Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Effects of Nicotine and Cannabinoids on Cytokines

Author(s): Grace Miller, Ojas Pareek, Samantha L. Penman and Panayotis K. Thanos*

Volume 30, Issue 31, 2024

Published on: 07 June, 2024

Page: [2468 - 2484] Pages: 17

DOI: 10.2174/0113816128293077240529111824

Price: $65

Abstract

Background: The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people’s health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response.

Objective: This study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β.

Methods: Literature search was conducted on Medline/PubMed electronic databases utilizing the search terms “nicotine” OR “cannabis” OR “cannabinoids” AND “cytokine” AND “inflammation” AND “stress” AND “immune” from 11/1973 to 02/2024.

Results: THC and CBD usage have been associated with conflicting impacts on immune response, and observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally proinflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act.

Conclusion: This review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.

[1]
Mlost J, Bryk M, Starowicz K. Cannabidiol for pain treatment: focus on pharmacology and mechanism of action. Int J Mol Sci 2020; 21(22): 8870.
[http://dx.doi.org/10.3390/ijms21228870] [PMID: 33238607]
[2]
Lafaye G, Karila L, Blecha L, Benyamina A. Cannabis, cannabinoids, and health. Dialogues Clin Neurosci 2017; 19(3): 309-16.
[http://dx.doi.org/10.31887/DCNS.2017.19.3/glafaye] [PMID: 29302228]
[3]
Croxford JL, Yamamura T. Cannabinoids and the immune system: Potential for the treatment of inflammatory diseases? J Neuroimmunol 2005; 166(1-2): 3-18.
[http://dx.doi.org/10.1016/j.jneuroim.2005.04.023] [PMID: 16023222]
[4]
Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem 2009; 1(7): 1333-49.
[http://dx.doi.org/10.4155/fmc.09.93] [PMID: 20191092]
[5]
Katchan V, David P, Shoenfeld Y. Cannabinoids and autoimmune diseases: A systematic review. Autoimmun Rev 2016; 15(6): 513-28.
[http://dx.doi.org/10.1016/j.autrev.2016.02.008] [PMID: 26876387]
[6]
Suryavanshi SV, Kovalchuk I, Kovalchuk O. Cannabinoids as key regulators of inflammasome signaling: A current perspective. Front Immunol 2021; 11: 613613.
[http://dx.doi.org/10.3389/fimmu.2020.613613] [PMID: 33584697]
[7]
Widysanto A, Combest FE, Dhakal A, Saadabadi A. Nicotine addiction. Treasure Island, FL: StatPearls 2023.
[8]
Dratcu L, Boland X. Does nicotine prevent cytokine storms in COVID-19? Cureus 2020; 12(10): e11220.
[9]
Tirgan N, Kulp GA, Gupta P, et al. Nicotine exposure exacerbates development of cataracts in a type 1 diabetic rat model. Exp Diabetes Res 2012; 2012: 1-7.
[http://dx.doi.org/10.1155/2012/349320] [PMID: 23049540]
[10]
Cohen K, Weizman A, Weinstein A. Positive and negative effects of cannabis and cannabinoids on health. Clin Pharmacol Ther 2019; 105(5): 1139-47.
[http://dx.doi.org/10.1002/cpt.1381] [PMID: 30703255]
[11]
Ross JA, Levy S. The Impact of cannabis use on adolescent neurodevelopment and clinical outcomes amidst changing state policies. Clin Ther 2023; 45(6): 535-40.
[http://dx.doi.org/10.1016/j.clinthera.2023.03.009] [PMID: 37414504]
[12]
Sheth P, Mehta F, Jangid G, et al. The rising use of e-cigarettes: Unveiling the health risks and controversies. Cardiol Rev 2024.
[http://dx.doi.org/10.1097/CRD.0000000000000666] [PMID: 38385663]
[13]
Fagerström K. Nicotine: Pharmacology, toxicity and therapeutic use. J Smok Cessat 2014; 9(2): 53-9.
[http://dx.doi.org/10.1017/jsc.2014.27]
[14]
Benowitz NL, Hukkanen J, Jacob P III. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 2009; 192(192): 29-60.
[http://dx.doi.org/10.1007/978-3-540-69248-5_2] [PMID: 19184645]
[15]
Osgoei TL, Parivar K, Ebrahimi M, Mortaz E. Nicotine modulates the release of inflammatory cytokines and expression of TLR2, TLR4 of cord blood mononuclear cells. Iran J Allergy Asthma Immunol 2018; 17(4): 372-8.
[http://dx.doi.org/10.18502/ijaai.v17i4.96] [PMID: 30537800]
[16]
Paramo PYX, Chen G, Ashmore JH, et al. Nicotine-n′-oxidation by flavin monooxygenase enzymes. Cancer Epidemiol Biomarkers Prev 2019; 28(2): 311-20.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-0669] [PMID: 30381441]
[17]
Benowitz NL. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 2009; 49(1): 57-71.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094742] [PMID: 18834313]
[18]
Ho TNT, Abraham N, Lewis RJ. Structure-function of neuronal nicotinic acetylcholine receptor inhibitors derived from natural toxins. Front Neurosci 2020; 14: 609005.
