Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Thermo-Gravimetric Studies and Specific Heat Capacity Estimations of the Products of Biginelli Reaction using TGA-DSC

In Press, (this is not the final "Version of Record"). Available online 07 June, 2024
Author(s): K.C. Sawant, C.H. Sarode, Y.V. Marathe, G.R. Gupta* and S.A. Dhanmane*
Published on: 07 June, 2024

DOI: 10.2174/0118779468284583240528075819

Price: $95

Abstract

Aims: In this work, the thermal behavior and specific heat capacities of nine derivatives which were obtained via Biginellipyrimidone synthesis reaction have been experimentally determined using thermal gravimetry analysis and differential scanning calorimetry, and the obtained results have been thoroughly analyzed and discussed. The influence of the structural variation on the thermal analysis has been discussed along with the influence of the structure of the derivatives of pyrimidines on the specific heat capacity.

Background: To date, heterocycles have successfully been switched from synthetic organic chemistry laboratory to the core of a variety of biomolecules, conducting devices and so on. Derivatives of 2-hydroxypyrimidine or pyrimidines have a wide window of pharmaceutical applications. Therefore, attempts have been made to understand the thermal response of these organic frameworks.

Objectives: The main objective of this study was to explore thermal methods to understand heat-induced structural interactions as well as the specific heat capacity (Cp) as a function of temperature for the synthesized derivatives of 2-hydroxy pyrimidine or pyrimidones.

Method: Room temperature condensation of ethyl acetoacetate, urea, and variety of aldehydes or ketones has been optimized in ionic liquids for the formation of pyrimidones. Thereafter, the thermal profiles of the synthesized derivatives of pyrimidines have been studied thoroughly and the thermal response of the synthesized derivatives of pyrimidones gives sound information about thermal stability of these heterocycles.

Results: In the present work, the effect of substituents on the thermal behavior of the synthesized derivatives of pyrimidines has been investigated with the help of TGA-DSC analysis. Specific heat capacity (Cp) data as a function of temperature for the synthesized derivatives of pyrimidones have been reported for the first time.

Conclusion: The specific heat capacity data of the molecules of high commercial and biological relevance such as pyrimidines like organic frameworks play a subtle role in the development of the computational methods and molecular modelling, to comprehend the fundamentals of these molecular frameworks and effectively explore the pharmaceutical as well as materialistic potentials of these heterocyclic frameworks via simulation.

[1]
Brown, D.J.; Evans, R.F.; Cowden, W.B.; Fenn, M.D. The chemistry of heterocycles. In: A Series of Monographs. The Pyrimidines; Weissberger, A.; Taylor, E.C., Eds.; John Wiley and Sons: New York, 1985.
[2]
Le Fouler, V.; Chen, Y.; Gandon, V.; Bizet, V.; Salomé, C.; Fessard, T.; Liu, F.; Houk, K.N.; Blanchard, N. Activating pyrimidines by pre-distortion for the general synthesis of 7-Aza-indazoles from 2-Hydrazonylpyrimidines via intramolecular Diels−Alder reactions. J. Am. Chem. Soc., 2019, 141(40), 15901-15909.
[http://dx.doi.org/10.1021/jacs.9b07037] [PMID: 31475527]
[3]
Wang, S.Y. Chemistry of pyrimidines. I. The reaction of bromine with uracils 1-3. J. Org. Chem., 1959, 24(1), 11-13.
[http://dx.doi.org/10.1021/jo01083a003]
[4]
Roopan, M.S.; Sompalle, R. Synthetic chemistry of pyrimidines and fused pyrimidines: A review. Synth. Commun., 2016, 46(8), 645-672.
[http://dx.doi.org/10.1080/00397911.2016.1165254]
[5]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[6]
Islam, M.M.; Mirza, S.P. Versatile use of Carmofur: A comprehensive review of its chemistry and pharmacology. Drug Dev. Res., 2022, 83(7), 1505-1518.
[http://dx.doi.org/10.1002/ddr.21984] [PMID: 36031762]
[7]
a) Machover, D. A comprehensive review of 5-fluorouracil and leucovorin in patients with metastatic colorectal carcinoma. Cancer, 1997, 80(7), 1179-1187.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19971001)80:7<1179:AID-CNCR1>3.0.CO;2-G] [PMID: 9317168];
b) Kovoor, P.A.; Karim, S.M.; Marshall, J.L. Is levoleucovorin an alternative to racemic leucovorin? A literature review. Clin. Colorectal Cancer, 2009, 8(4), 200-206.
[http://dx.doi.org/10.3816/CCC.2009.n.034] [PMID: 19822510]
[8]
Ciccolini, J.; Serdjebi, C.; Peters, G.J.; Giovannetti, E. Pharmacokinetics and pharmacogenetics of Gemcitabine as a mainstay in adult and pediatric oncology: An EORTC-PAMM perspective. Cancer Chemother. Pharmacol., 2016, 78(1), 1-12.
[http://dx.doi.org/10.1007/s00280-016-3003-0] [PMID: 27007129]
[9]
Lech-Maranda, E.; Korycka, A.; Robak, T. Clofarabine as a novel nucleoside analogue approved to treat patients with haematological malignancies: Mechanism of action and clinical activity. Mini Rev. Med. Chem., 2009, 9(7), 805-812.
[http://dx.doi.org/10.2174/138955709788452586] [PMID: 19519505]
[10]
Brollosy, E.N.; Loddo, R. Synthesis and antiviral evaluation of 1-[(2-Phenoxyethyl)oxymethyl] and 6-(3,5-Dimethoxybenzyl) analogues of HIV drugs Emivirine and TNK-651. Drug Res., 2015, 66(4), 181-188.
[http://dx.doi.org/10.1055/s-0035-1559683] [PMID: 26313923]
[11]
Schrijvers, R. Etravirine for the treatment of HIV/AIDS. Expert Opin. Pharmacother., 2013, 14(8), 1087-1096.
[http://dx.doi.org/10.1517/14656566.2013.787411] [PMID: 23560740]
[12]
Patil, A.; Goldust, M.; Wollina, U. Herpes zoster: A review of clinical manifestations and management. Viruses, 2022, 14(2), 192-204.
[http://dx.doi.org/10.3390/v14020192] [PMID: 35215786]
[13]
Park, S.H.; Park, K.S.; Kim, N.H.; Cho, J.Y.; Koh, M.S.; Lee, J.H. Clevudine induced mitochondrial myopathy. J. Korean Med. Sci., 2017, 32(11), 1857-1860.
[http://dx.doi.org/10.3346/jkms.2017.32.11.1857] [PMID: 28960041]
[14]
Whitley, R.J. Sorivudine: A potent inhibitor of varicella zoster virus replication. Adv. Exp. Med. Biol., 1996, 394, 41-44.
[http://dx.doi.org/10.1007/978-1-4757-9209-6_5] [PMID: 8815706]
[15]
Zhang, C.J.; Meyer, S.R.; O’Meara, M.J.; Huang, S.; Capeling, M.M.; Ferrer-Torres, D.; Childs, C.J.; Spence, J.R.; Fontana, R.J.; Sexton, J.Z. A human liver organoid screening platform for DILI risk prediction. J. Hepatol., 2023, 78(5), 998-1006.
[http://dx.doi.org/10.1016/j.jhep.2023.01.019] [PMID: 36738840]
[16]
Gaffney, M.M.; Belliveau, P.P.; Spooner, L.M. Apricitabine: A nucleoside reverse transcriptase inhibitor for HIV infection. Ann. Pharmacother., 2009, 43(10), 1676-1683.
[http://dx.doi.org/10.1345/aph.1M160] [PMID: 19737995]
[17]
Pawlotsky, J.M.; Najera, I.; Jacobson, I. Resistance to mericitabine, a nucleoside analogue inhibitor of HCV RNA-dependent RNA polymerase. Antivir. Ther., 2012, 17(3), 411-423.
[http://dx.doi.org/10.3851/IMP2088] [PMID: 22402762]
[18]
Pierra, C.; Amador, A.; Benzaria, S.; Scott, C.E.; D’Amours, M.; Mao, J.; Mathieu, S.; Moussa, A.; Bridges, E.G.; Standring, D.N.; Sommadossi, J.P.; Storer, R.; Gosselin, G. Synthesis and pharmacokinetics of valopicitabine (NM283), an efficient prodrug of the potent anti-HCV agent 2′-C-methylcytidine. J. Med. Chem., 2006, 49(22), 6614-6620.
[http://dx.doi.org/10.1021/jm0603623] [PMID: 17064080]
[19]
Cook, M.K.; Hagen, E.M.; Feldman, S.R. Cidofovir in the management of Non-Genital warts: A review. J. Drugs Dermatol., 2023, 22(10), 1009-1016.
[http://dx.doi.org/10.36849/JDD.7258] [PMID: 37801536]
[20]
Ghosh, R.K.; Ghosh, S.M.; Chawla, S. Recent advances in antiretroviral drugs. Expert Opin. Pharmacother., 2011, 12(1), 31-46.
[http://dx.doi.org/10.1517/14656566.2010.509345] [PMID: 20698725]
[21]
Yao, X.; Gao, S.; Wang, J.; Li, Z.; Huang, J.; Wang, Y.; Wang, Z.; Chen, J.; Fan, X.; Wang, W.; Jin, X.; Pan, X.; Yu, Y.; Lagrutta, A.; Yan, N. Structural basis for the severe adverse interaction of sofosbuvir and amiodarone on L-type Cav channels. Cell, 2022, 185(25), 4801-4810.e13.
[http://dx.doi.org/10.1016/j.cell.2022.10.024] [PMID: 36417914]
[22]
Scott, L.J. Dolutegravir/lamivudine single-tablet regimen: A review in HIV-1 infection. Drugs, 2020, 80(1), 61-72.
[http://dx.doi.org/10.1007/s40265-019-01247-1] [PMID: 31865558]
[23]
Deeks, E.D. Darunavir/cobicistat/emtricitabine/teno-fovir alafenamide: A review in HIV-1 infection. Drugs, 2018, 78(10), 1013-1024.
[http://dx.doi.org/10.1007/s40265-018-0934-2] [PMID: 29915897]
[24]
Martínez, A.L.; Brea, J.; Domínguez, E.; Varela, M.J.; Cimadevila, M.; Allegue, C.; Cruz, R.; Monroy, X.; Merlos, M.; Burgueño, J.; Carracedo, Á.; Loza, M.I. Identification of novel regulators of Zalcitabine-Induced neuropathic pain. ACS Chem. Neurosci., 2021, 12(14), 2619-2628.
[http://dx.doi.org/10.1021/acschemneuro.1c00129]
[25]
Hernandez-Santiago, B.I.; Mathew, J.S.; Rapp, K.L.; Grier, J.P.; Schinazi, R.F. Antiviral and cellular metabolism interactions between Dexelvucitabine and lamivudine. Antimicrob. Agents Chemother., 2007, 51(6), 2130-2135.
[http://dx.doi.org/10.1128/AAC.01543-06] [PMID: 17403996]
[26]
Colucci, P.; Pottage, J.C.; Robison, H.; Turgeon, J.; Schürmann, D.; Hoepelman, I.M.; Ducharme, M.P. Multiple-dose pharmacokinetic behavior of elvucitabine, a nucleoside reverse transcriptase inhibitor, administered over 21 days with lopinavir-ritonavir in human immunodeficiency virus type 1-infected subjects. Antimicrob. Agents Chemother., 2009, 53(2), 662-669.
[http://dx.doi.org/10.1128/AAC.00907-08] [PMID: 19015343]
[27]
Smolin, G.; Okumoto, M.; Feiler, S.; Condon, D. Idoxuridine-liposome therapy for herpes simplex keratitis. Am. J. Ophthalmol., 1981, 91(2), 220-225.
[http://dx.doi.org/10.1016/0002-9394(81)90177-X] [PMID: 7468738]
[28]
McIntyre, R.L.; Molenaars, M.; Schomakers, B.V.; Gao, A.W.; Kamble, R.; Jongejan, A.; van Weeghel, M.; van Kuilenburg, A.B.P.; Possemato, R.; Houtkooper, R.H.; Janssens, G.E. Anti-retroviral treatment with zidovudine alters pyrimidine metabolism, reduces translation, and extends healthy longevity via ATF-4. Cell Rep., 2023, 42(1), 111928-111932.
[http://dx.doi.org/10.1016/j.celrep.2022.111928] [PMID: 36640360]
[29]
Jain, K.S.; Arya, N.; Inamdar, N.N.; Auti, P.B.; Unawane, S.A.; Puranik, H.H.; Sanap, M.S.; Inamke, A.D.; Mahale, V.J.; Prajapati, C.S.; Shishoo, C.J. The Chemistry and bio-medicinal significance of pyrimidinesand condensed pyrimidines. Curr. Top. Med. Chem., 2016, 16(28), 3133-3174.
[http://dx.doi.org/10.2174/1568026616666160609100410] [PMID: 27291985]
[30]
Gupta, G.R.; Shaikh, V.R.; Patil, K.J. Cyclodextrin - Essential oil complexes studied by thermal gravimetry analysis - Differential scanning calorimetry. Curr. Phys. Chem., 2023, 13(2), 177-188.
[http://dx.doi.org/10.2174/1877946813666230412080339]
[31]
Gupta, G.R. Thermal stability and specific heat estimation of pyridinium cation-based surfactant ionic liquids using TGA-DSC. Curr. Phys. Chem., 2022, 12(2), 171-177.
[http://dx.doi.org/10.2174/1877946812666220510152622]
[32]
a) Gupta, G.R.; Waghulde, G.P.; Sarode, C.H.; Yeole, S.D. Diazo-coupling reaction between 2-aminothiazole and thymol; Synthesis, DFT studies, and specific heat capacity calculations using TGA-DSC. Curr. Phys. Chem., 2022, 12(1), 57-66.
[http://dx.doi.org/10.2174/1877946812666220126161309];
b) Gupta, G.R.; Shaikh, V.R.; Kalas, S.S.; Hundiwale, D.G.; Patil, K.J. Studies of thermal analysis and specific heat capacity for quaternaryammonium salts. In: Specific Heat; Nova Scientific Publisher, 2020; pp. 53-74.
[33]
Gupta, G.; Shaikh, V.; Kalas, S.; Patil, K. Specific heat capacity estimations for biologically and medicinally important compounds: Lidocaine hydrochloride, clove oil and β-piperine using the DSC technique. Curr. Phys. Chem., 2021, 11(1), 27-34.
[http://dx.doi.org/10.2174/1573412916999200430092644]
[34]
Bhirud, J.D.; Gupta, G.R.; Narkhede, H.P. Oxidative cyclization of chalcones in presence of sulfamic acid as catalyst. Synthesis, biological activity of thermal properties of 1,3,5-trisubstituted pyrazoles. Russ. J. Org. Chem., 2020, 56(10), 1815-1822.
[http://dx.doi.org/10.1134/S1070428020100243]
[35]
Sarode, C.; Yeole, S.; Chaudhari, G.; Waghulde, G.; Gupta, G. Development of the room temperature protocol based on room temperature ionic liquids and surfactant ionic liquids for the synthesis of derivatives of 2-amino-thiazoles and thermo- physical analysis of the synthesized derivatives using TGA-DSC. Curr. Phys. Chem., 2021, 11(1), 18-26.
[http://dx.doi.org/10.2174/1877946810999200519102040]
[36]
Waghulde, V.S.; Sawant, K.C.; Dhanmane, S.A.; Waghulde, G.P.; Sarode, C.H.; Gupta, G.R. A state-of-the-art valorization of a molten tetrabutylammonium bromide in the synthesis of ionic liquids. Russ. J. Org. Chem., 2023, 59(S1), S74-S83.
[http://dx.doi.org/10.1134/S1070428023130079]
[37]
Sawant, K.C.; Sarode, C.H.; Marathe, Y.V.; Gupta, G.R.; Dhanmane, S.A. [mPyrMeSO4]: An exceptional reaction medium for the room temperature synthesis of substituted pyrimidones via Biginellipyrimidone synthesis. Russ. J. Org. Chem., 2023, 2023
[38]
Gupta, G.; Shaikh, V.; Patil, K. Synchronous thermogravimetry and differential scanning calorimetry estimates of urea inclusion complexes using TGA/DSC. Curr. Phys. Chem., 2019, 8(3), 175-185.
[http://dx.doi.org/10.2174/1877946808666181031113024]
[39]
Gupta, G.R.; Patil, P.D.; Shaikh, V.R.; Kolhapurkar, R.R.; Dagade, D.H.; Patil, K.J. Analytical estimation of water, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin. Curr. Sci., 2018, 114(12), 2525-2529.
[http://dx.doi.org/10.18520/cs/v114/i12/2525-2529]
[40]
Patil, K.S.; Zope, P.H.; Patil, U.T.; Patil, P.D.; Dubey, R.S.; Gupta, G.R. Synthesis and thermophysical studies of polyanilines. Bull. Mater. Sci., 2019, 42(1), 24-32.
[http://dx.doi.org/10.1007/s12034-018-1705-0]
[41]
Joshi, N.S.; Waghulde, G.P.; Gupta, G.R. Thermo-physical investigations of oils, N-(2-aminoethyl)-oleamide and resulting gels using TGA-DSC. Orient. J. Chem., 2021, 37(6), 1496-1500.
[http://dx.doi.org/10.13005/ojc/370632]
[42]
Huffman, H.M.; Parks, G.S.; Daniels, A.C. Thermal data on organic compounds. Vii. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons. J. Am. Chem. Soc., 1930, 52(4), 1547-1558.
[http://dx.doi.org/10.1021/ja01367a039]
[43]
Morita, H.; Rice, H.M. Characterization of organic substances by differential thermal analysis: General experimental technique. Anal. Chem., 1955, 27(3), 336-339.
[http://dx.doi.org/10.1021/ac60099a002]
[44]
Woods, B.P.; Hoye, T.R. Differential scanning calorimetry (DSC) as a tool for probing the reactivity of polyynes relevant to hexadehydro-diels-alder (HDDA) cascades. Org. Lett., 2014, 16(24), 6370-6373.
[http://dx.doi.org/10.1021/ol503162k] [PMID: 25470072]
[45]
Sarig, S.; Fuchs, J. Application of thermal analysis to organic chemistry: A review. Thermochim. Acta, 1989, 148, 325-334.
[http://dx.doi.org/10.1016/0040-6031(89)85231-1]
[46]
Guo, F.; Wu, F.; Mu, Y.; Hu, Y.; Zhao, X.; Meng, W.; Giesy, J.P.; Lin, Y. Characterization of organic matter of plants from lakes by thermal analysis in a N2 atmosphere. Sci. Rep., 2016, 6(1), 22877-22884.
[http://dx.doi.org/10.1038/srep22877] [PMID: 26953147]
[47]
Mortazavi, B.; Javvaji, B.; Shojaei, F.; Rabczuk, T.; Shapeev, A.V.; Zhuang, X. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy, 2021, 82, 105716-105728.
[http://dx.doi.org/10.1016/j.nanoen.2020.105716]
[48]
Vu-Bac, N.; Lahmer, T.; Zhuang, X.; Thoi, N.T.; Rabczuk, T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv. Eng. Softw., 2016, 100, 19-31.
[http://dx.doi.org/10.1016/j.advengsoft.2016.06.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy