Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Optimization and Characterization of a Nanostructured Lipid Carrier Containing α-Tocopherol/Tocotrienol Prepared Using Rice Bran Oil and Palm Kernel Stearin

In Press, (this is not the final "Version of Record"). Available online 10 June, 2024
Author(s): Putri Masitha Silviandari, Sri Raharjo* and Arima Diah Setiowati
Published on: 10 June, 2024

DOI: 10.2174/0115734013296899240429101819

Price: $95

Abstract

Background: α-tocopherol and tocotrienol are known for their antioxidant properties and cannot be produced directly in the human body. However, their use remains limited because of their low solubility, instability, and susceptibility to oxidation and high temperatures.

Objective: This study aims to identify the optimal formulation of a carrier of phytonutrient αtocopherol/tocotrienol prepared via ultrasonication with rice bran oil (RBO), palm kernel stearin (PKS), and Tween 80 and determine the characteristics of the optimal formulation during storage.

Methods: The box-behnken design (three factors and levels) was used to determine the formulation of a nanostructured lipid carrier -tocopherol/tocotrienol (NLC-TT) based on the solid: liquid lipid ratio, total lipid: surfactant ratio, and sonication time.

Results: The optimal NLC-TT formulation prepared with a solid: liquid lipid ratio of 7.5:2.5, total lipid: surfactant ratio of 1:3.9, and sonication time of 12 min and 6 s yielded a particle size of 126.7 nm, a polydispersity index of 0.339, a zeta potential of -31.7 and an encapsulation efficiency (EE) of 96.4%. During storage, NLC-TT and NLC-free particles exhibited particle sizes of 123.6-144.2 nm, polydispersity indices of 0.245-0.339, zeta potentials of -31.7--39.6 mV, EEs of 96.4%-89.6%, stabilities of 2.02-1.63, peroxide values of 0.05-0.25 mEqO2/kg, anisidine values of 0.07-1.60 and free fatty acid contents of 0.04%-0.08%.

Conclusion: RBO and PKS are potential lipid-based carrier systems for tocopherol/ tocotrienol and exhibit good stability during storage.

[1]
Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and tocotrienols—bioactive dietary compounds; what is certain, what is doubt? Int. J. Mol. Sci., 2021, 22(12), 6222.
[http://dx.doi.org/10.3390/ijms22126222] [PMID: 34207571]
[2]
Hong, S.E.; Lee, J.S.; Lee, H.G. α-Tocopherol-loaded multi-layer nanoemulsion using chitosan, and dextran sulfate: Cellular uptake, antioxidant activity, and in vitro bioaccessibility. Int. J. Biol. Macromol., 2024, 254(Pt 2), 127819.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127819] [PMID: 37918612]
[3]
Zainal, Z.; Khaza’ai, H.; Kutty Radhakrishnan, A.; Chang, S.K. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res. Int., 2022, 156, 111175.
[http://dx.doi.org/10.1016/j.foodres.2022.111175] [PMID: 35651097]
[4]
Alberdi-Cedeño, J.; Ibargoitia, M.L.; Guillén, M.D. Effect of the enrichment of corn oil with alpha-or gamma-tocopherol on its in vitro digestion studied by1 H NMR and SPME-GC/MS; formation of hydroperoxy-, hydroxy-, keto-dienes and keto-E-epoxy-E-monoenes in the more alpha-tocopherol enriched samples. Antioxidants, 2020, 9(3), 246.
[http://dx.doi.org/10.3390/antiox9030246] [PMID: 32197490]
[5]
Mohd Zaffarin, A.S.; Ng, S.F.; Ng, M.H.; Hassan, H.; Alias, E. Pharmacology and pharmacokinetics of Vitamin E: Nanoformulations to enhance bioavailability. Int. J. Nanomedicine, 2020, 15, 9961-9974.
[http://dx.doi.org/10.2147/IJN.S276355] [PMID: 33324057]
[6]
Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull., 2020, 10(2), 150-165.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[7]
Nguyen, V.H.; Thuy, V.N.; Van, T.V.; Dao, A.H.; Lee, B.J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OpenNano, 2022, 8, 100064.
[http://dx.doi.org/10.1016/j.onano.2022.100064]
[8]
Dewangan, H.K.; Maurya, L.; Soni, S.; Singh, S. Genistein loaded long circulating nanostructured lipid carriers: Optimization, evaluation and delivery to meloma cells for treatment of cancer SSRN, 2022.
[http://dx.doi.org/10.2139/ssrn.3999218]
[9]
Punia, S.; Kumar, M.; Siroha, A.K.; Purewal, S.S. Rice bran oil: Emerging trends in extraction, health benefit, and its industrial application. Rice Sci., 2021, 28(3), 217-232.
[http://dx.doi.org/10.1016/j.rsci.2021.04.002]
[10]
Ali, M.A.; Islam, M.A.; Othman, N.H.; Noor, A.M.; Hossen, J.; Ibrahim, M. Effect of heating on compositional characteristics and oxidative stability of crude and refined rice bran oil. J. Oleo Sci., 2019, 68(11), 1085-1097.
[http://dx.doi.org/10.5650/jos.ess19140] [PMID: 31611513]
[11]
Wang, H.; Chen, L.; Cai, Q. Formation, digestion properties, and physicochemical stability of the rice bran oil body carrier system. Food Chem., 2023, 409, 135283.
[http://dx.doi.org/10.1016/j.foodchem.2022.135283] [PMID: 36571900]
[12]
Sari, Y.P.; Raharjo, S.; Santoso, U. Supriyadi. Formulation, characterization and stability of o/w nanoemulsion containing rice bran oil prepared by emulsion phase inversion. Food Res., 2020, 4(4), 1025-1029.
[http://dx.doi.org/10.26656/fr.2017.4(4).409]
[13]
Teeranachaideekul, V.; Boribalnukul, P.; Morakul, B.; Junyaprasert, V.B. Influence of vegetable oils on in vitro performance of lutein-loaded lipid carriers for skin delivery: Nanostructured lipid carriers vs. nanoemulsions. Pharmaceutics, 2022, 14(10), 2160.
[http://dx.doi.org/10.3390/pharmaceutics14102160] [PMID: 36297595]
[14]
Sulaiman, N.S.; Sintang, M.D.; Mantihal, S. Balancing functional and health benefits of food products formulated with palm oil as oil sources. Heliyon, 2022, 8(10), e11041.
[http://dx.doi.org/10.1016/j.heliyon.2022.e11041] [PMID: 36303903]
[15]
Lu, C.; Qiu, S.; Wang, X.; He, X.; Dang, L.; Wang, Z. Contrastive analysis of lipid composition and thermal and crystallization behavior of olein/stearin fractionated by novel layer melt crystallization from palm oil. J. Sci. Food Agric., 2021, 101(10), 4350-4360.
[http://dx.doi.org/10.1002/jsfa.11075] [PMID: 33420734]
[16]
Han, W.; Chai, X.; Zaaboul, F.; Sun, Y.; Tan, C.P.; Liu, Y. Effect of different chain lengths of monoglyceride on the O/W interfacial properties with high-melting and low-melting crystals in low-fat aerated emulsion. Food Chem., 2023, 427, 136656.
[http://dx.doi.org/10.1016/j.foodchem.2023.136656] [PMID: 37393637]
[17]
Okur, I.; Ozel, B.; Ucbas, D. Nuclear Magnetic Resonance (NMR) study of Palm Kernel Stearin: Effects of cooling rate on crystallization behaviour. Lebensm. Wiss. Technol., 2022, 155, 113001.
[http://dx.doi.org/10.1016/j.lwt.2021.113001]
[18]
Syed Azhar, S.N.A.; Ashari, S.E.; Tan, J.K. Screening and selection of formulation components of nanostructured lipid carriers system for Mitragyna Speciosa (Korth). Havil drug delivery. Ind. Crops Prod., 2023, 198, 116668.
[http://dx.doi.org/10.1016/j.indcrop.2023.116668]
[19]
Souza, I.D.L.; Saez, V.; Campos, V.E.B.; Nascimento, M.R.; Mansur, C.R.E. Multiple response optimization of beeswax-based nanostructured lipid carriers for the controlled release of vitamin E. J. Nanosci. Nanotechnol., 2020, 20(1), 31-41.
[http://dx.doi.org/10.1166/jnn.2020.16875] [PMID: 31383137]
[20]
Efendi, Z.; Ardhi, A.; Santoso, U.; Supriyadi Ulfah, M.; Raharjo, S. Characteristic and storage stability of nanostructured lipid carriers containing red palm oil. Food Res., 2024, 8(3), 363-375.
[21]
Lv, W.; Zhao, S.; Yu, H. Brucea javanica oil-loaded nanostructure lipid carriers (BJO NLCs): Preparation, characterization and in vitro evaluation. Colloids Surf. A Physicochem. Eng. Asp., 2016, 504, 312-319.
[http://dx.doi.org/10.1016/j.colsurfa.2016.05.068]
[22]
Rohmah, M.; Raharjo, S.; Hidayat, C.; Martien, R. Application of response surface methodology for the optimization of β‐carotene‐loaded nanostructured lipid carrier from mixtures of palm stearin and palm olein. J. Am. Oil Chem. Soc., 2020, 97(2), 213-223.
[http://dx.doi.org/10.1002/aocs.12310]
[23]
Barri, A.; Ghanbarzadeh, B.; Mohammadi, M.; Pezeshki, A. Application of sodium caseinate as protein based coating/stabilizing agent in development and optimization of vitamin D3-loaded nanostructured lipid carriers (NLCs). Food Hydrocoll., 2023, 144, 108747.
[http://dx.doi.org/10.1016/j.foodhyd.2023.108747]
[24]
Azevedo, M.A.; Cerqueira, M.A.; Fuciños, P.; Silva, B.F.B.; Teixeira, J.A.; Pastrana, L. Rhamnolipids-based nanostructured lipid carriers: Effect of lipid phase on physicochemical properties and stability. Food Chem., 2021, 344, 128670.
[http://dx.doi.org/10.1016/j.foodchem.2020.128670] [PMID: 33272755]
[25]
Huang, J.; Wang, Q.; Li, T.; Xia, N.; Xia, Q. Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies. J. Food Eng., 2017, 215, 1-12.
[http://dx.doi.org/10.1016/j.jfoodeng.2017.07.002]
[26]
International IDF Standards International Dairy Federation, IDFSquare Vergote 41, Brussels, Sec. 74A: 1991.
[27]
AOCS Official Method Cd 18-90. p-Anisidine Value. Reapproved 2017.https://www.aocs.org/attain-lab-services/methods/methods/search-results?method=111529
[28]
AOCS Official Method Ca 5a-40. Free Fatty Acids in Crude and Refined Fats and Oils. Revised 2017.https://www.aocs.org/attain-lab-services/methods/methods/search-results?method=111480&SSO=True
[29]
Disler, R.T. Factors impairing the postural balance in COPD patients and its influence upon activities of daily living. Eur. Respir. J., 2019, 15(1)
[30]
Dewangan, H.K.; Maurya, L.; Soni, S.; Singh, S. Optimization, evaluation and delivery of genistein loaded long circulating nanostructured lipid carriers for treatment of cancer melanoma cells. SSRN, 2022.
[http://dx.doi.org/10.2139/ssrn.3999218]
[31]
Patel, H.P.; Gandhi, P.A.; Chaudhari, P.S. Clozapine loaded nanostructured lipid carriers engineered for brain targeting via nose-to-brain delivery: Optimization and in vivo pharmacokinetic studies. J. Drug Deliv. Sci. Technol., 2021, 64, 102533.
[http://dx.doi.org/10.1016/j.jddst.2021.102533]
[32]
Molaveisi, M.; Shahidi-Noghabi, M.; Naji-Tabasi, S. Vitamin D3-loaded nanophytosomes for enrichment purposes: Formulation, structure optimization, and controlled release. J. Food Process Eng., 2020, 43(12), e13560.
[http://dx.doi.org/10.1111/jfpe.13560]
[33]
Subramaniam, B.; Siddik, Z.H.; Nagoor, N.H. Optimization of nanostructured lipid carriers: Understanding the types, designs, and parameters in the process of formulations. J. Nanopart. Res., 2020, 22(6), 141.
[http://dx.doi.org/10.1007/s11051-020-04848-0]
[34]
Gupta, P.; Sharma, S.; Neupane, Y.R. Co-delivery of exemestane and thymoquinone via nanostructured lipid carriers for efficient breast cancer therapy. J. Drug Deliv. Sci. Technol., 2023, 88, 104892.
[http://dx.doi.org/10.1016/j.jddst.2023.104892]
[35]
Abdelhameed, A.H.; Abdelhafez, W.A. Saleh, Mohamed MS. Formulation, optimization, and in-vivo evaluation of nanostructured lipid carriers loaded with Fexofenadine HCL for oral delivery. J. Drug Deliv. Sci. Technol., 2022, 74, 103607.
[http://dx.doi.org/10.1016/j.jddst.2022.103607]
[36]
Patil, A.S.; Jaknoor, V.; Gadad, A.P.; Masareddy, R.S.; Danadagi, P.M.; Bolmal, U. Nanostructured lipid carrier: A potential system for enhanced oral bioavailability of felodipine. Indian J Pharmaceut Edu Res, 2022, 56(1), 77-85.
[http://dx.doi.org/10.5530/ijper.56.1.10]
[37]
Shete, M.B.; Deshpande, A.S.; Shende, P.K. Nanostructured lipid carrier-loaded metformin hydrochloride: Design, optimization, characterization, assessment of cytotoxicity and ROS evaluation. Chem. Phys. Lipids, 2023, 250, 105256.
[http://dx.doi.org/10.1016/j.chemphyslip.2022.105256] [PMID: 36372117]
[38]
Ijaz, M.; Akhtar, N. Fatty acids based α‐Tocopherol loaded nanostructured lipid carrier gel: In vitro and in vivo evaluation for moisturizing and anti‐aging effects. J. Cosmet. Dermatol., 2020, 19(11), 3067-3076.
[http://dx.doi.org/10.1111/jocd.13346] [PMID: 32129554]
[39]
Kim, S.; Abdella, S.; Abid, F. Development and optimization of imiquimod-loaded nanostructured lipid carriers using a hybrid design of experiments approach. Int. J. Nanomedicine, 2023, 18, 1007-1029.
[http://dx.doi.org/10.2147/IJN.S400610] [PMID: 36855538]
[40]
Ramkar, S.; Suresh, P.K. Finasteride-loaded nano-lipidic carriers for follicular drug delivery: Preformulation screening and Box-Behnken experimental design for optimization of variables. Heliyon, 2022, 8(8), e10175.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10175] [PMID: 36042733]
[41]
Guilherme, V.A.; Ribeiro, L.N.M.; Alcântara, A.C.S. Improved efficacy of naproxen-loaded NLC for temporomandibular joint administration. Sci. Rep., 2019, 9(1), 11160.
[http://dx.doi.org/10.1038/s41598-019-47486-w] [PMID: 31371737]
[42]
Agrawal, M.; Saraf, S.; Pradhan, M. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed. Pharmacother., 2021, 141, 111919.
[http://dx.doi.org/10.1016/j.biopha.2021.111919] [PMID: 34328108]
[43]
Jafar, G; Salsabilla, S; Santoso, R Development and characterization of compritol ato® base in nanostructured lipid carriers formulation with the probe sonication method. Int J Appl Pharmaceut, 2022, 2022, 04.
[http://dx.doi.org/10.22159/ijap.2022.v14s4.PP04]
[44]
Sheybani, F.; Rashidi, L.; Nateghi, L.; Yousefpour, M.; Mahdavi, S.K. Application of nanostructured lipid carriers containing α-tocopherol for oxidative stability enhancement of camelina oil. Ind. Crops Prod., 2023, 202, 117007.
[http://dx.doi.org/10.1016/j.indcrop.2023.117007]
[45]
Sheybani, F.; Rashidi, L.; Nateghi, L.; Yousefpour, M.; Mahdavi, S.K. Development of ascorbyl palmitate-loaded nanostructured lipid carriers (NLCs) to increase the stability of Camelina oil. Food Biosci., 2023, 53, 102735.
[http://dx.doi.org/10.1016/j.fbio.2023.102735]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy