Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

ROR1-AS1: A Meaningful Long Noncoding RNA in Oncogenesis

Author(s): Hong Fan, Yunxi Zhou, Ziyan Zhang, Gang Zhou* and Chengfu Yuan*

Volume 24, Issue 21, 2024

Published on: 10 June, 2024

Page: [1884 - 1893] Pages: 10

DOI: 10.2174/0113895575294482240530154620

Price: $65

Abstract

Long noncoding RNA (lncRNA) is a non-coding RNA with a length of more than 200 nucleotides, involved in multiple regulatory processes in vivo, and is related to the physiology and pathology of human diseases. An increasing number of experimental results suggest that when lncRNA is abnormally expressed, it results in the development of tumors. LncRNAs can be divided into five broad categories: sense, antisense, bidirectional, intronic, and intergenic. Studies have found that some antisense lncRNAs are involved in a variety of human tumorigenesis. The newly identified ROR1-AS1, which functions as an antisense RNA of ROR1, is located in the 1p31.3 region of the human genome. Recent studies have reported that abnormal expression of lncRNA ROR1-AS1 can affect cell growth, proliferation, invasion, and metastasis and increase oncogenesis and tumor spread, indicating lncRNA ROR1-AS1 as a promising target for many tumor biological therapies. In this study, the pathophysiology and molecular mechanism of ROR1-AS1 in various malignancies are discussed by retrieving the related literature.

ROR1-AS1 is a cancer-associated lncRNA, and studies have found that it is either over- or underexpressed in multiple malignancies, including liver cancer, colon cancer, osteosarcoma, glioma, cervical cancer, bladder cancer, lung adenocarcinoma, and mantle cell lymphoma. Furthermore, it has been demonstrated that lncRNA ROR1-AS1 participates in proliferation, migration, invasion, and suppression of apoptosis of cancer cells.

Furthermore, lncRNA ROR1-AS1 promotes the development of tumors by up-regulating or downregulating ROR1-AS1 conjugates and various pathways and miR-504, miR-4686, miR-670-3p, and miR-375 sponges, etc., suggesting that lncRNA ROR1-AS1 may be used as a marker in tumors or a potential therapeutic target for a variety of tumors.

[1]
Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol., 2021, 220(2), e202009045.
[http://dx.doi.org/10.1083/jcb.202009045] [PMID: 33464299]
[2]
Herman, A.B.; Tsitsipatis, D.; Gorospe, M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell, 2022, 82(12), 2252-2266.
[http://dx.doi.org/10.1016/j.molcel.2022.05.027] [PMID: 35714586]
[3]
Bao, M.; Luo, H.; Chen, L.; Tang, L.; Ma, K.; Xiang, J.; Dong, L.; Zeng, J.; Li, G.; Li, J. Impact of high fat diet on long non-coding RNAs and messenger RNAs expression in the aortas of ApoE(−/−) mice. Sci. Rep., 2016, 6(1), 34161.
[http://dx.doi.org/10.1038/srep34161] [PMID: 27698357]
[4]
Pang, B.; Wang, Q.; Ning, S.; Wu, J.; Zhang, X.; Chen, Y.; Xu, S. Landscape of tumor suppressor long noncoding RNAs in breast cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 79.
[http://dx.doi.org/10.1186/s13046-019-1096-0] [PMID: 30764831]
[5]
McCabe, E.M.; Rasmussen, T.P. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin. Cancer Biol., 2021, 75, 38-48.
[http://dx.doi.org/10.1016/j.semcancer.2020.12.012] [PMID: 33346133]
[6]
Malakoti, F.; Targhazeh, N.; Karimzadeh, H.; Mohammadi, E.; Asadi, M.; Asemi, Z.; Alemi, F. Multiple function of lncRNA MALAT1 in cancer occurrence and progression. Chem. Biol. Drug Des., 2023, 101(5), 1113-1137.
[http://dx.doi.org/10.1111/cbdd.14006] [PMID: 34918470]
[7]
Castro-Oropeza, R.; Melendez-Zajgla, J.; Maldonado, V.; Vazquez-Santillan, K. The emerging role of lncRNAs in the regulation of cancer stem cells. Cell Oncol. (Dordr.), 2018, 41(6), 585-603.
[http://dx.doi.org/10.1007/s13402-018-0406-4] [PMID: 30218296]
[8]
Mohr, A.; Mott, J. Overview of microRNA biology. Semin. Liver Dis., 2015, 35(1), 003-011.
[http://dx.doi.org/10.1055/s-0034-1397344] [PMID: 25632930]
[9]
Zhou, Y.; Li, Q.; Pan, R.; Wang, Q.; Zhu, X.; Yuan, C.; Cai, F.; Gao, Y.; Cui, Y. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy, 2022, 77(2), 469-482.
[http://dx.doi.org/10.1111/all.15111] [PMID: 34570913]
[10]
Chen, Q.; Fu, L. Upregulation of long non-coding RNA ROR1-AS1 promotes cell growth and migration in bladder cancer by regulation of miR-504. PLoS One, 2020, 15(1), e0227568.
[http://dx.doi.org/10.1371/journal.pone.0227568] [PMID: 31929567]
[11]
Li, X.; Sun, Z.; Wang, L.; Wang, Q.; Wang, M.; Guo, J.; Li, H.; Chen, M.; Cao, G.; Yu, Y.; Zhong, H.; Zou, H.; Ma, K.; Zhang, B.; Wang, G.; Feng, Y. ROR1-AS1 might promote in vivo and in vitro proliferation and invasion of cholangiocarcinoma cells. BMC Cancer, 2023, 23(1), 912.
[http://dx.doi.org/10.1186/s12885-023-11412-1] [PMID: 37770853]
[12]
Lou, Z.; Gong, Y.Q.; Zhou, X.; Hu, G.H. Low expression of miR 199 in hepatocellular carcinoma contributes to tumor cell hyper proliferation by negatively suppressing XBP1. Oncol. Lett., 2018, 16(5), 6531-6539.
[http://dx.doi.org/10.3892/ol.2018.9476] [PMID: 30405792]
[13]
Zhou, L.; Zhang, Q.; Deng, H.; Ou, S.; Liang, T.; Zhou, J. The SNHG1-centered ceRNA network regulates cell cycle and is a potential prognostic biomarker for hepatocellular carcinoma. Tohoku J. Exp. Med., 2022, 258(4), 265-276.
[http://dx.doi.org/10.1620/tjem.2022.J083] [PMID: 36244757]
[14]
Xu, H.; Li, L.; Wang, S.; Wang, Z.; Qu, L.; Wang, C.; Xu, K. Royal jelly acid suppresses hepatocellular carcinoma tumorigenicity by inhibiting H3 histone lactylation at H3K9la and H3K14la sites. Phytomedicine, 2023, 118, 154940.
[http://dx.doi.org/10.1016/j.phymed.2023.154940] [PMID: 37453194]
[15]
Hartke, J.; Johnson, M.; Ghabril, M. The diagnosis and treatment of hepatocellular carcinoma. Semin. Diagn. Pathol., 2017, 34(2), 153-159.
[http://dx.doi.org/10.1053/j.semdp.2016.12.011] [PMID: 28108047]
[16]
Ranganathan, S.; Lopez-Terrada, D.; Alaggio, R. hepatoblastoma and pediatric hepatocellular carcinoma: An update. Pediatr. Dev. Pathol., 2020, 23(2), 79-95.
[http://dx.doi.org/10.1177/1093526619875228] [PMID: 31554479]
[17]
Fang, Q.; Xie, Q.S.; Chen, J.M.; Shan, S.L.; Xie, K.; Geng, X.P.; Liu, F.B. Long-term outcomes after hepatectomy of huge hepatocellular carcinoma: A single-center experience in China. Hepatobiliary Pancreat. Dis. Int., 2019, 18(6), 532-537.
[http://dx.doi.org/10.1016/j.hbpd.2019.09.001] [PMID: 31543313]
[18]
Arendt, B.M.; Teterina, A.; Pettinelli, P.; Comelli, E.M.; Ma, D.W.L.; Fung, S.K.; McGilvray, I.D.; Fischer, S.E.; Allard, J.P. Cancer-related gene expression is associated with disease severity and modifiable lifestyle factors in non-alcoholic fatty liver disease. Nutrition, 2019, 62, 100-107.
[http://dx.doi.org/10.1016/j.nut.2018.12.001] [PMID: 30870804]
[19]
Mo, Z.; Wang, Z. Deciphering Role of lncRNA 91H in Liver Cancer: Impact on Tumorigenesis. Cell J., 2023, 25(12), 829-838.
[PMID: 38192253]
[20]
Wang, Y.; Zeng, J.; Chen, W.; Fan, J.; Hylemon, P.B.; Zhou, H. long noncoding, R.N.A. long noncoding RNA H19: A novel oncogene in liver cancer. Noncoding RNA, 2023, 9(2), 19.
[http://dx.doi.org/10.3390/ncrna9020019] [PMID: 36960964]
[21]
Wang, X.Y.; Jian, X.; Sun, B.Q.; Ge, X.S.; Huang, F.J.; Chen, Y.Q. LncRNA ROR1-AS1 promotes colon cancer cell proliferation by suppressing the expression of DUSP5/CDKN1A. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1116-1125.
[PMID: 32096171]
[22]
Zhang, Z.; Wang, S.; Yang, F.; Meng, Z.; Liu, Y. LncRNA ROR1 AS1 high expression and its prognostic significance in liver cancer. Oncol. Rep., 2020, 43(1), 55-74.
[PMID: 31746401]
[23]
Li, X.; Yang, L.; Wang, W.; Rao, X.; Lai, Y. Constructing a prognostic immune-related lncRNA model for colon cancer. Medicine (Baltimore), 2022, 101(38), e30447.
[http://dx.doi.org/10.1097/MD.0000000000030447] [PMID: 36197160]
[24]
Benson, A.B., III; Venook, A.P.; Al-Hawary, M.M.; Cederquist, L.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Engstrom, P.F.; Garrido-Laguna, I.; Grem, J.L.; Grothey, A.; Hochster, H.S.; Hoffe, S.; Hunt, S.; Kamel, A.; Kirilcuk, N.; Krishnamurthi, S.; Messersmith, W.A.; Meyerhardt, J.; Miller, E.D.; Mulcahy, M.F.; Murphy, J.D.; Nurkin, S.; Saltz, L.; Sharma, S.; Shibata, D.; Skibber, J.M.; Sofocleous, C.T.; Stoffel, E.M.; Stotsky-Himelfarb, E.; Willett, C.G.; Wuthrick, E.; Gregory, K.M.; Freedman-Cass, D.A. NCCN Guidelines Insights: Colon Cancer, Version 2.2018. J. Natl. Compr. Canc. Netw., 2018, 16(4), 359-369.
[http://dx.doi.org/10.6004/jnccn.2018.0021] [PMID: 29632055]
[25]
Malla, R.R. Microbiome Conundrum in Colon Cancer: Development, Progression, and Therapeutics. Crit. Rev. Oncog., 2020, 25(2), 129-139.
[http://dx.doi.org/10.1615/CritRevOncog.2020035135] [PMID: 33389862]
[26]
Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. global burden of 5 major types of gastrointestinal cancer. Gastroenterology, 2020, 159(1), 335-349.e15.
[http://dx.doi.org/10.1053/j.gastro.2020.02.068] [PMID: 32247694]
[27]
Punt, C.J.A.; Koopman, M.; Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol., 2017, 14(4), 235-246.
[http://dx.doi.org/10.1038/nrclinonc.2016.171] [PMID: 27922044]
[28]
Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[29]
Lai, S.W.; Chen, M.Y.; Bamodu, O.A.; Hsieh, M.S.; Huang, T.Y.; Yeh, C.T.; Lee, W.H.; Cherng, Y.G. Exosomal lncRNA PVT1/VEGFA axis promotes colon cancer metastasis and stemness by downregulation of tumor suppressor miR-152-3p. Oxid. Med. Cell. Longev., 2021, 2021, 1-19.
[http://dx.doi.org/10.1155/2021/9959807] [PMID: 34336125]
[30]
Chen, J.; Li, X.; Liu, H.; Zhong, D.; Yin, K.; Li, Y.; Zhu, L.; Xu, C.; Li, M.; Wang, C. Bone marrow stromal cell‐derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2‐related factor 2 pathway and inhibiting ferroptosis. Diabet. Med., 2023, 40(7), e15031.
[http://dx.doi.org/10.1111/dme.15031] [PMID: 36537855]
[31]
Yue, B.; Qiu, S.; Zhao, S.; Liu, C.; Zhang, D.; Yu, F.; Peng, Z.; Yan, D. LncRNA‐ATB mediated E‐cadherin repression promotes the progression of colon cancer and predicts poor prognosis. J. Gastroenterol. Hepatol., 2016, 31(3), 595-603.
[http://dx.doi.org/10.1111/jgh.13206] [PMID: 26487301]
[32]
Li, Z.; Li, X.; Xu, D.; Chen, X.; Li, S.; Zhang, L.; Chan, M.T.V.; Wu, W.K.K. An update on the roles of circular RNAs in osteosarcoma. Cell Prolif., 2021, 54(1), e12936.
[http://dx.doi.org/10.1111/cpr.12936] [PMID: 33103338]
[33]
Eaton, B.R.; Schwarz, R.; Vatner, R.; Yeh, B.; Claude, L.; Indelicato, D.J.; Laack, N. Osteosarcoma. Pediatr. Blood Cancer, 2021, 68(S2), e28352.
[http://dx.doi.org/10.1002/pbc.28352] [PMID: 32779875]
[34]
Chen, C.; Xie, L.; Ren, T.; Huang, Y.; Xu, J.; Guo, W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett., 2021, 500, 1-10.
[http://dx.doi.org/10.1016/j.canlet.2020.12.024] [PMID: 33359211]
[35]
Thanindratarn, P.; Dean, D.C.; Nelson, S.D.; Hornicek, F.J.; Duan, Z. Advances in immune checkpoint inhibitors for bone sarcoma therapy. J. Bone Oncol., 2019, 15, 100221.
[http://dx.doi.org/10.1016/j.jbo.2019.100221] [PMID: 30775238]
[36]
Belayneh, R.; Fourman, M.S.; Bhogal, S.; Weiss, K.R. Update on Osteosarcoma. Curr. Oncol. Rep., 2021, 23(6), 71.
[http://dx.doi.org/10.1007/s11912-021-01053-7] [PMID: 33880674]
[37]
Zhao, D.; Jia, P.; Wang, W.; Zhang, G. VEGF-mediated suppression of cell proliferation and invasion by miR-410 in osteosarcoma. Mol. Cell. Biochem., 2015, 400(1-2), 87-95.
[http://dx.doi.org/10.1007/s11010-014-2265-2] [PMID: 25385479]
[38]
Ba, Z.; Gu, L.; Hao, S.; Wang, X.; Cheng, Z.; Nie, G. Downregulation of lnc RNA CASC2 facilitates osteosarcoma growth and invasion through miR‐181a. Cell Prolif., 2018, 51(1), e12409.
[http://dx.doi.org/10.1111/cpr.12409] [PMID: 29194827]
[39]
Liu, X.; Wang, H.; Tao, G.L.; Chu, T.B.; Wang, Y.X.; Liu, L. LncRNA-TMPO-AS1 promotes apoptosis of osteosarcoma cells by targeting miR-329 and regulating E2F1. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(21), 11006-11015.
[PMID: 33215415]
[40]
Li, L.; Wang, S.; Zhou, W. Balance cell apoptosis and pyroptosis of caspase-3-activating chemotherapy for better antitumor therapy. Cancers (Basel), 2022, 15(1), 26.
[http://dx.doi.org/10.3390/cancers15010026] [PMID: 36612023]
[41]
Wu, X.; Yan, L.; Liu, Y.; Shang, L. LncRNA ROR1-AS1 accelerates osteosarcoma invasion and proliferation through modulating miR-504. Aging (Albany NY), 2021, 13(1), 219-227.
[http://dx.doi.org/10.18632/aging.103498] [PMID: 33401251]
[42]
André-Grégoire, G.; Bidère, N.; Gavard, J. Temozolomide affects extracellular vesicles released by glioblastoma Cells. Biochimie, 2018, 155, 11-15.
[http://dx.doi.org/10.1016/j.biochi.2018.02.007] [PMID: 29454008]
[43]
Zhang, H.; He, J.; Dai, Z.; Wang, Z.; Liang, X.; He, F.; Xia, Z.; Feng, S.; Cao, H.; Zhang, L.; Cheng, Q. PDIA5 is correlated with immune infiltration and predicts poor prognosis in gliomas. Front. Immunol., 2021, 12, 628966.
[http://dx.doi.org/10.3389/fimmu.2021.628966] [PMID: 33664747]
[44]
Zeng, F.; Wang, K.; Liu, X.; Zhao, Z. Comprehensive profiling identifies a novel signature with robust predictive value and reveals the potential drug resistance mechanism in glioma. Cell Commun. Signal., 2020, 18(1), 2.
[http://dx.doi.org/10.1186/s12964-019-0492-6] [PMID: 31907037]
[45]
Yasinjan, F.; Xing, Y.; Geng, H.; Guo, R.; Yang, L.; Liu, Z.; Wang, H. Immunotherapy: A promising approach for glioma treatment. Front. Immunol., 2023, 14, 1255611.
[http://dx.doi.org/10.3389/fimmu.2023.1255611] [PMID: 37744349]
[46]
Zeng, Z.; Chen, Y.; Geng, X.; Zhang, Y.; Wen, X.; Yan, Q.; Wang, T.; Ling, C.; Xu, Y.; Duan, J.; Zheng, K.; Sun, Z. NcRNAs: Multi angle participation in the regulation of glioma chemotherapy resistance (Review). Int. J. Oncol., 2022, 60(6), 76.
[http://dx.doi.org/10.3892/ijo.2022.5366] [PMID: 35506469]
[47]
Zhang, H.; Wang, R.; Yu, Y.; Liu, J.; Luo, T.; Fan, F. Glioblastoma treatment modalities besides surgery. J. Cancer, 2019, 10(20), 4793-4806.
[http://dx.doi.org/10.7150/jca.32475] [PMID: 31598150]
[48]
Roth, P.; Weller, M. Challenges to targeting epidermal growth factor receptor in glioblastoma: Escape mechanisms and combinatorial treatment strategies. Neuro-oncol., 2014, 16(Suppl. 8), 14-19.
[http://dx.doi.org/10.1093/neuonc/nou222]
[49]
Gong, X.; Huang, M.Y. Tumor-suppressive function of lncRNA-MEG3 in glioma cells by regulating miR-6088/SMARCB1 Axis. BioMed Res. Int., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/4309161] [PMID: 32420340]
[50]
He, Z.; Long, J.; Yang, C.; Gong, B.; Cheng, M.; Wang, Q.; Tang, J. LncRNA DGCR5 plays a tumor-suppressive role in glioma via the miR-21/Smad7 and miR-23a/PTEN axes. Aging (Albany NY), 2020, 12(20), 20285-20307.
[http://dx.doi.org/10.18632/aging.103800] [PMID: 33085646]
[51]
Li, B.; Cao, Y.; Sun, M.; Feng, H. Expression, regulation, and function of exosome‐derived miRNAs in cancer progression and therapy. FASEB J., 2021, 35(10), e21916.
[http://dx.doi.org/10.1096/fj.202100294RR] [PMID: 34510546]
[52]
Chai, Y.; Wu, H.T.; Liang, C.D.; You, C.Y.; Xie, M.X.; Xiao, S.W. Exosomal lncRNA ROR1-AS1 derived from tumor cells promotes glioma progression via regulating miR-4686. Int. J. Nanomedicine, 2020, 15, 8863-8872.
[http://dx.doi.org/10.2147/IJN.S271795] [PMID: 33204092]
[53]
Gutiérrez-Hoya, A.; Soto-Cruz, I. NK cell regulation in cervical cancer and strategies for immunotherapy. Cells, 2021, 10(11), 3104.
[http://dx.doi.org/10.3390/cells10113104] [PMID: 34831327]
[54]
Zhu, Y.; Zhou, J.; Zhu, L.; Hu, W.; Liu, B.; Xie, L. Adoptive tumor infiltrating lymphocytes cell therapy for cervical cancer. Hum. Vaccin. Immunother., 2022, 18(5), 2060019.
[http://dx.doi.org/10.1080/21645515.2022.2060019] [PMID: 35468048]
[55]
Balasubramaniam, S.D.; Balakrishnan, V.; Oon, C.E.; Kaur, G. Key molecular events in cervical cancer development. Medicina (Kaunas), 2019, 55(7), 384.
[http://dx.doi.org/10.3390/medicina55070384] [PMID: 31319555]
[56]
Cyriac, S.; Gopu, P.; Antony, F.; Karakasis, K.; Oza, A. Updates on systemic therapy for cervical cancer. Indian J. Med. Res., 2021, 154(2), 293-302.
[http://dx.doi.org/10.4103/ijmr.IJMR_4454_20] [PMID: 35295013]
[57]
Abu-Rustum, N.R.; Yashar, C.M.; Arend, R.; Barber, E.; Bradley, K.; Brooks, R.; Campos, S.M.; Chino, J.; Chon, H.S.; Crispens, M.A.; Damast, S.; Fisher, C.M.; Frederick, P.; Gaffney, D.K.; Gaillard, S.; Giuntoli, R.; Glaser, S.; Holmes, J.; Howitt, B.E.; Lea, J.; Mantia-Smaldone, G.; Mariani, A.; Mutch, D.; Nagel, C.; Nekhlyudov, L.; Podoll, M.; Rodabaugh, K.; Salani, R.; Schorge, J.; Siedel, J.; Sisodia, R.; Soliman, P.; Ueda, S.; Urban, R.; Wyse, E.; McMillian, N.R.; Aggarwal, S.; Espinosa, S. NCCN Guidelines® Insights: Cervical Cancer, Version 1.2024. J. Natl. Compr. Canc. Netw., 2023, 21(12), 1224-1233.
[http://dx.doi.org/10.6004/jnccn.2023.0062] [PMID: 38081139]
[58]
Ferrall, L.; Lin, K.Y.; Roden, R.B.S.; Hung, C.F.; Wu, T.C. cervical cancer immunotherapy. Facts and Hopes. Clin. Cancer Res., 2021, 27(18), 4953-4973.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2833] [PMID: 33888488]
[59]
Ni, S.; Wei, Z.; Li, D. Effect of lncRNA LINC00324 on cervical cancer progression through down-regulation of miR-195-5p. J. Obstet. Gynaecol., 2023, 43(2), 2285384.
[http://dx.doi.org/10.1080/01443615.2023.2285384] [PMID: 38059417]
[60]
Cao, S.; Li, H.; Li, L. LncRNA SNHG17 contributes to the progression of cervical cancer by targeting microRNA-375-3p. Cancer Manag. Res., 2021, 13, 4969-4978.
[http://dx.doi.org/10.2147/CMAR.S312469] [PMID: 34188550]
[61]
Zhang, L.; Wei, Z.; Wang, Y.; Xu, F.; Cheng, Z. Long noncoding RNA ROR1-AS1 enhances STC2-mediated cell growth and autophagy in cervical cancer through miR-670-3p. J. Recept. Signal Transduct. Res., 2021, 41(6), 582-592.
[http://dx.doi.org/10.1080/10799893.2020.1836495] [PMID: 33081599]
[62]
Zhang, L.; Yao, H.R.; Liu, S.K.; Song, L.L. Long noncoding RNA ROR1 AS1 overexpression predicts poor prognosis and promotes metastasis by activating Wnt/β-catenin/EMT signaling cascade in cervical cancer. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6), 2928-2937.
[PMID: 32271410]
[63]
Bhanvadia, S.K. Bladder cancer survivorship. Curr. Urol. Rep., 2018, 19(12), 111.
[http://dx.doi.org/10.1007/s11934-018-0860-6] [PMID: 30414013]
[64]
Dobruch, J.; Oszczudłowski, M. Bladder Cancer: Current challenges and future directions. Medicina (Kaunas), 2021, 57(8), 749.
[http://dx.doi.org/10.3390/medicina57080749] [PMID: 34440955]
[65]
Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M. Bladder Cancer. JAMA, 2020, 324(19), 1980-1991.
[http://dx.doi.org/10.1001/jama.2020.17598] [PMID: 33201207]
[66]
Maraver, A.; Fernandez-Marcos, P.J.; Cash, T.P.; Mendez-Pertuz, M.; Dueñas, M.; Maietta, P.; Martinelli, P.; Muñoz-Martin, M.; Martínez-Fernández, M.; Cañamero, M.; Roncador, G.; Martinez-Torrecuadrada, J.L.; Grivas, D.; de la Pompa, J.L.; Valencia, A.; Paramio, J.M.; Real, F.X.; Serrano, M. NOTCH pathway inactivation promotes bladder cancer progression. J. Clin. Invest., 2015, 125(2), 824-830.
[http://dx.doi.org/10.1172/JCI78185] [PMID: 25574842]
[67]
Alifrangis, C.; McGovern, U.; Freeman, A.; Powles, T.; Linch, M. Molecular and histopathology directed therapy for advanced bladder cancer. Nat. Rev. Urol., 2019, 16(8), 465-483.
[http://dx.doi.org/10.1038/s41585-019-0208-0] [PMID: 31289379]
[68]
Fang, C.; Xu, L.; He, W.; Dai, J.; Sun, F. Long noncoding RNA DLX6-AS1 promotes cell growth and invasiveness in bladder cancer via modulating the miR-223-HSP90B1 axis. Cell Cycle, 2019, 18(23), 3288-3299.
[http://dx.doi.org/10.1080/15384101.2019.1673633] [PMID: 31615303]
[69]
Rui, X.; Wang, L.; Pan, H.; Gu, T.; Shao, S.; Leng, J. LncRNA GAS6-AS2 promotes bladder cancer proliferation and metastasis via GAS6-AS2/miR-298/CDK9 axis. J. Cell. Mol. Med., 2019, 23(2), 865-876.
[http://dx.doi.org/10.1111/jcmm.13986] [PMID: 30394665]
[70]
Succony, L.; Rassl, D.M.; Barker, A.P.; McCaughan, F.M.; Rintoul, R.C. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat. Rev., 2021, 99, 102237.
[http://dx.doi.org/10.1016/j.ctrv.2021.102237] [PMID: 34182217]
[71]
Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health, 2019, 85(1), 8.
[http://dx.doi.org/10.5334/aogh.2419] [PMID: 30741509]
[72]
Ding, Q.; Chen, D.; Wang, W.; Chen, Y. [Progress in research on the cribriform component in lung adenocarcinoma]. Zhongguo Fei Ai Za Zhi, 2020, 23(7), 621-625.
[PMID: 32450628]
[73]
Hizal, M.; Sendur, M.A.; Bilgin, B.; Yalcin, B. Mutational status of lung cancer patients and survival outcomes for patients with limited brain metastases. J. BUON, 2018, 23(7), 156.
[PMID: 30722126]
[74]
Zhang, L.; Ma, X.; Dong, Y. Effect of genistein on apoptosis of lung adenocarcinoma A549 cells and expression of apoptosis factors. J. BUON, 2018, 23(3), 641-646.
[PMID: 30003731]
[75]
He, B.; Sun, H.; Bao, M.; Li, H.; He, J.; Tian, G.; Wang, B. A cross-cohort computational framework to trace tumor tissue-of-origin based on RNA sequencing. Sci. Rep., 2023, 13(1), 15356.
[http://dx.doi.org/10.1038/s41598-023-42465-8] [PMID: 37717102]
[76]
Han, X.; Jiang, H.; Qi, J.; Li, J.; Yang, J.; Tian, Y.; Li, W.; Jing, Q.; Wang, C. Novel lncRNA UPLA1 mediates tumorigenesis and prognosis in lung adenocarcinoma. Cell Death Dis., 2020, 11(11), 999.
[http://dx.doi.org/10.1038/s41419-020-03198-y] [PMID: 33221813]
[77]
Lai, X.R.; Wang, C.L.; Qin, F.Z. The mechanism of LncRNA01977 in lung adenocarcinoma through the SDF-1/CXCR4 pathway. Transl. Cancer Res., 2022, 11(3), 475-487.
[http://dx.doi.org/10.21037/tcr-21-2903] [PMID: 35402179]
[78]
Xu, N.; Qiao, L.; Yin, L.; Li, H. Long noncoding RNA ROR1-AS1 enhances lung adenocarcinoma metastasis and induces epithelial-mesenchymal transition by sponging miR-375. J. BUON, 2019, 24(6), 2273-2279.
[PMID: 31983094]
[79]
Eyre, T.A.; Cheah, C.Y.; Wang, M.L. Therapeutic options for relapsed/refractory mantle cell lymphoma. Blood, 2022, 139(5), 666-677.
[http://dx.doi.org/10.1182/blood.2021013326] [PMID: 34679161]
[80]
Thandra, K.C.; Barsouk, A.; Saginala, K.; Padala, S.A.; Barsouk, A.; Rawla, P. epidemiology of non-hodgkin’s lymphoma. Med. Sci. (Basel), 2021, 9(1), 5.
[http://dx.doi.org/10.3390/medsci9010005] [PMID: 33573146]
[81]
Kumar, A.; Eyre, T.A.; Lewis, K.L.; Thompson, M.C.; Cheah, C.Y. New directions for mantle cell lymphoma in 2022. Am. Soc. Clin. Oncol. Educ. Book, 2022, 42(42), 614-628.
[http://dx.doi.org/10.1200/EDBK_349509] [PMID: 35561299]
[82]
Zhang, Y.; Lu, P.; Du, H.; Zhang, L. LINK-A lncRNA promotes proliferation and inhibits apoptosis of mantle cell lymphoma cell by upregulating survivin. Med. Sci. Monit., 2019, 25, 365-370.
[http://dx.doi.org/10.12659/MSM.912141] [PMID: 30636001]
[83]
Tang, X.; Long, Y.; Xu, L.; Yan, X. LncRNA MORT inhibits cancer cell proliferation and promotes apoptosis in mantle cell lymphoma by upregulating miRNA-16. Cancer Manag. Res., 2020, 12, 2119-2125.
[http://dx.doi.org/10.2147/CMAR.S233859] [PMID: 32280273]
[84]
Hu, G.; Gupta, S.K.; Troska, T.P.; Nair, A.; Gupta, M. Long non-coding RNA profile in mantle cell lymphoma identifies a functional lncRNA ROR1-AS1 associated with EZH2/PRC2 complex. Oncotarget, 2017, 8(46), 80223-80234.
[http://dx.doi.org/10.18632/oncotarget.17956] [PMID: 29113297]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy