Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Systematic Review Article

Pharmacogenetics of Carbamazepine: A Systematic Review on CYP3A4 and CYP3A5 Polymorphisms

Author(s): Rachda Riffi*, Wefa Boughrara, Amina Chentouf, Wassila Ilias, Narimene Malika Taieb Brahim, Amel Alioua Berrebbah and Fatma Belhoucine

Volume 23, Issue 12, 2024

Published on: 07 June, 2024

Page: [1463 - 1473] Pages: 11

DOI: 10.2174/0118715273298953240529100325

Price: $65

Abstract

Background and Objective: The association between carbamazepine (CBZ) metabolism and resistance in epilepsy and the genetic polymorphisms of CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) has been the subject of previous investigations with controversial results. Hence, we conducted a systematic review to assess the potential link between these polymorphisms and CBZ metabolism and resistance.

Methods: Identifying relevant studies was carried out by searching PubMed, Scopus, PharmGKB, EPIGAD, and PHARMAADME databases up until June 2023. The studies included in our analysis investigated the connection between CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) polymorphisms and CBZ metabolism and resistance.

Results: This review included a total of 23 studies and more than 2177 epilepsy patients. It was found that the CYP3A4 (rs12721627 and rs28371759) polymorphisms are associated with reduced catalytic activity, whereas the CYP3A4 (rs2740574) polymorphism is linked to lower levels of CBZ-diol and decreased activity. It was also observed that the CYP3A5 (rs776746) polymorphism influences the dose-adjusted plasma levels of CBZ.

Conclusion: Although these findings highlight the impact of genetic variations in the CYP3A4 and CYP3A5 genes on CBZ pharmacokinetics and pharmacodynamics, further studies across diverse populations are essential to enhance personalized epilepsy therapy in clinical settings.

[1]
López-García MA, Feria-Romero IA, Serrano H, et al. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy. Pharmacol Rep 2017; 69(3): 504-11.
[http://dx.doi.org/10.1016/j.pharep.2017.01.007] [PMID: 28343093]
[2]
Yuen AWC, Keezer MR, Sander JW. Epilepsy is a neurological and a systemic disorder. Epilepsy Behav 2018; 78: 57-61.
[http://dx.doi.org/10.1016/j.yebeh.2017.10.010] [PMID: 29175221]
[3]
Neligan A, Hauser WA, Sander JW. The epidemiology of the epilepsiesHandb Clin Neurol. Amsterdam: Elsevier 2012; pp. 113-33.
[http://dx.doi.org/10.1016/B978-0-444-52898-8.00006-9]
[4]
Beghi E. Social functions and socioeconomic vulnerability in epilepsy. Epilepsy Behav 2019; 100(Pt B): 106363.
[http://dx.doi.org/10.1016/j.yebeh.2019.05.051] [PMID: 31300385]
[5]
Giourou E, Stavropoulou-Deli A, Giannakopoulou A, Kostopoulos GK, Koutroumanidis M. Introduction to Epilepsy and Related Brain DisordersCyberphysical Syst Epilepsy Relat Brain Disord Multi-Parametr Monit Anal Diagn Optim Dis Manag. Cham: Springer International Publishing 2015; pp. 11-38.
[http://dx.doi.org/10.1007/978-3-319-20049-1_2]
[6]
Stafstrom CE, Carmant L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb Perspect Med 2015; 5(6): a022426-6.
[http://dx.doi.org/10.1101/cshperspect.a022426] [PMID: 26033084]
[7]
Idris A, Alabdaljabar MS, Almiro A, et al. Prevalence, incidence, and risk factors of epilepsy in arab countries: A systematic review. Seizure 2021; 92: 40-50.
[http://dx.doi.org/10.1016/j.seizure.2021.07.031] [PMID: 34418747]
[8]
Vogrig A, Hsiang JC, Ng J, Rolnick J, Cheng J, Parvizi J. A systematic study of stereotypy in epileptic seizures versus psychogenic seizure-like events. Epilepsy Behav 2019; 90: 172-7.
[http://dx.doi.org/10.1016/j.yebeh.2018.11.030] [PMID: 30580068]
[9]
Feyissa AM, Bower JH. Evaluation of the patient with paroxysmal spells mimicking epileptic seizures. Neurologist 2023; 28(4): 207-17.
[http://dx.doi.org/10.1097/NRL.0000000000000469]
[10]
Liu T-T, He Z-G, Tian X-B, Xiang H-B. Neural mechanisms and potential treatment of epilepsy and its complications. Am J Transl Res 2014; 6(6): 625-30.
[PMID: 25628775]
[11]
Cook M. Differential diagnosis of epilepsyThe Treatment of Epilepsy. Hoboken, New Jersey: Wiley 2015.
[12]
Beghi E. The epidemiology of epilepsy. Neuroepidemiology 2020; 54(2): 185-91.
[http://dx.doi.org/10.1159/000503831]
[13]
AL-Eitan LN, Al-Dalalah IM, Mustafa MM, et al. Genetic polymorphisms of CYP3A5, CHRM2, and ZNF498 and their association with epilepsy susceptibility: A pharmacogenetic and case–control study. Pharm Genomics Pers Med 2019; 12: 225-33.
[http://dx.doi.org/10.2147/PGPM.S212433]
[14]
Odhiambo M. Therapeutic monitoring of anti-seizure medications in low- and middle-income countries: A systematic review. Wellcome Open Res 2021; 6: 92.
[15]
Jaramillo NM, Galindo IF, Vázquez AO, Cook HJ. LLerena A, López ML. Pharmacogenetic potential biomarkers for carbamazepine adverse drug reactions and clinical response. Drug Metabol Drug Interact 2014; 29(2): 67-79.
[http://dx.doi.org/10.1515/dmdi-2013-0046] [PMID: 24406279]
[16]
Puranik YG, Birnbaum AK, Marino SE, et al. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics 2013; 14(1): 35-45.
[http://dx.doi.org/10.2217/pgs.12.180] [PMID: 23252947]
[17]
Beydoun A, DuPont S, Zhou D, Matta M, Nagire V, Lagae L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure 2020; 83: 251-63.
[http://dx.doi.org/10.1016/j.seizure.2020.10.018] [PMID: 33334546]
[18]
Goodwin GM. Evidence-based guidelines for treating bipolar disorder: Recommendations from the British Association for Psychopharmacology. J Psychopharmacol 2003; 17(2): 149-73.
[http://dx.doi.org/10.1177/0269881103017002003] [PMID: 12870562]
[19]
Ambrósio AF, Soares-da-Silva P, Carvalho CM, Carvalho AP. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem Res 2002; 27(1/2): 121-30.
[http://dx.doi.org/10.1023/A:1014814924965] [PMID: 11926264]
[20]
Leckband SG. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin Pharmacol Therapuet 2023; 94(3): 324-8.
[21]
Hebeisen S, Pires N, Loureiro AI, et al. Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: A comparison with carbamazepine, oxcarbazepine and lacosamide. Neuropharmacology 2015; 89: 122-35.
[http://dx.doi.org/10.1016/j.neuropharm.2014.09.008] [PMID: 25242737]
[22]
Shastry C, Shafeeque A, Ashwathnarayana B. Effect of combination of aripiprazole with carbamazepine and fluvoxamine on liver functions in experimental animals. Indian J Pharmacol 2013; 45(2): 121-5.
[http://dx.doi.org/10.4103/0253-7613.108280] [PMID: 23716885]
[23]
Kwan P, Brodie MJ. Neuropsychological effects of epilepsy and antiepileptic drugs. Lancet 2001; 357(9251): 216-22.
[http://dx.doi.org/10.1016/S0140-6736(00)03600-X] [PMID: 11213111]
[24]
Zhang ML, Chen XL, Bai ZF, et al. ABCB1 c.3435C > T and EPHX1 c.416A > G polymorphisms influence plasma carbamazepine concentration, metabolism, and pharmacoresistance in epileptic patients. Gene 2021; 805: 145907.
[http://dx.doi.org/10.1016/j.gene.2021.145907] [PMID: 34411648]
[25]
Spatzenegger M, Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab Rev 1995; 27(3): 397-417.
[http://dx.doi.org/10.3109/03602539508998329] [PMID: 8521748]
[26]
Spatzenegger M, Jaeger W. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metabol Dispos 2004; 32(123): 397-417.
[27]
Yun W, Zhang F, Hu C, et al. Effects of EPHX1, SCN1A and CYP3A4 genetic polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy Res 2013; 107(3): 231-7.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.09.011] [PMID: 24125961]
[28]
Go RE, Hwang KA, Choi KC. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol 2015; 147: 24-30.
[http://dx.doi.org/10.1016/j.jsbmb.2014.11.003] [PMID: 25448748]
[29]
Wang P, Yin T, Ma HY, et al. Effects of CYP3A4/5 and ABCB1 genetic polymorphisms on carbamazepine metabolism and transport in Chinese patients with epilepsy treated with carbamazepine in monotherapy and bitherapy. Epilepsy Res 2015; 117: 52-7.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.09.001] [PMID: 26421491]
[30]
Zhu X, Yun W, Sun X, Qiu F, Zhao L, Guo Y. Effects of major transporter and metabolizing enzyme gene polymorphisms on carbamazepine metabolism in Chinese patients with epilepsy. Pharmacogenomics 2014; 15(15): 1867-79.
[http://dx.doi.org/10.2217/pgs.14.142] [PMID: 25495409]
[31]
Katara P, Yadav A. Pharmacogenes (PGx-genes): Current understanding and future directions. Gene 2019; 718: 144050.
[http://dx.doi.org/10.1016/j.gene.2019.144050] [PMID: 31425740]
[32]
Petr P. Xenobiotic-induced transcriptional regulation of Xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr Drug Metabol 2008; 9(2)
[33]
Shimada T. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Therapeut 1994; 270(1): 423.
[34]
Thorn CF, Leckband SG, Kelsoe J, et al. PharmGKB summary. Pharmacogenet Genomics 2011; 21(12): 906-10.
[http://dx.doi.org/10.1097/FPC.0b013e328348c6f2] [PMID: 21738081]
[35]
Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos 2002; 30(8): 883-91.
[http://dx.doi.org/10.1124/dmd.30.8.883] [PMID: 12124305]
[36]
Wilkinson GR. Cytochrome P4503A (CYP3A) metabolism: Prediction of in vivo activity in humans. J Pharmacokinet Biopharm 1996; 24(5): 475-90.
[http://dx.doi.org/10.1007/BF02353475] [PMID: 9131486]
[37]
Löscher W. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009; 50(1): 1-23.
[38]
Zhao GX, Zhang Z, Cai WK, Shen ML, Wang P, He GH. Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Epilepsy Res 2021; 173: 106615.
[http://dx.doi.org/10.1016/j.eplepsyres.2021.106615] [PMID: 33756436]
[39]
Zhao W, Meng H. Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population. Bioengineered 2022; 13(3): 7709-45.
[http://dx.doi.org/10.1080/21655979.2022.2036916] [PMID: 35290166]
[40]
Brooks BA, McBride OW, Dolphin CT, et al. The gene CYP3 encoding P450pcn1 (nifedipine oxidase) is tightly linked to the gene COL1A2 encoding collagen type 1 alpha on 7q21-q22.1. Am J Hum Genet 1988; 43(3): 280-4.
[PMID: 2901225]
[41]
Falconer SJ. Tacrolimus pharmacogenomics in abdominal solid organ transplantation 2018. Available From: https://era.ed.ac.uk/handle/1842/31355?show=full
[42]
Rodriguez-Antona C, Savieo JL, Lauschke VM, et al. PharmVar GeneFocus: CYP3A5. Clin Pharmacol Ther 2022; 112(6): 1159-71.
[http://dx.doi.org/10.1002/cpt.2563] [PMID: 35202484]
[43]
MacDonald JR, Ziman R, Yuen RKC, Feuk L, Scherer SW. The Database of Genomic Variants: A curated collection of structural variation in the human genome. Nucleic Acids Res 2014; 42(D1): D986-92.
[http://dx.doi.org/10.1093/nar/gkt958] [PMID: 24174537]
[44]
Saiz-Rodríguez M, Almenara S, Navares-Gómez M, et al. Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates. Biomedicines 2020; 8(4): 94.
[http://dx.doi.org/10.3390/biomedicines8040094] [PMID: 32331352]
[45]
PubChem. CYP3A5 - cytochrome P450 family 3 subfamily A member 5 (human). Available From: https://pubchem.ncbi.nlm.nih.gov/gene/CYP3A5/human
[46]
Sheng Y, Yang H, Wu T, Zhu L, Liu L, Liu X. Alterations of cytochrome P450s and UDP-glucuronosyltransferases in brain under diseases and their clinical significances. Front Pharmacol 2021; 12: 650027.
[http://dx.doi.org/10.3389/fphar.2021.650027] [PMID: 33967789]
[47]
Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: A review. Curr Drug Targets 2018; 19(1): 38-54.
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[48]
Omura T. Structural diversity of cytochrome P450 enzyme system. J Biochem 2010; 147(3): 297-306.
[http://dx.doi.org/10.1093/jb/mvq001] [PMID: 20068028]
[49]
Aoyama T, Yamano S, Waxman DJ, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for the metabolism of steroid hormones and cyclosporine. J Biol Chem 1989; 264(18): 10388-95.
[http://dx.doi.org/10.1016/S0021-9258(18)81632-5] [PMID: 2732228]
[50]
Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT. Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology 2003; 144(8): 3382-98.
[http://dx.doi.org/10.1210/en.2003-0192] [PMID: 12865317]
[51]
Marill J, Cresteil T, Lanotte M, Chabot GG. Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol 2000; 58(6): 1341-8.
[http://dx.doi.org/10.1124/mol.58.6.1341] [PMID: 11093772]
[52]
Guengerich FP. Cytochrome p450 enzymes in the generation of commercial products. Nat Rev Drug Discov 2002; 1(5): 359-66.
[http://dx.doi.org/10.1038/nrd792] [PMID: 12120411]
[53]
Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet 2002; 360(9340): 1155-62.
[http://dx.doi.org/10.1016/S0140-6736(02)11203-7] [PMID: 12387968]
[54]
Chen H, Howald WN, Juchau MR. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: Catalysis of all-trans-retinol oxidation by human P-450 cytochromes. Drug Metab Dispos 2000; 28(3): 315-22.
[PMID: 10681376]
[55]
Zhao M. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci 2021; 22(23): 12808.
[56]
Pal D, Mitra AK. MDR- and CYP3A4-mediated drug–herbal interactions. Life Sci 2006; 78(18): 2131-45.
[http://dx.doi.org/10.1016/j.lfs.2005.12.010] [PMID: 16442130]
[57]
Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27(4): 383-91.
[http://dx.doi.org/10.1038/86882] [PMID: 11279519]
[58]
Wojtczak A, Skretkowicz J. [Clinical significance of some genetic polymorphisms of cytochrome P-450: Family CYP1 and subfamilies CYP2A, CYP2B and CYP2C]. Pol Merkuriusz Lek 2009; 26: 248-52.
[59]
Maurya MR, Gautam S, Raj JP, et al. Evaluation of genetic polymorphism of CYP3A5 in normal healthy participants from western India - A cross-sectional study. Indian J Pharmacol 2022; 54(2): 97-101.
[http://dx.doi.org/10.4103/ijp.ijp_279_21] [PMID: 35546460]
[60]
Fukuen S, Fukuda T, Maune H, et al. Novel detection assay by PCR???RFLP and frequency of the CYP3A5 SNPs, CYP3A5 *3 and *6, in a Japanese population. Pharmacogenetics 2002; 12(4): 331-4.
[http://dx.doi.org/10.1097/00008571-200206000-00009] [PMID: 12042671]
[61]
Danielson PB. The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 2002; 3(6): 561-97.
[http://dx.doi.org/10.2174/1389200023337054] [PMID: 12369887]
[62]
a) Emich-Widera E, Likus W, Kazek B, et al. CYP3A5*3 and C3435T MDR1 polymorphisms in prognostication of drug-resistant epilepsy in children and adolescents. BioMed Res Int 2013; 2013: 1-7.
[http://dx.doi.org/10.1155/2013/526837] [PMID: 23984379];
b) Al-Gahtany M, Karunakaran G, Munisamy M. Pharmacogenetics of CYP3A5 on Carbamazepine pharmacokinetics in epileptic patients developing toxicity. BMC Genomics 2014; 15 (Suppl. 2): 2.
[http://dx.doi.org/10.1186/1471-2164-15-S2-P2]
[63]
Burns ML. Pharmacokinetic variability, clinical use and therapeutic drug monitoring of antiepileptic drugs in special patient groups 2019. Available From: https://www.duo.uio.no/handle/10852/70923
[64]
Charlier B, Coglianese A, De Rosa F, et al. The effect of plasma protein binding on the therapeutic monitoring of antiseizure medications. Pharmaceutics 2021; 13(8): 1208.
[http://dx.doi.org/10.3390/pharmaceutics13081208]
[65]
Reith DM, Hooper WD, Parke J, Charles B. Population pharmacokinetic modeling of steady state carbamazepine clearance in children, adolescents, and adults. J Pharmacokinet Pharmacodyn 2001; 28(1): 79-92.
[http://dx.doi.org/10.1023/A:1011569703060] [PMID: 11253616]
[66]
Vučićević K, Miljković B, Veličković R, Pokrajac M, Mrhar A, Grabnar I. Population pharmacokinetic model of carbamazepine derived from routine therapeutic drug monitoring data. Ther Drug Monit 2007; 29(6): 781-8.
[http://dx.doi.org/10.1097/FTD.0b013e31815c15f3] [PMID: 18043476]
[67]
Décima MA, Marzeddu S, Barchiesi M, Di Marcantonio C, Chiavola A, Boni MR. A review on the removal of carbamazepine from aqueous solution by using activated carbon and biochar. Sustainability (Basel) 2021; 13(21): 11760.
[http://dx.doi.org/10.3390/su132111760]
[68]
Seo T, Nakada N, Ueda N, et al. Effect of CYP3A5*3 on carbamazepine pharmacokinetics in Japanese patients with epilepsy. Clin Pharmacol Ther 2006; 79(5): 509-10.
[http://dx.doi.org/10.1016/j.clpt.2006.02.009] [PMID: 16678552]
[69]
Panomvana D, Traiyawong T, Towanabut S. Effect of CYP3A5 genotypes on the pharmacokinetics of carbamazepine when used as monotherapy or co-administered with phenytoin, phenobarbital or valproic acid in Thai patients. J Pharm Pharm Sci 2013; 16(4): 502-10.
[http://dx.doi.org/10.18433/J3Q888] [PMID: 24210059]
[70]
Sata F. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Therapeut 2000; 67(1): 48-56.
[71]
Adeagbo AB. Influence of CYP3A5*3 and ABCB1 C3435T on clinical outcomes and trough plasma concentrations of imatinib in Nigerians with chronic myeloid leukaemia. J Clin Pharmacol Therapeut 2016; 41(1): 546-51.
[72]
Ramasamy K, Ganesapandian M, Adithan S, Narayan S. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population. Indian J Pharmacol 2019; 51(6): 384-8.
[http://dx.doi.org/10.4103/ijp.IJP_122_19] [PMID: 32029960]
[73]
Park PW, Seo YH, Ahn JY, Kim KA, Park JY. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients. J Clin Pharm Ther 2009; 34(5): 569-74.
[http://dx.doi.org/10.1111/j.1365-2710.2009.01057.x] [PMID: 19744012]
[74]
Abo El Fotoh WMM. Abd el naby SA, Habib MSE, ALrefai AA, Kasemy ZA. The potential implication of SCN1A and CYP3A5 genetic variants on antiepileptic drug resistance among Egyptian epileptic children. Seizure 2016; 41: 75-80.
[http://dx.doi.org/10.1016/j.seizure.2016.07.005] [PMID: 27498208]
[75]
Lu Q, Huang YT, Shu Y, et al. Effects of CYP3A5 and UGT2B7 variants on steady-state carbamazepine concentrations in Chinese epileptic patients. Medicine (Baltimore) 2018; 97(30): e11662.
[http://dx.doi.org/10.1097/MD.0000000000011662] [PMID: 30045320]
[76]
Mousavi SF, Hasanpour K, Nazarzadeh M, et al. ABCG2, SCN1A and CYP3A5 genes polymorphism and drug-resistant epilepsy in children: A case-control study. Seizure 2022; 97: 58-62.
[http://dx.doi.org/10.1016/j.seizure.2022.03.009] [PMID: 35338956]
[78]
HGNC. HGNC data for CYP3A4. 2024. Available From: https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:2637
[79]
Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther 2014; 96(3): 340-8.
[http://dx.doi.org/10.1038/clpt.2014.129] [PMID: 24926778]
[80]
Lamba V. Genetic predictors of interindividual variability in Hepatic CYP3A4 expression. J Pharmacol Exp Therapeut 2010; 332(3): 1088-99.
[81]
Westlind-Johnsson A, Malmebo S, Johansson A, et al. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab Dispos 2003; 31(6): 755-61.
[http://dx.doi.org/10.1124/dmd.31.6.755] [PMID: 12756208]
[82]
Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RHN. CYP3A4*22: Promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013; 14(1): 47-62.
[http://dx.doi.org/10.2217/pgs.12.187] [PMID: 23252948]
[83]
Elens L, Becker ML, Haufroid V, et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in The Rotterdam Study. Pharmacogenet Genomics 2011; 21(12): 861-6.
[http://dx.doi.org/10.1097/FPC.0b013e32834c6edb] [PMID: 21946898]
[84]
a) Maekawa K, Harakawa N, Yoshimura T, et al. CYP3A4*16 and CYP3A4*18 alleles found in East Asians exhibit differential catalytic activities for seven CYP3A4 substrate drugs. Drug Metab Dispos 2010; 38(12): 2100-4.
[http://dx.doi.org/10.1124/dmd.110.034140] [PMID: 20847137];
b) Tantsura LM, Pylypets OY, Tretiakov DV, Tantsura YO. Variants of the formation and course of drug-resistant epilepsy in children with genetic polymorphisms of CYP2C9, CYP2C19, CYP3A4. Wiad Lek 2023; 76(5): 1007-13.
[http://dx.doi.org/10.36740/WLek202305118] [PMID: 37326083]
[85]
HGNC. CYP3A4 cytochrome P450 family 3 subfamily A member 4 [ Homo sapiens (human)]. Drug Metab Dispos 2024. Available From: https://www.ncbi.nlm.nih.gov/gene/1576
[86]
Niwa T, Yabusaki Y, Honma K, et al. Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica 1998; 28(6): 539-47.
[http://dx.doi.org/10.1080/004982598239290]
[87]
Achour B. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: A meta-analysis. Drug Metab Dispos 2014; 4228(8): 1349-56.
[88]
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138(1): 103-41.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[89]
Monostory K, Dvorak Z. Steroid regulation of drug-metabolizing cytochromes P450. Curr Drug Metab 2011; 12(2): 154-72.
[http://dx.doi.org/10.2174/138920011795016854] [PMID: 21395541]
[90]
Waxman DJ, Attisano C, Guengerich FP, Lapenson DP. Human liver microsomal steroid metabolism: Identification of the major microsomal steroid hormone 6β-hydroxylase cytochrome P-450 enzyme. Arch Biochem Biophys 1988; 263(2): 424-36.
[http://dx.doi.org/10.1016/0003-9861(88)90655-8] [PMID: 3259858]
[91]
Shu-Feng Z. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metabol 2008; 9(4): 310-22.
[92]
Macdonald RL. Antiepileptic drug mechanisms of action. Epilepsia 1995; 36(s2): S1-S12.
[93]
Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism. Biochem Pharmacol 1994; 47(11): 1969-79.
[http://dx.doi.org/10.1016/0006-2952(94)90071-X] [PMID: 8010982]
[94]
Du J, Zhang A, Wang L, et al. Relationship between response to risperidone, plasma concentrations of risperidone and CYP3A4 polymorphisms in schizophrenia patients. J Psychopharmacol 2010; 24(7): 1115-20.
[http://dx.doi.org/10.1177/0269881109104932] [PMID: 19395426]
[95]
Du J, Xing Q, Xu L, et al. Systematic screening for polymorphisms in the CYP3A4 gene in the Chinese population. Pharmacogenomics 2006 10; 7(6): 831-41.
[http://dx.doi.org/10.2217/14622416.7.6.831]
[96]
Maekawa K, Yoshimura T, Saito Y, et al. Functional characterization of CYP3A4.16: Catalytic activities toward midazolam and carbamazepine. Xenobiotica 2009; 39(2): 140-7.
[http://dx.doi.org/10.1080/00498250802617746] [PMID: 19255940]
[97]
Sachdeva J, Garg VK, Goyal MK, et al. Presence of allele CYP3A4*16 does not have any bearing on carbamazepine-induced adverse drug reactions in North Indian people with epilepsy. Indian J Pharmacol 2020; 52(5): 378-82.
[http://dx.doi.org/10.4103/ijp.IJP_549_20] [PMID: 33283769]
[98]
Ciaccio M, Caruso A, Bellia C, et al. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharm Genomics Pers Med 2014; 7: 117-20.
[http://dx.doi.org/10.2147/PGPM.S55548] [PMID: 24817818]
[99]
Chbili C, Fathallah N, Laouani A, et al. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J Neurogenet 2016; 30(1): 16-21.
[http://dx.doi.org/10.3109/01677063.2016.1155571] [PMID: 27276192]
[100]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg 2021; 88: 105906.
[http://dx.doi.org/10.1016/j.ijsu.2021.105906] [PMID: 33789826]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy