlbauer, D.; Krammer, F.; Simon, V.; Martinez-Sobrido, L.; García-Sastre, A.; Schotsaert, M.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Chernet, R.L.; Eaker, L.Q.; Ferreri, E.D.; Floda, D.L.; Gleason, C.R.; Kleiner, G.; Jurczyszak, D.; Matthews, J.C.; Mendez, W.A.; Mulder, L.C.F.; Russo, K.T.; Salimbangon, A-B.T.; Saksena, M.; Shin, A.S.; Sominsky, L.A.; Srivastava, K. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe, 2021, 2(7), e283-e284.
[http://dx.doi.org/10.1016/S2666-5247(21)00068-9] [PMID: 33846703]
[http://dx.doi.org/10.1016/S2666-5247(21)00068-9] [PMID: 33846703]
[63]
Mlcochova, P.; Kemp, S.; Dhar, M. S.; Papa, G.; Meng, B.; Mishra, S.; Whittaker, C.; Mellan, T.; Ferreira, I.; Datir, R. SARS- CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599(7883), 114-119.
[64]
WHO. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. 2021. Available From :https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
[65]
Parra-Lucares, A.; Segura, P.; Rojas, V.; Pumarino, C.; Saint-Pierre, G.; Toro, L. Emergence of SARS-CoV-2 variants in the world: how could this happen? Life (Basel), 2022, 12(2), 194.
[http://dx.doi.org/10.3390/life12020194] [PMID: 35207482]
[http://dx.doi.org/10.3390/life12020194] [PMID: 35207482]
[66]
Puhach, O.; Adea, K.; Hulo, N.; Sattonnet, P.; Genecand, C.; Iten, A.; Jacquérioz, F.; Kaiser, L.; Vetter, P.; Eckerle, I.; Meyer, B. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat. Med., 2022, 28(7), 1491-1500.
[http://dx.doi.org/10.1038/s41591-022-01816-0] [PMID: 35395151]
[http://dx.doi.org/10.1038/s41591-022-01816-0] [PMID: 35395151]
[67]
Suzuki, R.; Yamasoba, D.; Kimura, I.; Wang, L.; Kishimoto, M.; Ito, J.; Morioka, Y.; Nao, N.; Nasser, H.; Uriu, K.; Kosugi, Y.; Tsuda, M.; Orba, Y.; Sasaki, M.; Shimizu, R.; Kawabata, R.; Yoshimatsu, K.; Asakura, H.; Nagashima, M.; Sadamasu, K.; Yoshimura, K.; Suganami, M.; Oide, A.; Chiba, M.; Ito, H.; Tamura, T.; Tsushima, K.; Kubo, H.; Ferdous, Z.; Mouri, H.; Iida, M.; Kasahara, K.; Tabata, K.; Ishizuka, M.; Shigeno, A.; Tokunaga, K.; Ozono, S.; Yoshida, I.; Nakagawa, S.; Wu, J.; Takahashi, M.; Kaneda, A.; Seki, M.; Fujiki, R.; Nawai, B.R.; Suzuki, Y.; Kashima, Y.; Abe, K.; Imamura, K.; Shirakawa, K.; Takaori-Kondo, A.; Kazuma, Y.; Nomura, R.; Horisawa, Y.; Nagata, K.; Kawai, Y.; Yanagida, Y.; Tashiro, Y.; Takahashi, O.; Kitazato, K.; Hasebe, H.; Motozono, C.; Toyoda, M.; Tan, T.S.; Ngare, I.; Ueno, T.; Saito, A.; Butlertanaka, E.P.; Tanaka, Y.L.; Morizako, N.; Sawa, H.; Ikeda, T.; Irie, T.; Matsuno, K.; Tanaka, S.; Fukuhara, T.; Sato, K. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature, 2022, 603(7902), 700-705.
[http://dx.doi.org/10.1038/s41586-022-04462-1] [PMID: 35104835]
[http://dx.doi.org/10.1038/s41586-022-04462-1] [PMID: 35104835]
[68]
Graham, M.S.; Sudre, C.H.; May, A.; Antonelli, M.; Murray, B.; Varsavsky, T.; Kläser, K.; Canas, L.S.; Molteni, E.; Modat, M.; Drew, D.A.; Nguyen, L.H.; Polidori, L.; Selvachandran, S.; Hu, C.; Capdevila, J.; Hammers, A.; Chan, A.T.; Wolf, J.; Spector, T.D.; Steves, C.J.; Ourselin, S.; Koshy, C.; Ash, A.; Wise, E.; Moore, N.; Mori, M.; Cortes, N.; Lynch, J.; Kidd, S.; Fairley, D.J.; Curran, T.; McKenna, J.P.; Adams, H.; Fraser, C.; Golubchik, T.; Bonsall, D.; Hassan-Ibrahim, M.O.; Malone, C.S.; Cogger, B.J.; Wantoch, M.; Reynolds, N.; Warne, B.; Maksimovic, J.; Spellman, K.; McCluggage, K.; John, M.; Beer, R.; Afifi, S.; Morgan, S.; Marchbank, A.; Price, A.; Kitchen, C.; Gulliver, H.; Merrick, I.; Southgate, J.; Guest, M.; Munn, R.; Workman, T.; Connor, T.R.; Fuller, W.; Bresner, C.; Snell, L.B.; Patel, A.; Charalampous, T.; Nebbia, G.; Batra, R.; Edgeworth, J.; Robson, S.C.; Beckett, A.H.; Aanensen, D.M.; Underwood, A.P.; Yeats, C.A.; Abudahab, K.; Taylor, B.E.W.; Menegazzo, M.; Clark, G.; Smith, W.; Khakh, M.; Fleming, V.M.; Lister, M.M.; Howson-Wells, H.C.; Berry, L.; Boswell, T.; Joseph, A.; Willingham, I.; Jones, C.; Holmes, C.; Bird, P.; Helmer, T.; Fallon, K.; Tang, J.; Raviprakash, V.; Campbell, S.; Sheriff, N.; Blakey, V.; Williams, L-A.; Loose, M.W.; Holmes, N.; Moore, C.; Carlile, M.; Wright, V.; Sang, F.; Debebe, J.; Coll, F.; Signell, A.W.; Betancor, G.; Wilson, H.D.; Eldirdiri, S.; Kenyon, A.; Davis, T.; Pybus, O.G.; du Plessis, L.; Zarebski, A.E.; Raghwani, J.; Kraemer, M.U.G.; Francois, S.; Attwood, S.W.; Vasylyeva, T.I.; Escalera Zamudio, M.; Gutierrez, B.; Torok, M.E.; Hamilton, W.L.; Goodfellow, I.G.; Hall, G.; Jahun, A.S.; Chaudhry, Y.; Hosmillo, M.; Pinckert, M.L.; Georgana, I.; Moses, S.; Lowe, H.; Bedford, L.; Moore, J.; Stonehouse, S.; Fisher, C.L.; Awan, A.R.; BoYes, J.; Breuer, J.; Harris, K.A.; Brown, J.R.; Shah, D.; Atkinson, L.; Lee, J.C.D.; Storey, N.; Flaviani, F.; Alcolea-Medina, A.; Williams, R.; Vernet, G.; Chapman, M.R.; Levett, L.J.; Heaney, J.; Chatterton, W.; Pusok, M.; Xu-McCrae, L.; Smith, D.L.; Bashton, M.; Young, G.R.; Holmes, A.; Randell, P.A.; Cox, A.; Madona, P.; Bolt, F.; Price, J.; Mookerjee, S.; Ragonnet-Cronin, M.; Nascimento, F.F.; Jorgensen, D.; Siveroni, I.; Johnson, R.; Boyd, O.; Geidelberg, L.; Volz, E.M.; Rowan, A.; Taylor, G.P.; Smollett, K.L.; Loman, N.J.; Quick, J.; McMurray, C.; Stockton, J.; Nicholls, S.; Rowe, W.; Poplawski, R.; McNally, A.; Martinez Nunez, R.T.; Mason, J.; Robinson, T.I.; O’Toole, E.; Watts, J.; Breen, C.; Cowell, A.; Sluga, G.; Machin, N.W.; Ahmad, S.S.Y.; George, R.P.; Halstead, F.; Sivaprakasam, V.; Hogsden, W.; Illingworth, C.J.; Jackson, C.; Thomson, E.C.; Shepherd, J.G.; Asamaphan, P.; Niebel, M.O.; Li, K.K.; Shah, R.N.; Jesudason, N.G.; Tong, L.; Broos, A.; Mair, D.; Nichols, J.; Carmichael, S.N.; Nomikou, K.; Aranday-Cortes, E.; Johnson, N.; Starinskij, I.; da Silva Filipe, A.; Robertson, D.L.; Orton, R.J.; Hughes, J.; Vattipally, S.; Singer, J.B.; Nickbakhsh, S.; Hale, A.D.; Macfarlane-Smith, L.R.; Harper, K.L.; Carden, H.; Taha, Y.; Payne, B.A.I.; Burton-Fanning, S.; Waugh, S.; Collins, J.; Eltringham, G.; Rushton, S.; O’Brien, S.; Bradley, A.; Maclean, A.; Mollett, G.; Blacow, R.; Templeton, K.E.; McHugh, M.P.; Dewar, R.; Wastenge, E.; Dervisevic, S.; Stanley, R.; Meader, E.J.; Coupland, L.; Smith, L.; Graham, C.; Barton, E.; Padgett, D.; Scott, G.; Swindells, E.; Greenaway, J.; Nelson, A.; McCann, C.M.; Yew, W.C.; Andersson, M.; Peto, T.; Justice, A.; Eyre, D.; Crook, D.; Sloan, T.J.; Duckworth, N.; Walsh, S.; Chauhan, A.J.; Glaysher, S.; Bicknell, K.; Wyllie, S.; Elliott, S.; Lloyd, A.; Impey, R.; Levene, N.; Monaghan, L.; Bradley, D.T.; Wyatt, T.; Allara, E.; Pearson, C.; Osman, H.; Bosworth, A.; Robinson, E.; Muir, P.; Vipond, I.B.; Hopes, R.; Pymont, H.M.; Hutchings, S.; Curran, M.D.; Parmar, S.; Lackenby, A.; Mbisa, T.; Platt, S.; Miah, S.; Bibby, D.; Manso, C.; Hubb, J.; Chand, M.; Dabrera, G.; Ramsay, M.; Bradshaw, D.; Thornton, A.; Myers, R.; Schaefer, U.; Groves, N.; Gallagher, E.; Lee, D.; Williams, D.; Ellaby, N.; Harrison, I.; Hartman, H.; Manesis, N.; Patel, V.; Bishop, C.; Chalker, V.; Ledesma, J.; Twohig, K.A.; Holden, M.T.G.; Shaaban, S.; Birchley, A.; Adams, A.; Davies, A.; Gaskin, A.; Plimmer, A.; Gatica-Wilcox, B.; McKerr, C.; Moore, C.; Williams, C.; Heyburn, D.; De Lacy, E.; Hilvers, E.; Downing, F.; Shankar, G.; Jones, H.; Asad, H.; Coombes, J.; Watkins, J.; Evans, J.M.; Fina, L.; Gifford, L.; Gilbert, L.; Graham, L.; Perry, M.; Morgan, M.; Bull, M.; Cronin, M.; Pacchiarini, N.; Craine, N.; Jones, R.; Howe, R.; Corden, S.; Rey, S.; Kumziene-SummerhaYes, S.; Taylor, S.; Cottrell, S.; Jones, S.; Edwards, S.; O’Grady, J.; Page, A.J.; Mather, A.E.; Baker, D.J.; Rudder, S.; Aydin, A.; Kay, G.L.; Trotter, A.J.; Alikhan, N-F.; de Oliveira Martins, L.; Le-Viet, T.; Meadows, L.; Casey, A.; Ratcliffe, L.; Simpson, D.A.; Molnar, Z.; Thompson, T.; Acheson, E.; Masoli, J.A.H.; Knight, B.A.; Ellard, S.; Auckland, C.; Jones, C.R.; Mahungu, T.W.; Irish-Tavares, D.; Haque, T.; Hart, J.; Witele, E.; Fenton, M.L.; Dadrah, A.; Symmonds, A.; Saluja, T.; Bourgeois, Y.; Scarlett, G.P.; Loveson, K.F.; Goudarzi, S.; Fearn, C.; Cook, K.; Dent, H.; Paul, H.; Partridge, D.G.; Raza, M.; Evans, C.; Johnson, K.; Liggett, S.; Baker, P.; Bonner, S.; Essex, S.; Lyons, R.A.; Saeed, K.; Mahanama, A.I.K.; Samaraweera, B.; Silveira, S.; Pelosi, E.; Wilson-Davies, E.; Williams, R.J.; Kristiansen, M.; Roy, S.; Williams, C.A.; Cotic, M.; Bayzid, N.; Westhorpe, A.P.; Hartley, J.A.; Jannoo, R.; Lowe, H.L.; Karamani, A.; Ensell, L.; Prieto, J.A.; Jeremiah, S.; Grammatopoulos, D.; Pandey, S.; Berry, L.; Jones, K.; Richter, A.; Beggs, A.; Best, A.; Percival, B.; Mirza, J.; Megram, O.; Mayhew, M.; Crawford, L.; Ashcroft, F.; Moles-Garcia, E.; Cumley, N.; Smith, C.P.; Bucca, G.; Hesketh, A.R.; Blane, B.; Girgis, S.T.; Leek, D.; Sridhar, S.; Forrest, S.; Cormie, C.; Gill, H.K.; Dias, J.; Higginson, E.E.; Maes, M.; Young, J.; Kermack, L.M.; Gupta, R.K.; Ludden, C.; Peacock, S.J.; Palmer, S.; Churcher, C.M.; Hadjirin, N.F.; Carabelli, A.M.; Brooks, E.; Smith, K.S.; Galai, K.; McManus, G.M.; Ruis, C.; Davidson, R.K.; Rambaut, A.; Williams, T.; Balcazar, C.E.; Gallagher, M.D.; O’Toole, Á.; Rooke, S.; Hill, V.; Williamson, K.A.; Stanton, T.D.; Michell, S.L.; Bewshea, C.M.; Temperton, B.; Michelsen, M.L.; Warwick-Dugdale, J.; Manley, R.; Farbos, A.; Harrison, J.W.; Sambles, C.M.; Studholme, D.J.; Jeffries, A.R.; Darby, A.C.; Hiscox, J.A.; Paterson, S.; Iturriza-Gomara, M.; Jackson, K.A.; Lucaci, A.O.; Vamos, E.E.; Hughes, M.; Rainbow, L.; Eccles, R.; Nelson, C.; Whitehead, M.; Turtle, L.; Haldenby, S.T.; Gregory, R.; Gemmell, M.; Wierzbicki, C.; Webster, H.J.; de Silva, T.I.; Smith, N.; Angyal, A.; Lindsey, B.B.; Groves, D.C.; Green, L.R.; Wang, D.; Freeman, T.M.; Parker, M.D.; Keeley, A.J.; Parsons, P.J.; Tucker, R.M.; Brown, R.; Wyles, M.; Whiteley, M.; Zhang, P.; Gallis, M.; Louka, S.F.; Constantinidou, C.; Unnikrishnan, M.; Ott, S.; Cheng, J.K.J.; Bridgewater, H.E.; Frost, L.R.; Taylor-Joyce, G.; Stark, R.; Baxter, L.; Alam, M.T.; Brown, P.E.; Aggarwal, D.; Cerda, A.C.; Merrill, T.V.; Wilson, R.E.; McClure, P.C.; Chappell, J.G.; Tsoleridis, T.; Ball, J.; Buck, D.; Todd, J.A.; Green, A.; Trebes, A.; MacIntyre-Cockett, G.; de Cesare, M.; Alderton, A.; Amato, R.; Ariani, C.V.; Beale, M.A.; Beaver, C.; Bellis, K.L.; Betteridge, E.; Bonfield, J.; Danesh, J.; Dorman, M.J.; Drury, E.; Farr, B.W.; Foulser, L.; Goncalves, S.; Goodwin, S.; Gourtovaia, M.; Harrison, E.M.; Jackson, D.K.; Jamrozy, D.; Johnston, I.; Kane, L.; Kay, S.; Keatley, J-P.; Kwiatkowski, D.; Langford, C.F.; Lawniczak, M.; Letchford, L.; Livett, R.; Lo, S.; Martincorena, I.; McGuigan, S.; Nelson, R.; Palmer, S.; Park, N.R.; Patel, M.; Prestwood, L.; Puethe, C.; Quail, M.A.; Rajatileka, S.; Scott, C.; Shirley, L.; Sillitoe, J.; Spencer Chapman, M.H.; Thurston, S.A.J.; Tonkin-Hill, G.; Weldon, D.; Rajan, D.; Bronner, I.F.; Aigrain, L.; Redshaw, N.M.; Lensing, S.V.; Davies, R.; Whitwham, A.; Liddle, J.; Lewis, K.; Tovar-Corona, J.M.; Leonard, S.; Durham, J.; Bassett, A.R.; McCarthy, S.; Moll, R.J.; James, K.; Oliver, K.; Makunin, A.; Barrett, J.; Gunson, R.N. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: An ecological study. Lancet Public Health, 2021, 6(5), e335-e345.
[http://dx.doi.org/10.1016/S2468-2667(21)00055-4] [PMID: 33857453]
[http://dx.doi.org/10.1016/S2468-2667(21)00055-4] [PMID: 33857453]
[69]
Kupferschmidt, K. New mutations raise specter of ‘immune escape’. Science, 2021, 371(6527), 329-330.
[http://dx.doi.org/10.1126/science.371.6527.329] [PMID: 33479129]
[http://dx.doi.org/10.1126/science.371.6527.329] [PMID: 33479129]
[70]
Konings, F.; Perkins, M.; Kuhn, J.; Pallen, M.; Alm, E.; Archer, B. SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nat Microbiol, 2021, 6(7), 821-823.
[71]
Krause, P.R.; Fleming, T.R.; Longini, I.M.; Peto, R.; Briand, S.; Heymann, D.L.; Beral, V.; Snape, M.D.; Rees, H.; Ropero, A.M.; Balicer, R.D.; Cramer, J.P.; Muñoz-Fontela, C.; Gruber, M.; Gaspar, R.; Singh, J.A.; Subbarao, K.; Van Kerkhove, M.D.; Swaminathan, S.; Ryan, M.J.; Henao-Restrepo, A.M. SARS-CoV-2 Variants and Vaccines. N. Engl. J. Med., 2021, 385(2), 179-186.
[http://dx.doi.org/10.1056/NEJMsr2105280] [PMID: 34161052]
[http://dx.doi.org/10.1056/NEJMsr2105280] [PMID: 34161052]
[72]
Spencer, A.J.; Morris, S.; Ulaszewska, M.; Powers, C.; Kailath, R.; Bissett, C.; Truby, A.; Thakur, N.; Newman, J.; Allen, E.R.; Rudiansyah, I.; Liu, C.; Dejnirattisai, W.; Mongkolsapaya, J.; Davies, H.; Donnellan, F.R.; Pulido, D.; Peacock, T.P.; Barclay, W.S.; Bright, H.; Ren, K.; Screaton, G.; McTamney, P.; Bailey, D.; Gilbert, S.C.; Lambe, T. The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine, 2022, 77, 103902.
[http://dx.doi.org/10.1016/j.ebiom.2022.103902] [PMID: 35228013]
[http://dx.doi.org/10.1016/j.ebiom.2022.103902] [PMID: 35228013]
[73]
Resende, P.C.; Naveca, F.G.; Lins, R.D.; Dezordi, F.Z.; Ferraz, M.V.F.; Moreira, e.g.; Coêlho, D.F.; Motta, F.C.; Paixão, A.C.D.; Appolinario, L.; Lopes, R.S.; Mendonça, A.C.F.; da Rocha, A.S.B.; Nascimento, V.; Souza, V.; Silva, G.; Nascimento, F.; Neto, L.G.L.; da Silva, F.V.; Riediger, I.; Debur, M.C.; Leite, A.B.; Mattos, T.; da Costa, C.F.; Pereira, F.M.; dos Santos, C.A.; Rovaris, D.B.; Fernandes, S.B.; Abbud, A.; Sacchi, C.; Khouri, R.; Bernardes, A.F.L.; Delatorre, E.; Gräf, T.; Siqueira, M.M.; Bello, G.; Wallau, G.L. The ongoing evolution of variants of concern and interest of SARS-CoV-2 in Brazil revealed by convergent indels in the amino (N)-terminal domain of the spike protein. Virus Evol., 2021, 7(2), veab069.
[http://dx.doi.org/10.1093/ve/veab069] [PMID: 34532067]
[http://dx.doi.org/10.1093/ve/veab069] [PMID: 34532067]
[74]
Chakraborty, C.; Bhattacharya, M.; Sharma, A.R. Present variants of concern and variants of interest of severe acute respiratory syndrome coronavirus 2: Their significant mutations in S-glycoprotein, infectivity, re-infectivity, immune escape and vaccines activity. Rev. Med. Virol., 2022, 32(2), e2270.
[http://dx.doi.org/10.1002/rmv.2270]
[http://dx.doi.org/10.1002/rmv.2270]
[75]
Singh, J.; Rahman, S.A.; Ehtesham, N.Z.; Hira, S.; Hasnain, S.E. SARS-CoV-2 variants of concern are emerging in India. Nat. Med., 2021, 27(7), 1131-1133.
[http://dx.doi.org/10.1038/s41591-021-01397-4] [PMID: 34045737]
[http://dx.doi.org/10.1038/s41591-021-01397-4] [PMID: 34045737]
[76]
Lippi, G.; Mattiuzzi, C.; Bovo, C.; Plebani, M. Current laboratory diagnostics of coronavirus disease 2019 (COVID-19). Acta Biomed., 2020, 91(2), 137-145.
[PMID: 32420937]
[PMID: 32420937]
[78]
Shinu, P.; Morsy, M.A.; Deb, P.K.; Nair, A.B.; Goyal, M.; Shah, J.; Kotta, S. SARS CoV-2 organotropism associated pathogenic relationship of gut-brain axis and illness. Front. Mol. Biosci., 2020, 7, 606779.
[http://dx.doi.org/10.3389/fmolb.2020.606779] [PMID: 33415126]
[http://dx.doi.org/10.3389/fmolb.2020.606779] [PMID: 33415126]
[79]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[80]
Zali, A.; Khodadoost, M.; Gholamzadeh, S.; Janbazi, S.; Piri, H.; Taraghikhah, N.; Hannani, K.; Looha, M.A.; Mohammadi, G. Mortality among hospitalized COVID-19 patients during surges of SARS-CoV-2 alpha (B.1.1.7) and delta (B.1.617.2) variants. Sci. Rep., 2022, 12(1), 18918.
[http://dx.doi.org/10.1038/s41598-022-23312-8] [PMID: 36344540]
[http://dx.doi.org/10.1038/s41598-022-23312-8] [PMID: 36344540]
[81]
Elezkurtaj, S.; Greuel, S.; Ihlow, J.; Michaelis, e.g.; Bischoff, P.; Kunze, C.A.; Sinn, B.V.; Gerhold, M.; Hauptmann, K.; Ingold-Heppner, B.; Miller, F.; Herbst, H.; Corman, V.M.; Martin, H.; Radbruch, H.; Heppner, F.L.; Horst, D. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci. Rep., 2021, 11(1), 4263.
[http://dx.doi.org/10.1038/s41598-021-82862-5] [PMID: 33608563]
[http://dx.doi.org/10.1038/s41598-021-82862-5] [PMID: 33608563]
[82]
Tangos, M.; Jarkas, M.; Akin, I.; El-Battrawy, I.; Hamdani, N. Cardiac damage and tropism of severe acute respiratory syndrome coronavirus 2. Curr. Opin. Microbiol., 2024, 78, 102437.
[http://dx.doi.org/10.1016/j.mib.2024.102437] [PMID: 38394964]
[http://dx.doi.org/10.1016/j.mib.2024.102437] [PMID: 38394964]
[83]
Kamath, V.; Reddy, D. Omicron: An emerging variant of concern. APIK Journal of Internal Medicine, 2022, 10(2), 69-72.
[http://dx.doi.org/10.4103/ajim.ajim_134_21]
[http://dx.doi.org/10.4103/ajim.ajim_134_21]
[84]
Ahn, Y.H.; Yoon, S.M.; Lee, J.; Lee, S.M.; Oh, D.K.; Lee, S.Y.; Park, M.H.; Lim, C.M.; Lee, H.Y.; Heo, J.; Lee, J.; Kim, K.C.; Lee, Y.J.; Cho, Y-J.; Lim, S.Y.; Chang, Y.; Jeon, K.; Ko, R-E.; Suh, G.Y.; Hong, S-K.; Hong, S-B.; Cho, W.H.; Kwak, S.H.; Lee, H.B.; Ahn, J-J.; Seong, G.M.; Lee, S-I.; Park, S.; Park, T.S.; Lee, S.H.; Choi, E.Y.; Moon, J.Y.; Kang, H.K. Early Sepsis-Associated Acute Kidney Injury and Obesity. JAMA Netw. Open, 2024, 7(2), e2354923-e2354923.
[http://dx.doi.org/10.1001/jamanetworkopen.2023.54923] [PMID: 38319660]
[http://dx.doi.org/10.1001/jamanetworkopen.2023.54923] [PMID: 38319660]
[85]
Khamidullina, Z.; Avzaletdinova, D.; Gareeva, D.; Morugova, T.; Lakman, I.; Kopp, K.; Fiedler, L.; Motloch, L.J.; Zagidullin, N. Long-Term Outcomes of COVID-19 in Hospitalized Type 2 Diabetes Mellitus Patients. Biomedicines, 2024, 12(2), 467.
[http://dx.doi.org/10.3390/biomedicines12020467] [PMID: 38398069]
[http://dx.doi.org/10.3390/biomedicines12020467] [PMID: 38398069]
[86]
Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[87]
Dzau, V.J.; Hodgkinson, C.P. RNA Therapeutics for the Cardiovascular System. Circulation, 2024, 149(9), 707-716.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.123.067373] [PMID: 38408142]
[http://dx.doi.org/10.1161/CIRCULATIONAHA.123.067373] [PMID: 38408142]
[88]
Wehbe, Z.; Hammoud, S.; Soudani, N.; Zaraket, H.; El-Yazbi, A.; Eid, A.H. Molecular insights into SARS COV-2 interaction with cardiovascular disease: role of RAAS and MAPK signaling. Front. Pharmacol., 2020, 11, 836.
[http://dx.doi.org/10.3389/fphar.2020.00836] [PMID: 32581799]
[http://dx.doi.org/10.3389/fphar.2020.00836] [PMID: 32581799]
[89]
Sadura-Sieklucka, T.; Szczuka, J.; Targowski, T. Emotional and cognitive states of geriatric patients during the COVID-19 pandemic – an observational study. Reumatologia, 2023, 61(3), 169-174.
[http://dx.doi.org/10.5114/reum/168344] [PMID: 37522137]
[http://dx.doi.org/10.5114/reum/168344] [PMID: 37522137]
[90]
Greco, G. I.; Noale, M.; Trevisan, C.; Zatti, G.; Dalla Pozza, M.; Lazzarin, M.; Haxhiaj, L.; Ramon, R.; Imoscopi, A.; Bellon, S. Increase in frailty in nursing home survivors of coronavirus disease 2019: comparison with noninfected residents. J. Am. Med. Dir. Assoc., 2021, 22, 943-947.
[91]
Jiao, B.; Chen, M.; Fan, M.; Luo, X.; Chen, C.; Liu, J. Association of frailty and cognitive function disorders in old patients with COVID-19: A protocol of systematic review and meta-analysis. BMJ Open, 2022, 12(3), e056190.
[http://dx.doi.org/10.1136/bmjopen-2021-056190] [PMID: 35241472]
[http://dx.doi.org/10.1136/bmjopen-2021-056190] [PMID: 35241472]
[92]
Tana, C.; Moffa, L.; Falasca, K.; Vecchiet, J.; Tana, M.; Mantini, C.; Ricci, F.; Ticinesi, A.; Meschi, T.; Cipollone, F.; Giamberardino, M.A. Approach to COVID-19 in older adults and indications for improving the outcomes. Ann. Med., 2023, 55(2), 2265298.
[http://dx.doi.org/10.1080/07853890.2023.2265298] [PMID: 37839411]
[http://dx.doi.org/10.1080/07853890.2023.2265298] [PMID: 37839411]
[93]
Szklarzewska, S.; Vande Walle, J.; De Breucker, S.; Schoevaerdts, D. A comparison of clinical characteristics between old and oldest-old patients hospitalised for SARS-COV2. Acta Clin. Belg., 2023, 78(3), 192-199.
[http://dx.doi.org/10.1080/17843286.2022.2102115] [PMID: 35894148]
[http://dx.doi.org/10.1080/17843286.2022.2102115] [PMID: 35894148]
[94]
Zareef, R.O.; Younis, N.K.; Bitar, F.; Eid, A.H.; Arabi, M. COVID-19 in pediatric patients: A focus on CHD patients. Front. Cardiovasc. Med., 2020, 7, 612460.
[http://dx.doi.org/10.3389/fcvm.2020.612460] [PMID: 33330675]
[http://dx.doi.org/10.3389/fcvm.2020.612460] [PMID: 33330675]
[95]
Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Domen, J.; Tans, A.; Janssens, S.; Wickramasinghe, D.; Lannoy, V.; Horn, S.R.A.; Van den Bruel, A. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database Syst. Rev., 2022, 5(5), CD013665.
[PMID: 35593186]
[PMID: 35593186]
[96]
Zhou, Y.Q.; Wang, K.; Wang, X.Y.; Cui, H.Y.; Zhao, Y.; Zhu, P.; Chen, Z.N. SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg. Microbes Infect., 2022, 11(1), 1135-1144.
[http://dx.doi.org/10.1080/22221751.2022.2059403] [PMID: 35343395]
[http://dx.doi.org/10.1080/22221751.2022.2059403] [PMID: 35343395]
[97]
Astuti, I.; Ysrafil Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[98]
Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med., 2020, 8(7), 738-742.
[http://dx.doi.org/10.1016/S2213-2600(20)30229-0] [PMID: 32416769]
[http://dx.doi.org/10.1016/S2213-2600(20)30229-0] [PMID: 32416769]
[99]
Boukhris, M.; Hillani, A.; Moroni, F.; Annabi, M.S.; Addad, F.; Ribeiro, M.H.; Mansour, S.; Zhao, X.; Ybarra, L.F.; Abbate, A.; Vilca, L.M.; Azzalini, L. Cardiovascular implications of the COVID-19 pandemic: A global perspective. Can. J. Cardiol., 2020, 36(7), 1068-1080.
[http://dx.doi.org/10.1016/j.cjca.2020.05.018] [PMID: 32425328]
[http://dx.doi.org/10.1016/j.cjca.2020.05.018] [PMID: 32425328]
[100]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[101]
Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev., 2020, 54, 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[102]
Andersson, M.I.; Arancibia-Carcamo, C.V.; Auckland, K.; Baillie, J.K.; Barnes, E.; Beneke, T.; Bibi, S.; Brooks, T.; Carroll, M.; Crook, D.; Dingle, K.; Dold, C.; Downs, L.O.; Dunn, L.; Eyre, D.W.; Gilbert Jaramillo, J.; Harvala, H.; Hoosdally, S.; Ijaz, S.; James, T.; James, W.; Jeffery, K.; Justice, A.; Klenerman, P.; Knight, J.C.; Knight, M.; Liu, X.; Lumley, S.F.; Matthews, P.C.; McNaughton, A.L.; Mentzer, A.J.; Mongkolsapaya, J.; Oakley, S.; Oliveira, M.S.; Peto, T.; Ploeg, R.J.; Ratcliff, J.; Robbins, M.J.; Roberts, D.J.; Rudkin, J.; Russell, R.A.; Screaton, G.; Semple, M.G.; Skelly, D.; Simmonds, P.; Stoesser, N.; Turtle, L.; Wareing, S.; Zambon, M. SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Res., 2020, 5, 181.
[http://dx.doi.org/10.12688/wellcomeopenres.16002.2] [PMID: 33283055]
[http://dx.doi.org/10.12688/wellcomeopenres.16002.2] [PMID: 33283055]
[103]
De Felice, F.G.; Tovar-Moll, F.; Moll, J.; Munoz, D.P.; Ferreira, S.T. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2) and the Central Nervous System. Trends Neurosci., 2020, 43(6), 355-357.
[http://dx.doi.org/10.1016/j.tins.2020.04.004]
[http://dx.doi.org/10.1016/j.tins.2020.04.004]
[104]
Divani, A.A.; Andalib, S.; Di Napoli, M.; Lattanzi, S.; Hussain, M.S.; Biller, J.; McCullough, L.D.; Azarpazhooh, M.R.; Seletska, A.; Mayer, S.A.; Torbey, M. Coronavirus disease 2019 and stroke: Clinical manifestations and pathophysiological insights. J. Stroke Cerebrovasc. Dis., 2020, 29(8), 104941.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941] [PMID: 32689643]
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941] [PMID: 32689643]
[105]
Corman, V.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 2020, 25(3), 2000045.
[106]
Rotondo, J.C.; Martini, F.; Maritati, M.; Caselli, E.; Gallenga, C.E.; Guarino, M.; De Giorgio, R.; Mazziotta, C.; Tramarin, M.L.; Badiale, G.; Tognon, M.; Contini, C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms, 2022, 10(6), 1193.
[http://dx.doi.org/10.3390/microorganisms10061193] [PMID: 35744711]
[http://dx.doi.org/10.3390/microorganisms10061193] [PMID: 35744711]
[107]
Zhang, Y.; Huang, Z.; Zhu, J.; Li, C.; Fang, Z.; Chen, K.; Zhang, Y. An updated review of SARS-COV -2 detection methods in the context of a novel coronavirus pandemic. Bioeng. Transl. Med., 2023, 8(1), e10356.
[http://dx.doi.org/10.1002/btm2.10356] [PMID: 35942232]
[http://dx.doi.org/10.1002/btm2.10356] [PMID: 35942232]
[108]
Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet, 2020, 395(10223), 470-473.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[109]
Emery, S.L.; Erdman, D.D.; Bowen, M.D.; Newton, B.R.; Winchell, J.M.; Meyer, R.F.; Tong, S.; Cook, B.T.; Holloway, B.P.; McCaustland, K.A.; Rota, P.A.; Bankamp, B.; Lowe, L.E.; Ksiazek, T.G.; Bellini, W.J.; Anderson, L.J. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg. Infect. Dis., 2004, 10(2), 311-316.
[http://dx.doi.org/10.3201/eid1002.030759] [PMID: 15030703]
[http://dx.doi.org/10.3201/eid1002.030759] [PMID: 15030703]
[110]
Lino, A.; Cardoso, M.A.; Gonçalves, H.M.R.; Martins-Lopes, P. SARS-CoV-2 detection methods. Chemosensors (Basel), 2022, 10(6), 221.
[http://dx.doi.org/10.3390/chemosensors10060221]
[http://dx.doi.org/10.3390/chemosensors10060221]
[111]
Zhu, Y.; Li, J.; Pang, Z. Recent insights for the emerging COVID-19: Drug discovery, therapeutic options and vaccine development. Asian Journal of Pharmaceutical Sciences, 2021, 16(1), 4-23.
[http://dx.doi.org/10.1016/j.ajps.2020.06.001] [PMID: 32837565]
[http://dx.doi.org/10.1016/j.ajps.2020.06.001] [PMID: 32837565]
[112]
Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; Jiang, Y.; Cheng, X.; Zhu, C.; Xia, Y. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect., 2020, 9(1), 1123-1130.
[http://dx.doi.org/10.1080/22221751.2020.1770129] [PMID: 32475230]
[http://dx.doi.org/10.1080/22221751.2020.1770129] [PMID: 32475230]
[113]
Liu, B.; Li, M.; Zhou, Z.; Guan, X.; Xiang, Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun., 2020, 111, 102452.
[http://dx.doi.org/10.1016/j.jaut.2020.102452] [PMID: 32291137]
[http://dx.doi.org/10.1016/j.jaut.2020.102452] [PMID: 32291137]
[114]
Gubernatorova, E.O.; Gorshkova, E.A.; Polinova, A.I.; Drutskaya, M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev., 2020, 53, 13-24.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.009] [PMID: 32475759]
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.009] [PMID: 32475759]
[115]
Tang, Y.W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol., 2020, 58(6), e00512-20.
[http://dx.doi.org/10.1128/JCM.00512-20] [PMID: 32245835]
[http://dx.doi.org/10.1128/JCM.00512-20] [PMID: 32245835]
[116]
Khalid, M.F.; Selvam, K.; Jeffry, A.J.N.; Salmi, M.F.; Najib, M.A.; Norhayati, M.N.; Aziah, I. Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta- Analysis. Diagnostics (Basel), 2022, 12(1), 110.
[http://dx.doi.org/10.3390/diagnostics12010110] [PMID: 35054277]
[http://dx.doi.org/10.3390/diagnostics12010110] [PMID: 35054277]
[117]
Truong, T.T.; Dien Bard, J.; Butler-Wu, S.M. Rapid Antigen Assays for SARS-CoV-2. Clin. Lab. Med., 2022, 42(2), 203-222.
[http://dx.doi.org/10.1016/j.cll.2022.03.001] [PMID: 35636822]
[http://dx.doi.org/10.1016/j.cll.2022.03.001] [PMID: 35636822]
[118]
Wells, C.R.; Pandey, A.; Moghadas, S.M.; Singer, B.H.; Krieger, G.; Heron, R.J.L.; Turner, D.E.; Abshire, J.P.; Phillips, K.M.; Michael Donoghue, A.; Galvani, A.P.; Townsend, J.P. Comparative analyses of eighteen rapid antigen tests and RT-PCR for COVID-19 quarantine and surveillance-based isolation. Commun. Med., 2022, 2(1), 84.
[http://dx.doi.org/10.1038/s43856-022-00147-y] [PMID: 35822105]
[http://dx.doi.org/10.1038/s43856-022-00147-y] [PMID: 35822105]
[119]
Li, Y.; Xia, L. Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. AJR Am. J. Roentgenol., 2020, 214(6), 1280-1286.
[http://dx.doi.org/10.2214/AJR.20.22954] [PMID: 32130038]
[http://dx.doi.org/10.2214/AJR.20.22954] [PMID: 32130038]
[120]
Carotti, M.; Salaffi, F.; Sarzi-Puttini, P.; Agostini, A.; Borgheresi, A.; Minorati, D.; Galli, M.; Marotto, D.; Giovagnoni, A. Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: Key points for radiologists. Radiol. Med. (Torino), 2020, 125(7), 636-646.
[http://dx.doi.org/10.1007/s11547-020-01237-4] [PMID: 32500509]
[http://dx.doi.org/10.1007/s11547-020-01237-4] [PMID: 32500509]
[121]
Dai, W.; Zhang, H.; Yu, J.; Xu, H.; Chen, H.; Luo, S.; Zhang, H.; Liang, L.; Wu, X.; Lei, Y.; Lin, F. CT imaging and differential diagnosis of COVID-19. Can. Assoc. Radiol. J., 2020, 71(2), 195-200.
[http://dx.doi.org/10.1177/0846537120913033] [PMID: 32129670]
[http://dx.doi.org/10.1177/0846537120913033] [PMID: 32129670]
[122]
Liu, T.; Luo, S.; Libby, P.; Shi, G.P. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol. Ther., 2020, 213, 107587.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107587] [PMID: 32470470]
[http://dx.doi.org/10.1016/j.pharmthera.2020.107587] [PMID: 32470470]
[123]
Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Alhakamy, N.A.; Md, S.; Nair, A.B.; Deb, P.K. Exploring the potential of carbon dots to combat COVID-19. Front. Mol. Biosci., 2020, 7, 616575.
[http://dx.doi.org/10.3389/fmolb.2020.616575] [PMID: 33425995]
[http://dx.doi.org/10.3389/fmolb.2020.616575] [PMID: 33425995]
[124]
Chen, C.; Huang, J.; Yin, P.; Zhang, Y.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M. Favipiravir versus arbidol for COVID-19: A randomized clinical trial. MedRxiv, 2020, 2020.2003.
[http://dx.doi.org/10.1101/2020.03.17.20037432]
[http://dx.doi.org/10.1101/2020.03.17.20037432]
[125]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[126]
Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. In. J. Korean Med. Sci., 2020, 35(6), e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[127]
Li, Y.; Liu, X.; Guo, L.; Li, J.; Zhong, D.; Zhang, Y.; Clarke, M.; Jin, R. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: protocol for a systematic review and meta-analysis. Syst. Rev., 2020, 9(1), 75.
[http://dx.doi.org/10.1186/s13643-020-01343-4] [PMID: 32268923]
[http://dx.doi.org/10.1186/s13643-020-01343-4] [PMID: 32268923]
[128]
Xu, J.; Zhang, Y. Traditional Chinese Medicine treatment of COVID-19. Complement. Ther. Clin. Pract., 2020, 39, 101165.
[http://dx.doi.org/10.1016/j.ctcp.2020.101165] [PMID: 32379692]
[http://dx.doi.org/10.1016/j.ctcp.2020.101165] [PMID: 32379692]
[129]
Ottaviani, S.; Stebbing, J. What is the best drug to treat COVID-19? The need for randomized controlled trials. Med, 2020, 1(1), 9-10.
[http://dx.doi.org/10.1016/j.medj.2020.04.002] [PMID: 32838354]
[http://dx.doi.org/10.1016/j.medj.2020.04.002] [PMID: 32838354]
[130]
Sayad, B.; Sobhani, M.; Khodarahmi, R. Sofosbuvir as repurposed antiviral drug against COVID-19: Why were we convinced to evaluate the drug in a registered/approved clinical trial? Arch. Med. Res., 2020, 51(6), 577-581.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.018] [PMID: 32387040]
[http://dx.doi.org/10.1016/j.arcmed.2020.04.018] [PMID: 32387040]
[131]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[132]
Pokhrel, R.; Chapagain, P.; Siltberg-Liberles, J. Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2. J. Med. Microbiol., 2020, 69(6), 864-873.
[http://dx.doi.org/10.1099/jmm.0.001203] [PMID: 32469301]
[http://dx.doi.org/10.1099/jmm.0.001203] [PMID: 32469301]
[133]
Kunz, K.M. A Trial of Lopinavir-Ritonavir in Covid-19. N. Engl. J. Med., 2020, 382(21), e68.
[PMID: 32369282]
[PMID: 32369282]
[134]
Nile, S.H.; Nile, A.; Qiu, J.; Li, L.; Jia, X.; Kai, G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev., 2020, 53, 66-70.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002] [PMID: 32418715]
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002] [PMID: 32418715]
[135]
Fuzimoto, A.D.; Isidoro, C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? J. Tradit. Complement. Med., 2020, 10(4), 405-419.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.003] [PMID: 32691005]
[http://dx.doi.org/10.1016/j.jtcme.2020.05.003] [PMID: 32691005]
[136]
Schwarz, S.; Wang, K.; Yu, W.; Sun, B.; Schwarz, W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res., 2011, 90(1), 64-69.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]
[137]
Tanner, J.A.; Zheng, B.J.; Zhou, J.; Watt, R.M.; Jiang, J.Q.; Wong, K.L.; Lin, Y.P.; Lu, L.Y.; He, M.L.; Kung, H.F.; Kesel, A.J.; Huang, J.D. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem. Biol., 2005, 12(3), 303-311.
[http://dx.doi.org/10.1016/j.chembiol.2005.01.006] [PMID: 15797214]
[http://dx.doi.org/10.1016/j.chembiol.2005.01.006] [PMID: 15797214]
[138]
Kesel, A. J. The Bananins: New Anticorona-RNA-Viral Agents with Unique Structural Signature. Anti-Infective Agents in Medicinal Chemistry, 2006, 5(2), 161-174.
[139]
Bisht, H.; Roberts, A.; Vogel, L.; Subbarao, K.; Moss, B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology, 2005, 334(2), 160-165.
[http://dx.doi.org/10.1016/j.virol.2005.01.042] [PMID: 15780866]
[http://dx.doi.org/10.1016/j.virol.2005.01.042] [PMID: 15780866]
[140]
Zhou, L.; Liu, Y.; Zhang, W.; Wei, P.; Huang, C.; Pei, J.; Yuan, Y.; Lai, L. Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors. J. Med. Chem., 2006, 49(12), 3440-3443.
[http://dx.doi.org/10.1021/jm0602357] [PMID: 16759084]
[http://dx.doi.org/10.1021/jm0602357] [PMID: 16759084]
[141]
Zhu, W.; Xu, M.; Chen, C.Z.; Guo, H.; Shen, M.; Hu, X.; Shinn, P.; Klumpp-Thomas, C.; Michael, S.G.; Zheng, W. Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening. ACS Pharmacol. Transl. Sci., 2020, 3(5), 1008-1016.
[http://dx.doi.org/10.1021/acsptsci.0c00108] [PMID: 33062953]
[http://dx.doi.org/10.1021/acsptsci.0c00108] [PMID: 33062953]
[142]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[143]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[144]
Touret, F.; de Lamballerie, X. Of chloroquine and COVID-19. Antiviral Res., 2020, 177, 104762.
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[145]
Rodrigo, C.; Fernando, S. D.; Rajapakse, S. Clinical evidence for repurposing chloroquine and hydroxychloroquine as antiviral agents: A systematic review. Clin Microbiol Infect, 2020, 26(8), 979-987.
[146]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[147]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. in vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[148]
Biran, N.; Ip, A.; Ahn, J.; Go, R.C.; Wang, S.; Mathura, S.; Sinclaire, B.A.; Bednarz, U.; Marafelias, M.; Hansen, E.; Siegel, D.S.; Goy, A.H.; Pecora, A.L.; Sawczuk, I.S.; Koniaris, L.S.; Simwenyi, M.; Varga, D.W.; Tank, L.K.; Stein, A.A.; Allusson, V.; Lin, G.S.; Oser, W.F.; Tuma, R.A.; Reichman, J.; Brusco, L., Jr; Carpenter, K.L.; Costanzo, E.J.; Vivona, V.; Goldberg, S.L. Tocilizumab among patients with COVID-19 in the intensive care unit: A multicentre observational study. Lancet Rheumatol., 2020, 2(10), e603-e612.
[http://dx.doi.org/10.1016/S2665-9913(20)30277-0] [PMID: 32838323]
[http://dx.doi.org/10.1016/S2665-9913(20)30277-0] [PMID: 32838323]
[149]
Lu, C.C.; Chen, M.Y.; Lee, W.S.; Chang, Y.L. Potential therapeutic agents against COVID-19: What we know so far. J. Chin. Med. Assoc., 2020, 83(6), 534-536.
[http://dx.doi.org/10.1097/JCMA.0000000000000318] [PMID: 32243270]
[http://dx.doi.org/10.1097/JCMA.0000000000000318] [PMID: 32243270]
[150]
Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet, 2020, 395(10234), 1407-1409.
[http://dx.doi.org/10.1016/S0140-6736(20)30858-8] [PMID: 32278362]
[http://dx.doi.org/10.1016/S0140-6736(20)30858-8] [PMID: 32278362]
[151]
Prokunina-Olsson, L.; Alphonse, N.; Dickenson, R.E.; Durbin, J.E.; Glenn, J.S.; Hartmann, R.; Kotenko, S.V.; Lazear, H.M.; O’Brien, T.R.; Odendall, C.; Onabajo, O.O.; Piontkivska, H.; Santer, D.M.; Reich, N.C.; Wack, A.; Zanoni, I. COVID-19 and emerging viral infections: The case for interferon lambda. J. Exp. Med., 2020, 217(5), e20200653.
[http://dx.doi.org/10.1084/jem.20200653] [PMID: 32289152]
[http://dx.doi.org/10.1084/jem.20200653] [PMID: 32289152]
[152]
Stockman, L.J.; Bellamy, R.; Garner, P. SARS: systematic review of treatment effects. PLoS Med., 2006, 3(9), e343.
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[153]
Zhou, Q.; Chen, V.; Shannon, C.P.; Wei, X.S.; Xiang, X.; Wang, X.; Wang, Z.H.; Tebbutt, S.J.; Kollmann, T.R.; Fish, E.N. Interferon-α2b Treatment for COVID-19. Front. Immunol., 2020, 11, 1061.
[http://dx.doi.org/10.3389/fimmu.2020.01061] [PMID: 32574262]
[http://dx.doi.org/10.3389/fimmu.2020.01061] [PMID: 32574262]
[154]
Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int. J. Biol. Sci., 2020, 16(10), 1708-1717.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[155]
ter Meulen, J.; van den Brink, E.N.; Poon, L.L.M.; Marissen, W.E.; Leung, C.S.W.; Cox, F.; Cheung, C.Y.; Bakker, A.Q.; Bogaards, J.A.; van Deventer, E.; Preiser, W.; Doerr, H.W.; Chow, V.T.; de Kruif, J.; Peiris, J.S.M.; Goudsmit, J. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med., 2006, 3(7), e237.
[http://dx.doi.org/10.1371/journal.pmed.0030237] [PMID: 16796401]
[http://dx.doi.org/10.1371/journal.pmed.0030237] [PMID: 16796401]
[156]
Marovich, M.; Mascola, J.R.; Cohen, M.S. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA, 2020, 324(2), 131-132.
[http://dx.doi.org/10.1001/jama.2020.10245] [PMID: 32539093]
[http://dx.doi.org/10.1001/jama.2020.10245] [PMID: 32539093]
[157]
Yoo, J.H. Convalescent plasma therapy for corona virus disease 2019: A long way to go but worth trying. J. Korean Med. Sci., 2020, 35(14), e150.
[http://dx.doi.org/10.3346/jkms.2020.35.e150] [PMID: 32281318]
[http://dx.doi.org/10.3346/jkms.2020.35.e150] [PMID: 32281318]
[158]
Im, J.H.; Nahm, C.H.; Baek, J.H.; Kwon, H.Y.; Lee, J.S. Convalescent plasma therapy in coronavirus disease 2019: A case report and suggestions to overcome obstacles. J. Korean Med. Sci., 2020, 35(26), e239.
[http://dx.doi.org/10.3346/jkms.2020.35.e239] [PMID: 32627442]
[http://dx.doi.org/10.3346/jkms.2020.35.e239] [PMID: 32627442]
[159]
Tao, K.; Tzou, P.L.; Nouhin, J.; Bonilla, H.; Jagannathan, P.; Shafer, R.W. SARS-CoV-2 Antiviral Therapy. Clin. Microbiol. Rev., 2021, 34(4), e00109-21.
[http://dx.doi.org/10.1128/CMR.00109-21] [PMID: 34319150]
[http://dx.doi.org/10.1128/CMR.00109-21] [PMID: 34319150]
[160]
Wang, X.; Sacramento, C.Q.; Jockusch, S.; Chaves, O.A.; Tao, C.; Fintelman-Rodrigues, N.; Chien, M.; Temerozo, J.R.; Li, X.; Kumar, S.; Xie, W.; Patel, D.J.; Meyer, C.; Garzia, A.; Tuschl, T.; Bozza, P.T.; Russo, J.J.; Souza, T.M.L.; Ju, J. Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture. Commun. Biol., 2022, 5(1), 154.
[http://dx.doi.org/10.1038/s42003-022-03101-9] [PMID: 35194144]
[http://dx.doi.org/10.1038/s42003-022-03101-9] [PMID: 35194144]
[161]
Esposito, R.; Mirra, D.; Sportiello, L.; Spaziano, G.; D’Agostino, B. Overview of Antiviral Drug Therapy for COVID-19: Where Do We Stand? Biomedicines, 2022, 10(11), 2815.
[http://dx.doi.org/10.3390/biomedicines10112815] [PMID: 36359334]
[http://dx.doi.org/10.3390/biomedicines10112815] [PMID: 36359334]
[162]
Wu, Y.; Li, Z.; Zhao, Y.S.; Huang, Y.Y.; Jiang, M.Y.; Luo, H.B. Therapeutic targets and potential agents for the treatment of COVID-19. Med. Res. Rev., 2021, 41(3), 1775-1797.
[http://dx.doi.org/10.1002/med.21776] [PMID: 33393116]
[http://dx.doi.org/10.1002/med.21776] [PMID: 33393116]
[163]
de Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6771-6776.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[164]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[165]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y.C.; Tian, G.; Jiang, H.W.; Tao, S.C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498), 1499-1504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[166]
Hulseberg, C.E.; Fénéant, L.; Szymańska-de Wijs, K.M.; Kessler, N.P.; Nelson, E.A.; Shoemaker, C.J.; Schmaljohn, C.S.; Polyak, S.J.; White, J.M. Arbidol and Other Low-Molecular-Weight Drugs That Inhibit Lassa and Ebola Viruses. J. Virol., 2019, 93(8), e02185-18.
[http://dx.doi.org/10.1128/JVI.02185-18] [PMID: 30700611]
[http://dx.doi.org/10.1128/JVI.02185-18] [PMID: 30700611]
[167]
Madelain, V.; Nguyen, T.H.T.; Olivo, A.; de Lamballerie, X.; Guedj, J.; Taburet, A.M.; Mentré, F. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin. Pharmacokinet., 2016, 55(8), 907-923.
[http://dx.doi.org/10.1007/s40262-015-0364-1] [PMID: 26798032]
[http://dx.doi.org/10.1007/s40262-015-0364-1] [PMID: 26798032]
[168]
Hayden, F.G.; Shindo, N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis., 2019, 32(2), 176-186.
[http://dx.doi.org/10.1097/QCO.0000000000000532] [PMID: 30724789]
[http://dx.doi.org/10.1097/QCO.0000000000000532] [PMID: 30724789]
[169]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[170]
Shi, L.; Xiong, H.; He, J.; Deng, H.; Li, Q.; Zhong, Q.; Hou, W.; Cheng, L.; Xiao, H.; Yang, Z. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol., 2007, 152(8), 1447-1455.
[http://dx.doi.org/10.1007/s00705-007-0974-5] [PMID: 17497238]
[http://dx.doi.org/10.1007/s00705-007-0974-5] [PMID: 17497238]
[171]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[172]
Roustit, M.; Guilhaumou, R.; Molimard, M.; Drici, M.D.; Laporte, S.; Montastruc, J.L. Chloroquine and hydroxychloroquine in the management of COVID-19: Much kerfuffle but little evidence. Therapie, 2020, 75(4), 363-370.
[http://dx.doi.org/10.1016/j.therap.2020.05.010] [PMID: 32473812]
[http://dx.doi.org/10.1016/j.therap.2020.05.010] [PMID: 32473812]
[173]
Chorin, E.; Dai, M.; Shulman, E.; Wadhwani, L.; Bar-Cohen, R.; Barbhaiya, C.; Aizer, A.; Holmes, D.; Bernstein, S.; Spinelli, M.; Park, D.S.; Chinitz, L.A.; Jankelson, L. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat. Med., 2020, 26(6), 808-809.
[http://dx.doi.org/10.1038/s41591-020-0888-2] [PMID: 32488217]
[http://dx.doi.org/10.1038/s41591-020-0888-2] [PMID: 32488217]
[174]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[175]
Li, C.; Wang, L.; Ren, L. Antiviral mechanisms of candidate chemical medicines and traditional Chinese medicines for SARS- CoV-2 infection. Virus Res., 2020, 286, 198073.
[http://dx.doi.org/10.1016/j.virusres.2020.198073] [PMID: 32592817]
[http://dx.doi.org/10.1016/j.virusres.2020.198073] [PMID: 32592817]
[176]
Muramatsu, T.; Takemoto, C.; Kim, Y.T.; Wang, H.; Nishii, W.; Terada, T.; Shirouzu, M.; Yokoyama, S. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc. Natl. Acad. Sci. USA, 2016, 113(46), 12997-13002.
[http://dx.doi.org/10.1073/pnas.1601327113] [PMID: 27799534]
[http://dx.doi.org/10.1073/pnas.1601327113] [PMID: 27799534]
[177]
Campochiaro, C.; Dagna, L. The conundrum of interleukin-6 blockade in COVID-19. Lancet Rheumatol., 2020, 2(10), e579-e580.
[http://dx.doi.org/10.1016/S2665-9913(20)30287-3] [PMID: 32838322]
[http://dx.doi.org/10.1016/S2665-9913(20)30287-3] [PMID: 32838322]
[178]
Shi, R.; Shan, C.; Duan, X.; Chen, Z.; Liu, P.; Song, J.; Song, T.; Bi, X.; Han, C.; Wu, L.; Gao, G.; Hu, X.; Zhang, Y.; Tong, Z.; Huang, W.; Liu, W.J.; Wu, G.; Zhang, B.; Wang, L.; Qi, J.; Feng, H.; Wang, F.S.; Wang, Q.; Gao, G.F.; Yuan, Z.; Yan, J. A human neutralizing antibody targets the receptor-binding site of SARS- CoV-2. Nature, 2020, 584(7819), 120-124.
[http://dx.doi.org/10.1038/s41586-020-2381-y] [PMID: 32454512]
[http://dx.doi.org/10.1038/s41586-020-2381-y] [PMID: 32454512]
[179]
Soleimanpour, S.; Yaghoubi, A. COVID-19 vaccine: Where are we now and where should we go? Expert Rev. Vaccines, 2021, 20(1), 23-44.
[http://dx.doi.org/10.1080/14760584.2021.1875824] [PMID: 33435774]
[http://dx.doi.org/10.1080/14760584.2021.1875824] [PMID: 33435774]
[180]
Ye, T.; Zhong, Z.; García-Sastre, A.; Schotsaert, M.; De Geest, B.G. Current status of COVID-19 (pre) clinical vaccine development. Angew. Chem. Int. Ed., 2020, 59(43), 18885-18897.
[http://dx.doi.org/10.1002/anie.202008319] [PMID: 32663348]
[http://dx.doi.org/10.1002/anie.202008319] [PMID: 32663348]
[181]
Kraynyak, K.A.; Blackwood, E.; Agnes, J.; Tebas, P.; Giffear, M.; Amante, D.; Reuschel, E.L.; Purwar, M.; Christensen-Quick, A.; Liu, N. et al. SARS-CoV-2 DNA vaccine INO-4800 induces durable immune responses capable of being boosted in a phase 1 open-label trial. J. Infect. Dis., 2021, 225, 1923-1932.
[182]
Chen, W.H.; Strych, U.; Hotez, P.J.; Bottazzi, M.E. The SARS- CoV-2 Vaccine Pipeline: An Overview. Curr. Trop. Med. Rep., 2020, 7(2), 61-64.
[http://dx.doi.org/10.1007/s40475-020-00201-6] [PMID: 32219057]
[http://dx.doi.org/10.1007/s40475-020-00201-6] [PMID: 32219057]
[183]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.J.; Jiang, S. The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[184]
Fight COVID-19. HKU joins global partnership to develop COVID-19 vaccine 2020. Available From: https://fightcovid19.hku.hk/hku-state-key-laboratory-for-emerging-infectious-diseases-joins-global-effort-to-develop-covid-19-vaccine/
[185]
Campbell, M. Current Efforts in COVID-19 Vaccine Development. 2020. Available From: https://www.technologynetworks.com/
[186]
Anon. UW–Madison, FluGen, Bharat Biotech to develop CoroFlu, a coronavirus vaccine. 2020. Available From: https://www.businesswire.com
[188]
Tung Thanh Le, Z.A. Arun Kumar, Raúl Gómez Román, Stig Tollefsen, Melanie Saville, Stephen Mayhew. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19, 305-306.
[189]
Anon. An Open Study of the Safety, Tolerability and Immunogenicity of the Drug "Gam-COVID-Vac" Vaccine Against COVID-19. 2020. Available From: https://classic.clinicaltrials.gov/ct2/show/NCT04436471 (Accessed on June 22, 2020).
[190]
Anon. An Open Study of the Safety, Tolerability and Immunogenicity of "Gam-COVID-Vac Lyo" Vaccine Against COVID-19. 2020. Available From: https://classic.clinicaltrials.gov/ct2/show/NCT04437875 (Accessed on June 22, 2020).
[191]
Anon. Vaxart Announces Positive Pre-Clinical Data for its Oral COVID-19 Vaccine Program. 2020. Available From: https://investors.vaxart.com/news-releases/news-release-details/vaxart-announces-positive-pre-clinical-data-its-oral-covid-19
[192]
Anon. A randomized, double-blind, placebo parallel-controlled phase I/II clinical trial for inactivated Novel Coronavirus Pneumonia vaccine (Vero cells). 2020. Available From: http://www.chictr.org.cn
[193]
Johnson, B.A. Landmark New Partnership with U.S. Department of Health & Human Services; and Commitment to Supply One Billion Vaccines Worldwide for Emergency Pandemic Use. 2020. Available From: https://www.prnewswire.com/
[194]
Applied DNA Sciences Subsidiary, LineaRx, and Takis Biotech Collaborate for Development of a Linear DNA Vaccine Candidate Against Wuhan Coronavirus 2019-nCoV. 2020. Available From: https://adnas.com/
[195]
ClinicalTrials.gov. Evaluating the safety, tolerability and immunogenicity of bacTRL-spike vaccine for prevention of COVID-19; National Library of Medicine: Bethesda, MD, 2020. Internet
[196]
ClinicalTrials.gov. The Safety and Immunogenicity of a DNA-based Vaccine (COVIGEN) in Healthy Volunteers (COVALIA)., 2021. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04742842
[197]
clinicalTrials.gov. A clinical trial of a prophylactic plasmid DNA vaccine for COVID-19 [covigenix VAX-001] in adults. 2021. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04591184
[198]
Andrade, V.M.; Christensen-Quick, A.; Agnes, J.; Tur, J.; Reed, C.; Kalia, R.; Marrero, I.; Elwood, D.; Schultheis, K.; Purwar, M.; Reuschel, E.; McMullan, T.; Pezzoli, P.; Kraynyak, K.; Sylvester, A.; Mammen, M.P.; Tebas, P.; Joseph Kim, J.; Weiner, D.B.; Smith, T.R.F.; Ramos, S.J.; Humeau, L.M.; Boyer, J.D.; Broderick, K.E. INO-4800 DNA vaccine induces neutralizing antibodies and T cell activity against global SARS-CoV-2 variants. NPJ Vaccines, 2021, 6(1), 121.
[http://dx.doi.org/10.1038/s41541-021-00384-7] [PMID: 34650089]
[http://dx.doi.org/10.1038/s41541-021-00384-7] [PMID: 34650089]
[199]
Conforti, A.; Marra, E.; Palombo, F.; Roscilli, G.; Ravà, M.; Fumagalli, V.; Muzi, A.; Maffei, M.; Luberto, L.; Lione, L.; Salvatori, E.; Compagnone, M.; Pinto, E.; Pavoni, E.; Bucci, F.; Vitagliano, G.; Stoppoloni, D.; Pacello, M.L.; Cappelletti, M.; Ferrara, F.F.; D’Acunto, E.; Chiarini, V.; Arriga, R.; Nyska, A.; Di Lucia, P.; Marotta, D.; Bono, E.; Giustini, L.; Sala, E.; Perucchini, C.; Paterson, J.; Ryan, K.A.; Challis, A.R.; Matusali, G.; Colavita, F.; Caselli, G.; Criscuolo, E.; Clementi, N.; Mancini, N.; Groß, R.; Seidel, A.; Wettstein, L.; Münch, J.; Donnici, L.; Conti, M.; De Francesco, R.; Kuka, M.; Ciliberto, G.; Castilletti, C.; Capobianchi, M.R.; Ippolito, G.; Guidotti, L.G.; Rovati, L.; Iannacone, M.; Aurisicchio, L. COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models. Mol. Ther., 2022, 30(1), 311-326.
[http://dx.doi.org/10.1016/j.ymthe.2021.09.011] [PMID: 34547465]
[http://dx.doi.org/10.1016/j.ymthe.2021.09.011] [PMID: 34547465]
[200]
Khobragade, A.; Bhate, S.; Ramaiah, V.; Deshpande, S.; Giri, K.; Phophle, H.; Supe, P.; Godara, I.; Revanna, R.; Nagarkar, R.; Sanmukhani, J.; Dey, A.; Rajanathan, T.M.C.; Kansagra, K.; Koradia, P. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): The interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet, 2022, 399(10332), 1313-1321.
[http://dx.doi.org/10.1016/S0140-6736(22)00151-9] [PMID: 35367003]
[http://dx.doi.org/10.1016/S0140-6736(22)00151-9] [PMID: 35367003]
[201]
clinicalTrials.gov. GLS-5310 Vaccine for the Prevention of SARS-CoV-2 (COVID-19). 2020. Available From: https://clinicaltrials.gov/ct2/show/NCT04673149
[202]
clinicalTrials.gov. Phase II / III Study of COVID-19 DNA Vaccine (AG0302-COVID19). 2020. Available From: https://clinicaltrials.gov/ct2/show/NCT04655625
[203]
Lu, J.; Lu, G.; Tan, S.; Xia, J.; Xiong, H.; Yu, X.; Qi, Q.; Yu, X.; Li, L.; Yu, H.; Xia, N.; Zhang, T.; Xu, Y.; Lin, J. A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like particles induces a strong antiviral-like immune response in mice. Cell Res., 2020, 30(10), 936-939.
[http://dx.doi.org/10.1038/s41422-020-00392-7] [PMID: 32801356]
[http://dx.doi.org/10.1038/s41422-020-00392-7] [PMID: 32801356]
[204]
Liu, C.; Rcheulishvili, N.; Shen, Z.; Papukashvili, D.; Xie, F.; Wang, Z.; Wang, X.; He, Y.; Wang, P.G. Development of an LNP-Encapsulated mRNA-RBD Vaccine against SARS-CoV-2 and Its Variants. Pharmaceutics, 2022, 14(5), 1101.
[http://dx.doi.org/10.3390/pharmaceutics14051101] [PMID: 35631687]
[http://dx.doi.org/10.3390/pharmaceutics14051101] [PMID: 35631687]
[205]
Szabó, G.T.; Mahiny, A.J.; Vlatkovic, I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther., 2022, 30(5), 1850-1868.
[http://dx.doi.org/10.1016/j.ymthe.2022.02.016] [PMID: 35189345]
[http://dx.doi.org/10.1016/j.ymthe.2022.02.016] [PMID: 35189345]
[206]
McCafferty, S.; Haque, A.K.M.A.; Vandierendonck, A.; Weidensee, B.; Plovyt, M.; Stuchlíková, M.; François, N.; Valembois, S.; Heyndrickx, L.; Michiels, J.; Ariën, K.K.; Vandekerckhove, L.; Abdelnabi, R.; Foo, C.S.; Neyts, J.; Sahu, I.; Sanders, N.N. A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through T cell-mediated immunity. Mol. Ther., 2022, 30(9), 2968-2983.
[http://dx.doi.org/10.1016/j.ymthe.2022.04.014] [PMID: 35450821]
[http://dx.doi.org/10.1016/j.ymthe.2022.04.014] [PMID: 35450821]
[207]
Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med., 2021, 384(5), 403-416.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[208]
Pollock, K.M.; Cheeseman, H.M.; Szubert, A.J.; Libri, V.; Boffito, M.; Owen, D.; Bern, H.; McFarlane, L.R.; O’Hara, J.; Lemm, N.M.; McKay, P.; Rampling, T.; Yim, Y.T.N.; Milinkovic, A.; Kingsley, C.; Cole, T.; Fagerbrink, S.; Aban, M.; Tanaka, M.; Mehdipour, S.; Robbins, A.; Budd, W.; Faust, S.; Hassanin, H.; Cosgrove, C.A.; Winston, A.; Fidler, S.; Dunn, D.; McCormack, S.; Shattock, R.J.; Adams, K.; Amini, F.; Atako, N.B.; Bakri, A.; Barclay, W.; Brodnicki, E.; Brown, J.C.; Byrne, R.; Chilvers, R.; Coelho, S.; Day, S.; Desai, M.; Dorman, E.; Elliott, T.; Flight, K.E.; Fletcher, J.; Galang, J.; Gohil, J.; Gupta, A.; Harlow, C.; Hu, K.; Kalyan, M.; Lagrue, D.; Liscano, E.; Njenga, C.; Polra, K.; Powlette, D.A.; Randell, P.; Rauchenberger, M.; Redknap, I.; Ricamara, M.; Rogers, P.; Sallah, H.; Samnuan, K.; Schumacher, M.; Shah, Z.; Shaw, R.; Shaw, T.; Sivapatham, S.; Slater, S.; Sorley, K.; Storch, R.; Tan, E.; Tan, T.; Thielemans, L.; Whitely, S.; Valentine, C.; Varghese, J.; Vikraman, A.; Wilkins, M. Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial. EClinicalMedicine, 2022, 44, 101262.
[http://dx.doi.org/10.1016/j.eclinm.2021.101262] [PMID: 35043093]
[http://dx.doi.org/10.1016/j.eclinm.2021.101262] [PMID: 35043093]
[209]
Rauch, S.; Roth, N.; Schwendt, K.; Fotin-Mleczek, M.; Mueller, S.O.; Petsch, B. mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. NPJ Vaccines, 2021, 6(1), 57.
[http://dx.doi.org/10.1038/s41541-021-00311-w] [PMID: 33863911]
[http://dx.doi.org/10.1038/s41541-021-00311-w] [PMID: 33863911]
[210]
Dighriri, I.M.; Alhusayni, K.M.; Mobarki, A.Y.; Aljerary, I.S.; Alqurashi, K.A.; Aljuaid, F.A.; Alamri, K.A.; Mutwalli, A.A.; Maashi, N.A.; Aljohani, A.M.; Alqarni, A.M.; Alfaqih, A.E.; Moazam, S.M.; Almutairi, M.N.; Almutairi, A.N. Pfizer-BioNTech COVID-19 Vaccine (BNT162b2) Side Effects: A Systematic Review. Cureus, 2022, 14(3), e23526.
[http://dx.doi.org/10.7759/cureus.23526] [PMID: 35494952]
[http://dx.doi.org/10.7759/cureus.23526] [PMID: 35494952]
[211]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[213]
Hager, K.J.; Pérez Marc, G.; Gobeil, P.; Diaz, R.S.; Heizer, G.; Llapur, C.; Makarkov, A.I.; Vasconcellos, E.; Pillet, S.; Riera, F.; Saxena, P.; Geller Wolff, P.; Bhutada, K.; Wallace, G.; Aazami, H.; Jones, C.E.; Polack, F.P.; Ferrara, L.; Atkins, J.; Boulay, I.; Dhaliwall, J.; Charland, N.; Couture, M.M.J.; Jiang-Wright, J.; Landry, N.; Lapointe, S.; Lorin, A.; Mahmood, A.; Moulton, L.H.; Pahmer, E.; Parent, J.; Séguin, A.; Tran, L.; Breuer, T.; Ceregido, M.A.; Koutsoukos, M.; Roman, F.; Namba, J.; D’Aoust, M.A.; Trepanier, S.; Kimura, Y.; Ward, B.J. Efficacy and Safety of a Recombinant Plant-Based Adjuvanted Covid-19 Vaccine. N. Engl. J. Med., 2022, 386(22), 2084-2096.
[http://dx.doi.org/10.1056/NEJMoa2201300] [PMID: 35507508]
[http://dx.doi.org/10.1056/NEJMoa2201300] [PMID: 35507508]
[214]
Pandey, K.; Acharya, A.; Mohan, M.; Ng, C.L.; Reid, S.P.; Byrareddy, S.N. Animal models for SARS-CoV-2 research: A comprehensive literature review. Transbound. Emerg. Dis., 2021, 68(4), 1868-1885.
[http://dx.doi.org/10.1111/tbed.13907] [PMID: 33128861]
[http://dx.doi.org/10.1111/tbed.13907] [PMID: 33128861]
[215]
Folegatti, P.M.; Bittaye, M.; Flaxman, A.; Lopez, F.R.; Bellamy, D.; Kupke, A.; Mair, C.; Makinson, R.; Sheridan, J.; Rohde, C.; Halwe, S.; Jeong, Y.; Park, Y.S.; Kim, J.O.; Song, M.; Boyd, A.; Tran, N.; Silman, D.; Poulton, I.; Datoo, M.; Marshall, J.; Themistocleous, Y.; Lawrie, A.; Roberts, R.; Berrie, E.; Becker, S.; Lambe, T.; Hill, A.; Ewer, K.; Gilbert, S. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: A dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect. Dis., 2020, 20(7), 816-826.
[http://dx.doi.org/10.1016/S1473-3099(20)30160-2] [PMID: 32325038]
[http://dx.doi.org/10.1016/S1473-3099(20)30160-2] [PMID: 32325038]
[216]
Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; Goodman, A.L.; Heer, A.; Higham, A.; Iyengar, S.; Jamal, A.; Jeanes, C.; Kalra, P.A.; Kyriakidou, C.; McAuley, D.F.; Meyrick, A.; Minassian, A.M.; Minton, J.; Moore, P.; Munsoor, I.; Nicholls, H.; Osanlou, O.; Packham, J.; Pretswell, C.H.; San Francisco Ramos, A.; Saralaya, D.; Sheridan, R.P.; Smith, R.; Soiza, R.L.; Swift, P.A.; Thomson, E.C.; Turner, J.; Viljoen, M.E.; Albert, G.; Cho, I.; Dubovsky, F.; Glenn, G.; Rivers, J.; Robertson, A.; Smith, K.; Toback, S. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N. Engl. J. Med., 2021, 385(13), 1172-1183.
[http://dx.doi.org/10.1056/NEJMoa2107659] [PMID: 34192426]
[http://dx.doi.org/10.1056/NEJMoa2107659] [PMID: 34192426]
[217]
clinicalTrials.gov. A Phase III Study of COVID-19 Vaccine EuCorVac-19 in Healthy Adults., 2022. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT05572879
[218]
PR Newswire. Voltron Therapeutics, Inc. Enters into Sponsored Research Agreement with The Vaccine & Immunotherapy Center at the Massachusetts General Hospital to Develop Potential COVID-19 Vaccine. 2020. Available From: https://www.prnewswire.com/news-releases/voltron-therapeutics-inc-enters-into-sponsored-research-agreement-with-the-vaccine--immunotherapy-center-at-the-massachusetts-general-hospital-to-develop-potential-covid-19-vaccine-301034225.html
[219]
Mehla, R.; Kokate, P.; Bhosale, S.R.; Vaidya, V.; Narayanan, S.; Shandil, R.K.; Singh, M.; Rudramurthy, G.R.; Naveenkumar, C.N.; Bharathkumar, K.; Coleman, R.; Mueller, S.; Dhere, R.M.; Yeolekar, L.R. A Live Attenuated COVID-19 Candidate Vaccine for Children: Protection against SARS-CoV-2 Challenge in Hamsters. Vaccines (Basel), 2023, 11(2), 255.
[http://dx.doi.org/10.3390/vaccines11020255] [PMID: 36851133]
[http://dx.doi.org/10.3390/vaccines11020255] [PMID: 36851133]
[220]
Sinovac COVID-19 Vaccine Collaboration with Butantan Receives Approval from Brazilian Regulator for Phase III T. http://www.sinovac.com/?optionid=754&auto_id=907
[221]
Chen, H.; Huang, Z.; Chang, S.; Hu, M.; Lu, Q.; Zhang, Y.; Wang, H.; Xiao, Y.; Wang, H.; Ge, Y.; Zou, Y.; Cui, F.; Han, S.; Zhang, M.; Wang, S.; Zhu, X.; Zhang, B.; Li, Z.; Ren, J.; Chen, X.; Ma, R.; Zhang, L.; Guo, X.; Luo, L.; Sun, X.; Yang, X. Immunogenicity and safety of an inactivated SARS-CoV-2 vaccine (Sinopharm BBIBP-CorV) coadministered with quadrivalent split-virion inactivated influenza vaccine and 23-valent pneumococcal polysaccharide vaccine in China: A multicentre, non-inferiority, open-label, randomised, controlled, phase 4 trial. Vaccine, 2022, 40(36), 5322-5332.
[http://dx.doi.org/10.1016/j.vaccine.2022.07.033] [PMID: 35931636]
[http://dx.doi.org/10.1016/j.vaccine.2022.07.033] [PMID: 35931636]
[222]
clinicalTrials.gov. Whole-virion inactivated SARS-CoV-2 vaccine (BBV152) for COVID-19 in healthy volunteers (BBV152). 2020. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04471519
[223]
Zakarya, K.; Kutumbetov, L.; Orynbayev, M.; Abduraimov, Y.; Sultankulova, K.; Kassenov, M.; Sarsenbayeva, G.; Kulmagambetov, I.; Davlyatshin, T.; Sergeeva, M.; Stukova, M.; Khairullin, B. Safety and immunogenicity of a QazCovid-in® inactivated whole-virion vaccine against COVID-19 in healthy adults: A single-centre, randomised, single-blind, placebo-controlled phase 1 and an open-label phase 2 clinical trials with a 6 months follow-up in Kazakhstan. EClinicalMedicine, 2021, 39, 101078.
[http://dx.doi.org/10.1016/j.eclinm.2021.101078] [PMID: 34414368]
[http://dx.doi.org/10.1016/j.eclinm.2021.101078] [PMID: 34414368]
[224]
Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; Gao, H.; Ge, X.; Kan, B.; Hu, Y.; Liu, J.; Cai, F.; Jiang, D.; Yin, Y.; Qin, C.; Li, J.; Gong, X.; Lou, X.; Shi, W.; Wu, D.; Zhang, H.; Zhu, L.; Deng, W.; Li, Y.; Lu, J.; Li, C.; Wang, X.; Yin, W.; Zhang, Y.; Qin, C. Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 2020, 369(6499), 77-81.
[http://dx.doi.org/10.1126/science.abc1932] [PMID: 32376603]
[http://dx.doi.org/10.1126/science.abc1932] [PMID: 32376603]
[225]
clinicalTrials.gov. OPV as Potential Protection Against COVID-19. 2020. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04445428
[226]
clinicalTrials.gov. Measles Vaccine in HCW (MV-COVID19). 2020. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04445428
[227]
clinicalTrials.gov. Reducing Health Care Workers Absenteeism in Covid-19 Pandemic Through BCG Vaccine (BCG-CORONA)., 2020. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04328441
[228]
Bhiman, J.N.; Richardson, S.I.; Lambson, B.E.; Kgagudi, P.; Mzindle, N.; Kaldine, H.; Crowther, C.; Gray, G.; Bekker, L.G.; Koen, A.; Fairlie, L.; Fouche, L.; Bhorat, Q.; Dheda, K.; Tameris, M.; Masilela, M.; Hoosain, Z.; Singh, N.; Hanley, S.; Archary, M.; Louw, C.; Grobbelaar, C.; Lalloo, U.; Joseph, N.; Kruger, G.; Shinde, V.; Bennett, C.; Glenn, G.M.; Madhi, S.A.; Moore, P.L. Novavax NVX-COV2373 triggers neutralization of Omicron sub-lineages. Sci. Rep., 2023, 13(1), 1222.
[http://dx.doi.org/10.1038/s41598-023-27698-x] [PMID: 36681693]
[http://dx.doi.org/10.1038/s41598-023-27698-x] [PMID: 36681693]
[229]
Saha, R.P.; Sharma, A.R.; Singh, M.K.; Samanta, S.; Bhakta, S.; Mandal, S.; Bhattacharya, M.; Lee, S.S.; Chakraborty, C. Repurposing drugs, ongoing vaccine, and new therapeutic development initiatives against COVID-19. Front. Pharmacol., 2020, 11, 1258.
[http://dx.doi.org/10.3389/fphar.2020.01258] [PMID: 32973505]
[http://dx.doi.org/10.3389/fphar.2020.01258] [PMID: 32973505]
[230]
Bhatta, M.; Nandi, S.; Dutta, S.; Saha, M.K. Coronavirus (SARS-CoV-2): A systematic review for potential vaccines. Hum. Vaccin. Immunother., 2022, 18(1), 1865774.
[http://dx.doi.org/10.1080/21645515.2020.1865774] [PMID: 33545014]
[http://dx.doi.org/10.1080/21645515.2020.1865774] [PMID: 33545014]
[231]
Baraniuk, C. Covid-19: What do we know about Sputnik V and other Russian vaccines? BMJ, 2021, 372, n743.
[http://dx.doi.org/10.1136/bmj.n743] [PMID: 33741559]
[http://dx.doi.org/10.1136/bmj.n743] [PMID: 33741559]
[232]
Belete, T.M. Review on up-to-date status of candidate vaccines for COVID-19 disease. Infect. Drug Resist., 2021, 14, 151-161.
[http://dx.doi.org/10.2147/IDR.S288877] [PMID: 33500636]
[http://dx.doi.org/10.2147/IDR.S288877] [PMID: 33500636]
[233]
Jones, I.; Roy, P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet, 2021, 397(10275), 642-643.
[http://dx.doi.org/10.1016/S0140-6736(21)00191-4] [PMID: 33545098]
[http://dx.doi.org/10.1016/S0140-6736(21)00191-4] [PMID: 33545098]
[234]
Pacheco, T. J. A.; Silva, V. C. M. d.; Souza, D. G. d.; Borges, M. B. S.; Silva, S. A. COVID-19: Do DNA / RNA vaccines integrate into the genome? RSD, 2021, 10(1), e58710112103.
[235]
Pozzi, C.; Vanet, A.; Francesconi, V.; Tagliazucchi, L.; Tassone, G.; Venturelli, A.; Spyrakis, F.; Mazzorana, M.; Costi, M.P.; Tonelli, M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery–Genetics Alliance Perspective. J. Med. Chem., 2023, 66(6), 3664-3702.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01229] [PMID: 36857133]
[http://dx.doi.org/10.1021/acs.jmedchem.2c01229] [PMID: 36857133]
[236]
Pesce, E.; Manfrini, N.; Cordiglieri, C.; Santi, S.; Bandera, A.; Gobbini, A.; Gruarin, P.; Favalli, A.; Bombaci, M.; Cuomo, A.; Collino, F.; Cricrì, G.; Ungaro, R.; Lombardi, A.; Mangioni, D.; Muscatello, A.; Aliberti, S.; Blasi, F.; Gori, A.; Abrignani, S.; De Francesco, R.; Biffo, S.; Grifantini, R. Exosomes Recovered From the Plasma of COVID-19 Patients Expose SARS-CoV-2 Spike-Derived Fragments and Contribute to the Adaptive Immune Response. Front. Immunol., 2022, 12, 785941.
[http://dx.doi.org/10.3389/fimmu.2021.785941] [PMID: 35111156]
[http://dx.doi.org/10.3389/fimmu.2021.785941] [PMID: 35111156]
[237]
Bouhaddou, M.; Memon, D.; Meyer, B.; White, K. M.; Rezelj, V. V.; Marrero, M. C.; Polacco, B. J.; Melnyk, J. E.; Ulferts, S.; Kaake, R. M. The global phosphorylation landscape of SARS-CoV-2 infection. Cell, 2020, 182, 685-712.
[http://dx.doi.org/10.1016/j.cell.2020.06.034]
[http://dx.doi.org/10.1016/j.cell.2020.06.034]
[238]
Su, P.; Wu, Y.; Xie, F.; Zheng, Q.; Chen, L.; Liu, Z.; Meng, X.; Zhou, F.; Zhang, L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. Adv Sci, 2023, 10(19), e2206095.
[239]
Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; Fan, J.; Wang, W.; Deng, L.; Shi, H.; Li, H.; Hu, Z.; Zhang, F.; Gao, J.; Liu, H.; Li, X.; Zhao, Y.; Yin, K.; He, X.; Gao, Z.; Wang, Y.; Yang, B.; Jin, R.; Stambler, I.; Lim, L.W.; Su, H.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K.J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.; Zhao, R.C. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis., 2020, 11(2), 216-228.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[240]
Deshmukh, R.; Roy, U. A Comprehensive Mini-review on COVID-19 Pathogenesis on Perspectives of Cytokine Storm and Recent Developments in Anti-Covid Nucleotide Analogues. J. Pure Appl. Microbiol., 2023, 17(1), 1-11.
[http://dx.doi.org/10.22207/JPAM.17.1.12]
[http://dx.doi.org/10.22207/JPAM.17.1.12]
[241]
Tamanna, S.; Lumbers, E.R.; Morosin, S.K.; Delforce, S.J.; Pringle, K.G. ACE2: A key modulator of the renin-angiotensin system and pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2021, 321(6), R833-R843.
[http://dx.doi.org/10.1152/ajpregu.00211.2021] [PMID: 34668428]
[http://dx.doi.org/10.1152/ajpregu.00211.2021] [PMID: 34668428]
[242]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[243]
Suvarnapathaki, S.; Chauhan, D.; Nguyen, A.; Ramalingam, M.; Camci-Unal, G. Advances in Targeting ACE2 for Developing COVID-19 Therapeutics. Ann. Biomed. Eng., 2022, 50(12), 1734-1749.
[http://dx.doi.org/10.1007/s10439-022-03094-w] [PMID: 36261668]
[http://dx.doi.org/10.1007/s10439-022-03094-w] [PMID: 36261668]
[244]
Maus, A.; Strait, L.; Zhu, D. Nanoparticles as delivery vehicles for antiviral therapeutic drugs. Engineered Regeneration, 2021, 2, 31-46.
[http://dx.doi.org/10.1016/j.engreg.2021.03.001] [PMID: 38620592]
[http://dx.doi.org/10.1016/j.engreg.2021.03.001] [PMID: 38620592]
[245]
Hassanzadeh, P. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. J. Control. Release, 2020, 328, 112-126.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.060] [PMID: 32882269]
[http://dx.doi.org/10.1016/j.jconrel.2020.08.060] [PMID: 32882269]
[246]
Feng, T.; Nie, C.; Peng, P.; Lu, H.; Wang, T.; Li, P.; Huang, W. Nanoagent-based theranostic strategies against human coronaviruses. Nano Res., 2022, 15(4), 3323-3337.
[http://dx.doi.org/10.1007/s12274-021-3949-z] [PMID: 35003529]
[http://dx.doi.org/10.1007/s12274-021-3949-z] [PMID: 35003529]
[247]
Chattopadhyay, S.; Chen, J.Y.; Chen, H.W.; Hu, C.M.J. Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics, 2017, 1(3), 244-260.
[http://dx.doi.org/10.7150/ntno.19796] [PMID: 29071191]
[http://dx.doi.org/10.7150/ntno.19796] [PMID: 29071191]
[248]
Aljabali, A.A.; Obeid, M.A.; Bashatwah, R.M.; Serrano-Aroca, Á.; Mishra, V.; Mishra, Y.; El-Tanani, M.; Hromić-Jahjefendić, A.; Kapoor, D.N.; Goyal, R.; Naikoo, G.A.; Tambuwala, M.M. Nanomaterials and Their Impact on the Immune System. Int. J. Mol. Sci., 2023, 24(3), 2008.
[http://dx.doi.org/10.3390/ijms24032008] [PMID: 36768330]
[http://dx.doi.org/10.3390/ijms24032008] [PMID: 36768330]
[249]
Liu, J.; Liu, Z.; Pang, Y.; Zhou, H. The interaction between nanoparticles and immune system: Application in the treatment of inflammatory diseases. J. Nanobiotechnology, 2022, 20(1), 127.
[http://dx.doi.org/10.1186/s12951-022-01343-7] [PMID: 35279135]
[http://dx.doi.org/10.1186/s12951-022-01343-7] [PMID: 35279135]
[250]
Aiewsakun, P.; Phumiphanjarphak, W.; Ludowyke, N.; Purwono, P.B.; Manopwisedjaroen, S.; Srisaowakarn, C.; Ekronarongchai, S.; Suksatu, A.; Yuvaniyama, J.; Thitithanyanont, A. Systematic Exploration of SARS-CoV-2 Adaptation to Vero E6, Vero E6/TMPRSS2, and Calu-3 Cells. Genome Biol. Evol., 2023, 15(4), evad035.
[http://dx.doi.org/10.1093/gbe/evad035] [PMID: 36852863]
[http://dx.doi.org/10.1093/gbe/evad035] [PMID: 36852863]
[251]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[252]
Khorsand, B.; Savadi, A.; Naghibzadeh, M. SARS-CoV-2-human protein-protein interaction network. Informatics in Medicine Unlocked, 2020, 20, 100413.
[http://dx.doi.org/10.1016/j.imu.2020.100413] [PMID: 32838020]
[http://dx.doi.org/10.1016/j.imu.2020.100413] [PMID: 32838020]
[253]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[254]
Costanzo, M.; VanderSluis, B.; Koch, E.N.; Baryshnikova, A.; Pons, C.; Tan, G.; Wang, W.; Usaj, M.; Hanchard, J.; Lee, S.D.; Pelechano, V.; Styles, E.B.; Billmann, M.; van Leeuwen, J.; van Dyk, N.; Lin, Z.Y.; Kuzmin, E.; Nelson, J.; Piotrowski, J.S.; Srikumar, T.; Bahr, S.; Chen, Y.; Deshpande, R.; Kurat, C.F.; Li, S.C.; Li, Z.; Usaj, M.M.; Okada, H.; Pascoe, N.; San Luis, B.J.; Sharifpoor, S.; Shuteriqi, E.; Simpkins, S.W.; Snider, J.; Suresh, H.G.; Tan, Y.; Zhu, H.; Malod-Dognin, N.; Janjic, V.; Przulj, N.; Troyanskaya, O.G.; Stagljar, I.; Xia, T.; Ohya, Y.; Gingras, A.C.; Raught, B.; Boutros, M.; Steinmetz, L.M.; Moore, C.L.; Rosebrock, A.P.; Caudy, A.A.; Myers, C.L.; Andrews, B.; Boone, C. A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353(6306), aaf1420.
[http://dx.doi.org/10.1126/science.aaf1420] [PMID: 27708008]
[http://dx.doi.org/10.1126/science.aaf1420] [PMID: 27708008]
[255]
Riva, L.; Yuan, S.; Yin, X.; Martin-Sancho, L.; Matsunaga, N.; Pache, L.; Burgstaller-Muehlbacher, S.; De Jesus, P.D.; Teriete, P.; Hull, M.V.; Chang, M.W.; Chan, J.F.W.; Cao, J.; Poon, V.K.M.; Herbert, K.M.; Cheng, K.; Nguyen, T.T.H.; Rubanov, A.; Pu, Y.; Nguyen, C.; Choi, A.; Rathnasinghe, R.; Schotsaert, M.; Miorin, L.; Dejosez, M.; Zwaka, T.P.; Sit, K.Y.; Martinez-Sobrido, L.; Liu, W.C.; White, K.M.; Chapman, M.E.; Lendy, E.K.; Glynne, R.J.; Albrecht, R.; Ruppin, E.; Mesecar, A.D.; Johnson, J.R.; Benner, C.; Sun, R.; Schultz, P.G.; Su, A.I.; García-Sastre, A.; Chatterjee, A.K.; Yuen, K.Y.; Chanda, S.K. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586(7827), 113-119.
[http://dx.doi.org/10.1038/s41586-020-2577-1] [PMID: 32707573]
[http://dx.doi.org/10.1038/s41586-020-2577-1] [PMID: 32707573]
[256]
Lizana, J.; Reinoso, C.M.D.; Aliaga, N.; Marani, W.; Montemurro, N. Bilateral central retinal artery occlusion: An exceptional complication after frontal parasagittal meningioma resection. Surg. Neurol. Int., 2021, 12, 397.
[http://dx.doi.org/10.25259/SNI_571_2021] [PMID: 34513163]
[http://dx.doi.org/10.25259/SNI_571_2021] [PMID: 34513163]
[257]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[258]
von Delft, A.; Hall, M.D.; Kwong, A.D.; Purcell, L.A.; Saikatendu, K.S.; Schmitz, U.; Tallarico, J.A.; Lee, A.A. Accelerating antiviral drug discovery: Lessons from COVID-19. Nat. Rev. Drug Discov., 2023, 22(7), 585-603.
[http://dx.doi.org/10.1038/s41573-023-00692-8] [PMID: 37173515]
[http://dx.doi.org/10.1038/s41573-023-00692-8] [PMID: 37173515]
[259]
Liu, X.; Huuskonen, S.; Laitinen, T.; Redchuk, T.; Bogacheva, M.; Salokas, K.; Pöhner, I.; Öhman, T.; Tonduru, A.K.; Hassinen, A.; Gawriyski, L.; Keskitalo, S.; Vartiainen, M.K.; Pietiäinen, V.; Poso, A.; Varjosalo, M. SARS-CoV-2–host proteome interactions for antiviral drug discovery. Mol. Syst. Biol., 2021, 17(11), e10396.
[http://dx.doi.org/10.15252/msb.202110396] [PMID: 34709727]
[http://dx.doi.org/10.15252/msb.202110396] [PMID: 34709727]
[260]
Srivastava, K.; Singh, M.K. Drug repurposing in COVID-19: A review with past, present and future. Metabolism Open, 2021, 12, 100121.
[http://dx.doi.org/10.1016/j.metop.2021.100121] [PMID: 34462734]
[http://dx.doi.org/10.1016/j.metop.2021.100121] [PMID: 34462734]
[261]
Jonsdottir, H.R.; Siegrist, D.; Julien, T.; Padey, B.; Bouveret, M.; Terrier, O.; Pizzorno, A.; Huang, S.; Samby, K.; Wells, T.N.C.; Boda, B.; Rosa-Calatrava, M.; Engler, O.B.; Constant, S. Molnupiravir combined with different repurposed drugs further inhibits SARS-CoV-2 infection in human nasal epithelium in vitro. Biomed. Pharmacother., 2022, 150, 113058.
[http://dx.doi.org/10.1016/j.biopha.2022.113058] [PMID: 35658229]
[http://dx.doi.org/10.1016/j.biopha.2022.113058] [PMID: 35658229]
[262]
Wang, P.; Casner, R.G.; Nair, M.S.; Wang, M.; Yu, J.; Cerutti, G.; Liu, L.; Kwong, P.D.; Huang, Y.; Shapiro, L.; Ho, D.D. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe, 2021, 29(5), 747-751.e4.
[http://dx.doi.org/10.1016/j.chom.2021.04.007] [PMID: 33887205]
[http://dx.doi.org/10.1016/j.chom.2021.04.007] [PMID: 33887205]
[263]
Carlos, W.G.; Dela Cruz, C.S.; Cao, B.; Pasnick, S.; Jamil, S. Novel Wuhan (2019-nCoV) Coronavirus. Am. J. Respir. Crit. Care Med., 2020, 201(4), 7-P8.
[http://dx.doi.org/10.1164/rccm.2014P7] [PMID: 32004066]
[http://dx.doi.org/10.1164/rccm.2014P7] [PMID: 32004066]