[http://dx.doi.org/10.3389/fnins.2020.609005] [PMID: 33324158]
[19]
Lloyd GK, Williams M. Neuronal nicotinic acetylcholine receptors as novel drug targets. J Pharmacol Exp Ther 2000; 292(2): 461-7.
[PMID: 10640281]
[20]
Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 2003; 423(6943): 949-55.
[http://dx.doi.org/10.1038/nature01748] [PMID: 12827192]
[21]
Wang D, Zhou R, Yao Y, et al. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. J Pharmacol Exp Ther 2010; 335(3): 553-61.
[http://dx.doi.org/10.1124/jpet.110.169961] [PMID: 20843956]
[22]
Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 2003; 421(6921): 384-8.
[http://dx.doi.org/10.1038/nature01339] [PMID: 12508119]
[23]
De Rosa MJ, Esandi MC, Garelli A, Rayes D, Bouzat C. Relationship between α7 nAChR and apoptosis in human lymphocytes. J Neuroimmunol 2005; 160(1-2): 154-61.
[http://dx.doi.org/10.1016/j.jneuroim.2004.11.010] [PMID: 15710468]
[24]
Saeed RW, Varma S, Nemeroff PT, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 2005; 201(7): 1113-23.
[http://dx.doi.org/10.1084/jem.20040463] [PMID: 15809354]
[25]
De Biasi M, Dani JA. Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci 2011; 34(1): 105-30.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113734] [PMID: 21438686]
[26]
Grenhoff J, Jones AG, Svensson TH. Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 1986; 128(3): 351-8.
[http://dx.doi.org/10.1111/j.1748-1716.1986.tb07988.x] [PMID: 3788613]
[27]
Imperato A, Mulas A, Di Chiara G. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 1986; 132(2-3): 337-8.
[http://dx.doi.org/10.1016/0014-2999(86)90629-1] [PMID: 3816984]
[28]
Engvall MM, Evrard A, Pons S, et al. Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 2006; 50(6): 911-21.
[http://dx.doi.org/10.1016/j.neuron.2006.05.007] [PMID: 16772172]
[29]
Pons S, Fattore L, Cossu G, et al. Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 2008; 28(47): 12318-27.
[http://dx.doi.org/10.1523/JNEUROSCI.3918-08.2008] [PMID: 19020025]
[30]
Zhang T, Zhang L, Liang Y, Siapas AG, Zhou FM, Dani JA. Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. J Neurosci 2009; 29(13): 4035-43.
[http://dx.doi.org/10.1523/JNEUROSCI.0261-09.2009] [PMID: 19339599]
[31]
Williamson EM, Evans FJ. Cannabinoids in clinical practice. Drugs 2000; 60(6): 1303-14.
[http://dx.doi.org/10.2165/00003495-200060060-00005] [PMID: 11152013]
[32]
Cooper ZD, Haney M. Actions of delta-9-tetrahydrocannabinol in cannabis: Relation to use, abuse, dependence. Int Rev Psychiatry 2009; 21(2): 104-12.
[http://dx.doi.org/10.1080/09540260902782752] [PMID: 19367504]
[33]
Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol 2013; 64(1): 21-47.
[http://dx.doi.org/10.1146/annurev-psych-113011-143739] [PMID: 22804774]
[34]
Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 2003; 42(4): 327-60.
[http://dx.doi.org/10.2165/00003088-200342040-00003] [PMID: 12648025]
[35]
Tanda G, Pontieri FE, Chiara GD. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 1997; 276(5321): 2048-50.
[http://dx.doi.org/10.1126/science.276.5321.2048] [PMID: 9197269]
[36]
Bossong MG, van Berckel BNM, Boellaard R, et al. Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 2009; 34(3): 759-66.
[http://dx.doi.org/10.1038/npp.2008.138] [PMID: 18754005]
[37]
Barkus E, Morrison PD, Vuletic D, et al. Does intravenous Δ9-tetrahydrocannabinol increase dopamine release? A SPET study. J Psychopharmacol 2011; 25(11): 1462-8.
[http://dx.doi.org/10.1177/0269881110382465] [PMID: 20851843]
[38]
van Hell HH, Jager G, Bossong MG, et al. Involvement of the endocannabinoid system in reward processing in the human brain. Psychopharmacology 2012; 219(4): 981-90.
[http://dx.doi.org/10.1007/s00213-011-2428-8] [PMID: 21822593]
[39]
Grotenhermen F, Vahl MK. The therapeutic potential of cannabis and cannabinoids. Dtsch Arztebl Int 2012; 109(29-30): 495-501.
[http://dx.doi.org/10.3238/arztebl.2012.0495] [PMID: 23008748]
[40]
Starowicz K, Finn DP. Chapter Thirteen - Cannabinoids and Pain: Sites and Mechanisms of Action. Advances in Pharmacology 80. Academic Press 2017; 437-75.
[41]
Sofia RD, Knobloch LC, Vassar HB. The anti-edema activity of various naturally occurring cannabinoids. Res Commun Chem Pathol Pharmacol 1973; 6(3): 909-18.
[PMID: 4760897]
[42]
Sofia DR, Nalepa SD, Vassar HB, Knobloch LC. Comparative anti-phlogistic activity of Δ9-tetrahydrocannabinol, hydrocortisone and aspirin in various rat paw edema models. Life Sci 1974; 15(2): 251-60.
[http://dx.doi.org/10.1016/0024-3205(74)90214-8] [PMID: 4549916]
[43]
Wirth PW, Watson SE, ElSohly M, Turner CE, Murphy JC. Anti-inflammatory properties of cannabichromene. Life Sci 1980; 26(23): 1991-5.
[http://dx.doi.org/10.1016/0024-3205(80)90631-1] [PMID: 7401911]
[44]
Wirth PW, Watson ES, Elsohly MA, Seidel R, Murphy JC, Turner CE. Anti-inflammatory activity of cannabichromene homologs. J Pharm Sci 1980; 69(11): 1359-60.
[http://dx.doi.org/10.1002/jps.2600691136] [PMID: 7452475]
[45]
Turner C, Elsohly MA. Biological activity of cannabichromene, its homologs and isomers. J Clin Pharmacol 1981; 21(S1): 283S-91S.
[http://dx.doi.org/10.1002/j.1552-4604.1981.tb02606.x] [PMID: 7298870]
[46]
Mechoulam R, Parker LA, Gallily R. Cannabidiol: An overview of some pharmacological aspects. J Clin Pharmacol 2002; 42(S1): 11S-9S.
[http://dx.doi.org/10.1002/j.1552-4604.2002.tb05998.x] [PMID: 12412831]
[47]
Schubart CD, Sommer IEC, Poli FP, de Witte L, Kahn RS, Boks MPM. Cannabidiol as a potential treatment for psychosis. Eur Neuropsychopharmacol 2014; 24(1): 51-64.
[http://dx.doi.org/10.1016/j.euroneuro.2013.11.002] [PMID: 24309088]
[48]
Skelley JW, Deas CM, Curren Z, Ennis J. Use of cannabidiol in anxiety and anxiety-related disorders. J Am Pharm Assoc 2020; 60(1): 253-61.
[http://dx.doi.org/10.1016/j.japh.2019.11.008] [PMID: 31866386]
[49]
Zuardi AW, Shirakawa I, Finkelfarb E, Karniol IG. Action of cannabidiol on the anxiety and other effects produced by? 9-THC in normal subjects. Psychopharmacology 1982; 76(3): 245-50.
[http://dx.doi.org/10.1007/BF00432554] [PMID: 6285406]
[50]
Sales AJ, Fogaça MV, Sartim AG, et al. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol Neurobiol 2019; 56(2): 1070-81.
[http://dx.doi.org/10.1007/s12035-018-1143-4] [PMID: 29869197]
[51]
Osborne AL, Solowij N, Babic I, Huang XF, Green WK. Improved social interaction, recognition and working memory with cannabidiol treatment in a prenatal infection (poly I:C) rat model. Neuropsychopharmacology 2017; 42(7): 1447-57.
[http://dx.doi.org/10.1038/npp.2017.40] [PMID: 28230072]
[52]
Gutiérrez GMS, Navarrete F, Gasparyan A, Olivares AA, Sala F, Manzanares J. Cannabidiol: A potential new alternative for the treatment of anxiety, depression, and psychotic disorders. Biomolecules 2020; 10(11): 1575.
[http://dx.doi.org/10.3390/biom10111575] [PMID: 33228239]
[53]
Pertwee RG. Pharmacological Actions of Cannabinoids Cannabinoids. Berlin, Heidelberg: Springer Berlin Heidelberg 2005; pp. 1-51.
[http://dx.doi.org/10.1007/3-540-26573-2_1]
[54]
Amar BM. Cannabinoids in medicine: A review of their therapeutic potential. J Ethnopharmacol 2006; 105(1-2): 1-25.
[http://dx.doi.org/10.1016/j.jep.2006.02.001] [PMID: 16540272]
[55]
Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R. Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 2009; 30(10): 515-27.
[http://dx.doi.org/10.1016/j.tips.2009.07.006]
[56]
Maione S, Costa B, Di Marzo V. Endocannabinoids: A unique opportunity to develop multitarget analgesics. Pain 2013; 154(S1): S87-93.
[http://dx.doi.org/10.1016/j.pain.2013.03.023] [PMID: 23623250]
[57]
Philpott HT, O’Brien M, McDougall JJ. Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain 2017; 158(12): 2442-51.
[http://dx.doi.org/10.1097/j.pain.0000000000001052] [PMID: 28885454]
[58]
Wong H, Cairns BE. Cannabidiol, cannabinol and their combinations act as peripheral analgesics in a rat model of myofascial pain. Arch Oral Biol 2019; 104: 33-9.
[http://dx.doi.org/10.1016/j.archoralbio.2019.05.028] [PMID: 31158702]
[59]
Cabrera RCL, Rudman KS, Horniman N, Clarkson N, Page C. The anti-inflammatory effects of cannabidiol and cannabigerol alone, and in combination. Pulm Pharmacol Ther 2021; 69: 102047.
[http://dx.doi.org/10.1016/j.pupt.2021.102047] [PMID: 34082108]
[60]
Miller RJ, Miller RE. Is cannabis an effective treatment for joint pain? Clin Exp Rheumatol 2017; 107(5): 59-67.
[61]
Malfait AM, Gallily R, Sumariwalla PF, et al. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci 2000; 97(17): 9561-6.
[http://dx.doi.org/10.1073/pnas.160105897]
[62]
Burstein S. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg Med Chem 2015; 23(7): 1377-85.
[http://dx.doi.org/10.1016/j.bmc.2015.01.059] [PMID: 25703248]
[63]
Arout CA, Haney M, Herrmann ES, Bedi G, Cooper ZD. The dose‐dependent analgesic effects, abuse liability, safety and tolerability of oral cannabidiol in healthy humans. Br J Clin Pharmacol 2021.
[64]
Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry 2016; 79(7): 516-25.
[http://dx.doi.org/10.1016/j.biopsych.2015.07.028] [PMID: 26698193]
[65]
Pandey R, Mousawy K, Nagarkatti M, Nagarkatti P. Endocannabinoids and immune regulation. Pharmacol Res 2009; 60(2): 85-92.
[http://dx.doi.org/10.1016/j.phrs.2009.03.019] [PMID: 19428268]
[66]
Di Marzo V, De Petrocellis L, Sepe N, Buono A. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem J 1996; 316(3): 977-84.
[http://dx.doi.org/10.1042/bj3160977] [PMID: 8670178]
[67]
Bisogno T, Maurelli S, Melck D, De Petrocellis L, Di Marzo V. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem 1997; 272(6): 3315-23.
[http://dx.doi.org/10.1074/jbc.272.6.3315] [PMID: 9013571]
[68]
Pestonjamasp VK, Burstein SH. Anandamide synthesis is induced by arachidonate mobilizing agonists in cells of the immune system. Biochim Biophys Acta Lipids Lipid Metab 1998; 1394(2-3): 249-60.
[http://dx.doi.org/10.1016/S0005-2760(98)00110-6] [PMID: 9795237]
[69]
Hillard CJ. Circulating endocannabinoids: From whence do they come and where are they going? Neuropsychopharmacology 2018; 43(1): 155-72.
[http://dx.doi.org/10.1038/npp.2017.130] [PMID: 28653665]
[70]
Walter L, Franklin A, Witting A, et al. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 2003; 23(4): 1398-405.
[http://dx.doi.org/10.1523/JNEUROSCI.23-04-01398.2003] [PMID: 12598628]
[71]
Decara J, Rivera P, Gambero LAJ, et al. Peroxisome proliferator-activated receptors: Experimental targeting for the treatment of inflammatory bowel diseases. Front Pharmacol 2020; 11: 730.
[http://dx.doi.org/10.3389/fphar.2020.00730] [PMID: 32536865]
[72]
Reggio P. Endocannabinoid binding to the cannabinoid receptors: What is known and what remains unknown. Curr Med Chem 2010; 17(14): 1468-86.
[http://dx.doi.org/10.2174/092986710790980005] [PMID: 20166921]
[73]
Melville LK, Zhu YF, Sidhu J, et al. Evaluation of the preclinical analgesic efficacy of naturally derived, orally administered oil forms of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their 1:1 combination. PloS one 2020; 15(6): e0234176.
[74]
Tanasescu R, Constantinescu CS. Cannabinoids and the immune system: An overview. Immunobiology (1979) 2010; 215(8): 588-97.
[75]
Lunn CA, Fine JS, Triana RA, et al. A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J Pharmacol Exp Ther 2006; 316(2): 780-8.
[http://dx.doi.org/10.1124/jpet.105.093500] [PMID: 16258021]
[76]
Mageed ASS, Ammar RM, Nassar NN, Moawad H, Kamel AS. Role of PI3K/Akt axis in mitigating hippocampal ischemia-reperfusion injury via CB1 receptor stimulation by paracetamol and FAAH inhibitor in rat. Neuropharmacology 2022; 207: 108935.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108935] [PMID: 34968475]
[77]
Elmazoglu Z, López RE, Campos MON, et al. Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ1-42 peptide in rat hippocampal neurons. Neurochem Int 2020; 140: 104817.
[http://dx.doi.org/10.1016/j.neuint.2020.104817] [PMID: 32781098]
[78]
Sireesh D, Dhamodharan U, Ezhilarasi K, Vijay V, Ramkumar KM. Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus. Sci Rep 2018; 8(1): 5126.
[http://dx.doi.org/10.1038/s41598-018-22913-6] [PMID: 29572460]
[79]
Saha S, Buttari B, Panieri E, Profumo E, Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 2020; 25(22): 5474.
[http://dx.doi.org/10.3390/molecules25225474] [PMID: 33238435]
[80]
Dinarello CA. Proinflammatory cytokines. Chest 2000; 118(2): 503-8.
[http://dx.doi.org/10.1378/chest.118.2.503] [PMID: 10936147]
[81]
Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007; 45(2): 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[82]
Dinarello CA. Historical insights into cytokines. Eur J Immunol 2007; 37(S1): S34-45.
[http://dx.doi.org/10.1002/eji.200737772] [PMID: 17972343]
[83]
Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest 2000; 117(4): 1162-72.
[http://dx.doi.org/10.1378/chest.117.4.1162] [PMID: 10767254]
[84]
Munoz C, Carlet J, Fitting C, Misset B, Blériot JP, Cavaillon JM. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 1991; 88(5): 1747-54.
[http://dx.doi.org/10.1172/JCI115493] [PMID: 1939659]
[85]
Kasai T, Inada K, Takakuwa T, et al. Anti-inflammatory cytokine levels in patients with septic shock. Res Commun Mol Pathol Pharmacol 1997; 98(1): 34-42.
[PMID: 9434313]
[86]
Brocker C, Thompson D, Matsumoto A, Nebert DW, Vasiliou V. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics 2010; 5(1): 30-55.
[http://dx.doi.org/10.1186/1479-7364-5-1-30] [PMID: 21106488]
[87]
Fields JK, Günther S, Sundberg EJ. Structural basis of IL-1 family cytokine signaling. Front Immunol 2019; 10: 1412.
[http://dx.doi.org/10.3389/fimmu.2019.01412] [PMID: 31281320]
[88]
Lin JX, Leonard WJ. the common cytokine receptor γ chain family of cytokines. Cold Spring Harb Perspect Biol 2018; 10(9): a028449.
[http://dx.doi.org/10.1101/cshperspect.a028449] [PMID: 29038115]
[89]
Gour N, Karp WM. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015; 75(1): 68-78.
[http://dx.doi.org/10.1016/j.cyto.2015.05.014] [PMID: 26070934]
[90]
Junttila IS. Tuning the cytokine responses: An update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol 2018; 9: 888.
[http://dx.doi.org/10.3389/fimmu.2018.00888] [PMID: 29930549]
[91]
Li X, Shao Y, Sha X, et al. IL-35 (Interleukin-35) suppresses endothelial cell activation by inhibiting mitochondrial reactive oxygen species-mediated site-specific acetylation of H3K14 (Histone 3 Lysine 14). Arterioscler Thromb Vasc Biol 2018; 38(3): 599-609.
[http://dx.doi.org/10.1161/ATVBAHA.117.310626] [PMID: 29371247]
[92]
Iyer SS, Cheng G. role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 2012; 32(1): 23-63.
[93]
Huang KY, Hsu YH, Chen WY, et al. The roles of IL-19 and IL-20 in the inflammation of degenerative lumbar spondylolisthesis. J Inflamm 2018; 15(1): 19.
[http://dx.doi.org/10.1186/s12950-018-0195-6] [PMID: 30250404]
[94]
Kingo K, Mössner R, Kõks S, et al. Association analysis of IL19, IL20 and IL24 genes in palmoplantar pustulosis. Br J Dermatol 2007; 156(4): 646-52.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07731.x] [PMID: 17263806]
[95]
Hymowitz SG, Filvaroff EH, Yin JP, et al. IL-17s adopt a cystine knot fold: Structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J 2001; 20(19): 5332-41.
[http://dx.doi.org/10.1093/emboj/20.19.5332] [PMID: 11574464]
[96]
Milovanovic J, Arsenijevic A, Stojanovic B, et al. Interleukin-17 in chronic inflammatory neurological diseases. Front Immunol 2020; 11: 947.
[http://dx.doi.org/10.3389/fimmu.2020.00947] [PMID: 32582147]
[97]
Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 2006; 24(1): 99-146.
[http://dx.doi.org/10.1146/annurev.immunol.24.021605.090737] [PMID: 16551245]
[98]
Oh SA, Li MO. TGF-β: Guardian of T cell function. J Immunol 2013; 191(8): 3973-9.
[http://dx.doi.org/10.4049/jimmunol.1301843] [PMID: 24098055]
[99]
Travis MA, Sheppard D. TGF-β activation and function in immunity. Annu Rev Immunol 2014; 32(1): 51-82.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120257] [PMID: 24313777]
[100]
Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol 2012; 13(10): 616-30.
[http://dx.doi.org/10.1038/nrm3434] [PMID: 22992590]
[101]
Prud’homme GJ. Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 2007; 87(11): 1077-91.
[http://dx.doi.org/10.1038/labinvest.3700669] [PMID: 17724448]
[102]
Li MO, Flavell RA. TGF-β: A master of all T cell trades. Cell 2008; 134(3): 392-404.
[http://dx.doi.org/10.1016/j.cell.2008.07.025] [PMID: 18692464]
[103]
Cooper WO, Fava RA, Gates CA, Cremer MA, Townes AS. Acceleration of onset of collagen-induced arthritis by intra-articular injection of tumour necrosis factor or transforming growth factor-beta. Clin Exp Immunol 2008; 89(2): 244-50.
[http://dx.doi.org/10.1111/j.1365-2249.1992.tb06939.x] [PMID: 1638767]
[104]
Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: Similarities and differences. Immunol Rev 2014; 259(1): 88-102.
[http://dx.doi.org/10.1111/imr.12160] [PMID: 24712461]
[105]
Llorente L, Zou W, Levy Y, et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med 1995; 181(3): 839-44.
[http://dx.doi.org/10.1084/jem.181.3.839] [PMID: 7869046]
[106]
Lee MS, Mueller R, Wicker LS, Peterson LB, Sarvetnick N. IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity. J Exp Med 1996; 183(6): 2663-8.
[http://dx.doi.org/10.1084/jem.183.6.2663] [PMID: 8676087]
[107]
Ferreira VL, Borba H, Bonetti AF, Leonart LP, Pontarolo R, Eds. Cytokines and interferons: Types and functions autoantibodies and cytokines. IntechOpen 2018.
[108]
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or Evasion. Front Immunol 2018; 9: 847.
[http://dx.doi.org/10.3389/fimmu.2018.00847] [PMID: 29780381]
[109]
Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation. Semin Immunol 2007; 19(6): 409-17.
[http://dx.doi.org/10.1016/j.smim.2007.10.011] [PMID: 18053739]
[110]
Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of TH17 cells. Nature 2008; 453(7198): 1051-7.
[http://dx.doi.org/10.1038/nature07036] [PMID: 18563156]
[111]
Feng G, Gao W, Strom TB, et al. Exogenous IFN‐γ ex vivo shapes the alloreactive T‐cell repertoire by inhibition of Th17 responses and generation of functional Foxp3 + regulatory T cells. Eur J Immunol 2008; 38(9): 2512-27.
[http://dx.doi.org/10.1002/eji.200838411] [PMID: 18792404]
[112]
Peck A, Mellins ED. Plasticity of T‐cell phenotype and function: The T helper type 17 example. Immunology 2010; 129(2): 147-53.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03189.x] [PMID: 19922424]
[113]
Moudgil KD, Choubey D. Cytokines in autoimmunity: Role in induction, regulation, and treatment. J Interferon Cytokine Res 2011; 31(10): 695-703.
[http://dx.doi.org/10.1089/jir.2011.0065] [PMID: 21942420]
[114]
Stanifer ML, Guo C, Doldan P, Boulant S. Importance of type I and III interferons at respiratory and intestinal barrier surfaces. Front Immunol 2020; 11: 608645.
[http://dx.doi.org/10.3389/fimmu.2020.608645] [PMID: 33362795]
[115]
Kotenko SV, Gallagher G, Baurin VV, et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003; 4(1): 69-77.
[http://dx.doi.org/10.1038/ni875] [PMID: 12483210]
[116]
Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003; 4(1): 63-8.
[http://dx.doi.org/10.1038/ni873] [PMID: 12469119]
[117]
Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 2008; 4(3): e1000017.
[http://dx.doi.org/10.1371/journal.ppat.1000017] [PMID: 18369468]
[118]
Mordstein M, Neugebauer E, Ditt V, et al. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J Virol 2010; 84(11): 5670-7.
[http://dx.doi.org/10.1128/JVI.00272-10] [PMID: 20335250]
[119]
Pott J, Mahlakõiv T, Mordstein M, et al. IFN-λ determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci 2011; 108(19): 7944-9.
[http://dx.doi.org/10.1073/pnas.1100552108] [PMID: 21518880]
[120]
Chu WM. Tumor necrosis factor. Cancer Lett 2013; 328(2): 222-5.
[http://dx.doi.org/10.1016/j.canlet.2012.10.014] [PMID: 23085193]
[121]
Hamaty CF, Combe B, Hahne M, Morel J. Lymphotoxin α revisited: General features and implications in rheumatoid arthritis. Arthritis Res Ther 2011; 13(4): 232.
[http://dx.doi.org/10.1186/ar3376] [PMID: 21861866]
[122]
Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 2008; 29(11): 1275-88.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00889.x] [PMID: 18954521]
[123]
Yuan M, Kiertscher SM, Cheng Q, Zoumalan R, Tashkin DP, Roth MD. Δ9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol 2002; 133(1-2): 124-31.
[http://dx.doi.org/10.1016/S0165-5728(02)00370-3] [PMID: 12446015]
[124]
Newton CA, Klein TW, Friedman H. Secondary immunity to Legionella pneumophila and Th1 activity are suppressed by delta-9-tetrahydrocannabinol injection. Infect Immun 1994; 62(9): 4015-20.
[http://dx.doi.org/10.1128/iai.62.9.4015-4020.1994] [PMID: 8063421]
[125]
Srivastava MD, Srivastava BIS, Brouhard B. Δ9-tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells. Immunopharmacology 1998; 40(3): 179-85.
[http://dx.doi.org/10.1016/S0162-3109(98)00041-1] [PMID: 9858061]
[126]
Klein TW, Newton CA, Nakachi N, Friedman H. {Delta}9-tetrahydrocannabinol treatment suppresses immunity and early IFN-{gamma}, IL-12, and IL-12 receptor {beta}2 responses to Legionella pneumophila infection. J Immunol 2000; 164(12): 6461.
[127]
Smith SR, Terminelli C, Denhardt G. Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J Pharmacol Exp Ther 2000; 293(1): 136-50.
[PMID: 10734163]
[128]
Gardner B, Zu LX, Sharma S, et al. Autocrine and paracrine regulation of lymphocyte CB2 receptor expression by TGF-β. Biochem Biophys Res Commun 2002; 290(1): 91-6.
[http://dx.doi.org/10.1006/bbrc.2001.6179] [PMID: 11779138]
[129]
Zurier RB, Burstein SH. Cannabinoids, inflammation, and fibrosis. FASEB J 2016; 30(11): 3682-9.
[http://dx.doi.org/10.1096/fj.201600646R] [PMID: 27435265]
[130]
Nichols JM, Kaplan BLF. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res 2020; 5(1): 12-31.
[http://dx.doi.org/10.1089/can.2018.0073] [PMID: 32322673]
[131]
Britch SC, Goodman AG, Wiley JL, Pondelick AM, Craft RM. Antinociceptive and immune effects of Delta-9-tetrahydrocannabinol or cannabidiol in male versus female rats with persistent inflammatory pain. J Pharmacol Exp Ther 2020; 373(3): 416-28.
[http://dx.doi.org/10.1124/jpet.119.263319] [PMID: 32179573]
[132]
Jan TR, Farraj AK, Harkema JR, Kaminski NE. Attenuation of the ovalbumin-induced allergic airway response by cannabinoid treatment in A/J mice. Toxicol Appl Pharmacol 2003; 188(1): 24-35.
[http://dx.doi.org/10.1016/S0041-008X(03)00010-3] [PMID: 12668119]
[133]
Lu T, Newton C, Perkins I, Friedman H, Klein TW. Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection. J Pharmacol Exp Ther 2006; 319(1): 269-76.
[http://dx.doi.org/10.1124/jpet.106.108381] [PMID: 16837556]
[134]
Rizzo MD, Crawford RB, Bach A, Sermet S, Amalfitano A, Kaminski NE. Δ 9-tetrahydrocannabinol suppresses monocyte-mediated astrocyte production of monocyte chemoattractant protein 1 and interleukin-6 in a toll-like receptor 7-stimulated human coculture. J Pharmacol Exp Ther 2019; 371(1): 191-201.
[http://dx.doi.org/10.1124/jpet.119.260661] [PMID: 31383729]
[135]
Puffenbarger RA, Boothe AC, Cabral GA. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 2000; 29(1): 58-69.
[http://dx.doi.org/10.1002/(SICI)1098-1136(20000101)29:1<58::AID-GLIA6>3.0.CO;2-W] [PMID: 10594923]
[136]
Zamberletti E, Gabaglio M, Prini P, Rubino T, Parolaro D. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur Neuropsychopharmacol 2015; 25(12): 2404-15.
[http://dx.doi.org/10.1016/j.euroneuro.2015.09.021] [PMID: 26499171]
[137]
Yekhtin Z, Khuja I, Meiri D, Or R, Hazan AO. Differential effects of D9 tetrahydrocannabinol (THC)- and cannabidiol (CBD)-based cannabinoid treatments on macrophage immune function in vitro and on gastrointestinal inflammation in a murine model. Biomedicines 2022; 10(8): 1793.
[http://dx.doi.org/10.3390/biomedicines10081793] [PMID: 35892693]
[138]
Verrico CD, Wesson S, Konduri V, et al. A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain 2020; 161(9): 2191-202.
[http://dx.doi.org/10.1097/j.pain.0000000000001896] [PMID: 32345916]
[139]
Karmaus PWF, Wagner JG, Harkema JR, Kaminski NE, Kaplan BLF. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. J Immunotoxicol 2013; 10(3): 321-8.
[http://dx.doi.org/10.3109/1547691X.2012.741628] [PMID: 23173851]
[140]
Gallily R, Yekhtin Z, Hanuš LO. Overcoming the bell-shaped dose-response of cannabidiol by using cannabis extract enriched in cannabidiol. Pharmacol Pharm 2015; 6(2): 75-85.
[http://dx.doi.org/10.4236/pp.2015.62010]
[141]
Gallily R, Yekhtin Z, Hanuš LO. The anti-inflammatory properties of terpenoids from cannabis. Cannabis Cannabinoid Res 2018; 3(1): 282-90.
[http://dx.doi.org/10.1089/can.2018.0014] [PMID: 30596146]
[142]
Dhital S, Stokes JV, Park N, Seo KS, Kaplan BLF. Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation. Cell Immunol 2017; 312: 25-34.
[http://dx.doi.org/10.1016/j.cellimm.2016.11.006] [PMID: 27865421]
[143]
Kozela E, Juknat A, Gao F, Kaushansky N, Coppola G, Vogel Z. Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoid, in autoimmune T cells. J Neuroinflammation 2016; 13(1): 136.
[http://dx.doi.org/10.1186/s12974-016-0603-x] [PMID: 27256343]
[144]
Weiss L, Zeira M, Reich S, et al. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity 2006; 39(2): 143-51.
[http://dx.doi.org/10.1080/08916930500356674] [PMID: 16698671]
[145]
Gomes JP, Watad A, Shoenfeld Y. Nicotine and autoimmunity: The lotus’ flower in tobacco. Pharmacol Res 2018; 128: 101-9.
[http://dx.doi.org/10.1016/j.phrs.2017.10.005] [PMID: 29051105]
[146]
Zhou Y, Zuo X, Li Y, Wang Y, Zhao H, Xiao X. Nicotine inhibits tumor necrosis factor-α induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol Int 2012; 32(1): 97-104.
[http://dx.doi.org/10.1007/s00296-010-1549-4] [PMID: 20665032]
[147]
Totti N III, McCusker KT, Campbell EJ, Griffin GL, Senior RM. Nicotine is chemotactic for neutrophils and enhances neutrophil responsiveness to chemotactic peptides. Science 1984; 223(4632): 169-71.
[http://dx.doi.org/10.1126/science.6318317] [PMID: 6318317]
[148]
Furie MB, Raffanello JA, Gergel EI, Lisinski TJ, Horb LD. Extracts of smokeless tobacco induce pro-inflammatory changes in cultured human vascular endothelial cells. Immunopharmacology 2000; 47(1): 13-23.
[149]
Wendell KJ, Stein SH. Regulation of cytokine production in human gingival fibroblasts following treatment with nicotine and lipopolysaccharide. J Periodontol 2001; 72(8): 1038-44.
[http://dx.doi.org/10.1902/jop.2001.72.8.1038]
[150]
Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S. Nicotine strongly activates dendritic cell-mediated adaptive immunity: Potential role for progression of atherosclerotic lesions. Circulation 2003; 107(4): 604-11.
[http://dx.doi.org/10.1161/01.CIR.0000047279.42427.6D] [PMID: 12566374]
[151]
Vassallo R, Kroening PR, Parambil J, Kita H. Nicotine and oxidative cigarette smoke constituents induce immune-modulatory and pro-inflammatory dendritic cell responses. Mol Immunol 2008; 45(12): 3321-9.
[http://dx.doi.org/10.1016/j.molimm.2008.04.014] [PMID: 18533267]
[152]
Arcos GI, Geraghty P, Baumlin N, et al. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax 2016; 71(12): 1119-29.
[http://dx.doi.org/10.1136/thoraxjnl-2015-208039] [PMID: 27558745]
[153]
Racke MK, Jalbut DS, Cannella B, Albert PS, Raine CS, McFarlin DE. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J Immunol 1991; 146(9): 3012-7.
[154]
Mageed RA, Adams G, Woodrow D, Podhajcer OL, Chernajovsky Y. Prevention of collagen-induced arthritis by gene delivery of soluble p75 tumour necrosis factor receptor. Gene Ther 1998; 5(12): 1584-92.
[http://dx.doi.org/10.1038/sj.gt.3300785] [PMID: 10023437]
[155]
Triantaphyllopoulos KA, Williams RO, Tailor H, Chernajovsky Y. Amelioration of collagen-induced arthritis and suppression of interferon-? interleukin-12, and tumor necrosis factor? production by interferon-? gene therapy. Arthritis Rheum 1999; 42(1): 90-9.
[http://dx.doi.org/10.1002/1529-0131(199901)42:1<90::AID-ANR12>3.0.CO;2-A] [PMID: 9920019]
[156]
Croxford JL, Miller SD. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)WIN55,212. J Clin Invest 2003; 111(8): 1231-40.
[http://dx.doi.org/10.1172/JCI200317652] [PMID: 12697742]
[157]
Massi P, Vaccani A, Parolaro D. Cannabinoids, immune system and cytokine network. Curr Pharm Des 2006; 12(24): 3135-46.
[http://dx.doi.org/10.2174/138161206777947425] [PMID: 16918439]
[158]
van Breemen RB, Muchiri RN, Bates TA, et al. Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants. J Nat Prod 2022; 85(1): 176-84.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00946] [PMID: 35007072]
[159]
Pereira CF, Vargas D, Toneloto FL, Ito VD, Volpato RJ. Implications of cannabis and cannabinoid use in COVID-19: Scoping review. Rev Bras Enferm 2022; 75(S1): e20201374.
[160]
Fontanet A, Tondeur L, Madec Y, et al. Cluster of COVID-19 in Northern France: A retrospective closed cohort study. medRxiv 2020; 2020.04.18.20071134.
[161]
Miyara M, Tubach F, Pourcher V, et al. Low rate of daily smokers in patients with symptomatic COVID-19. medRxiv 2020; 2020.06.10.20127514.
[http://dx.doi.org/10.1101/2020.06.10.20127514]
[162]
Changeux JP, Amoura Z, Rey FA, Miyara M. A nicotinic hypothesis for COVID-19 with preventive and therapeutic implications. C R Biol 2020; 343(1): 33-9.
[http://dx.doi.org/10.5802/crbiol.8] [PMID: 32720486]
[163]
Russo EB. Cannabis therapeutics and the future of neurology. Front Integr Nuerosci 2018; 12: 51.
[http://dx.doi.org/10.3389/fnint.2018.00051] [PMID: 30405366]
[164]
Mecha M, Salinas CFJ, Feliú A, Mestre L, Guaza C. Perspectives on cannabis-based therapy of multiple sclerosis: A mini-review. Front Cell Neurosci 2020; 14: 34.
[http://dx.doi.org/10.3389/fncel.2020.00034] [PMID: 32140100]
[165]
Croxford JL, Pryce G, Jackson SJ, et al. Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. J Neuroimmunol 2008; 193(1-2): 120-9.
[http://dx.doi.org/10.1016/j.jneuroim.2007.10.024] [PMID: 18037503]
[166]
Mecha M, Feliú A, Iñigo PM, Mestre L, Salinas CFJ, Guaza C. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: A role for A2A receptors. Neurobiol Dis 2013; 59: 141-50.
[http://dx.doi.org/10.1016/j.nbd.2013.06.016] [PMID: 23851307]
[167]
Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 2004; 10(4): 434-41.
[http://dx.doi.org/10.1191/1352458504ms1082oa] [PMID: 15327042]
[168]
Rog D, Nurmikko T, Young C. Oromucosal Δ9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: An uncontrolled, open-label, 2-year extension trial. Clin Ther 2007; 29(9): 2068-79.
[http://dx.doi.org/10.1016/j.clinthera.2007.09.013] [PMID: 18035205]
[169]
Hernán MA, Olek MJ, Ascherio A. Cigarette smoking and incidence of multiple sclerosis. Am J Epidemiol 2001; 154(1): 69-74.
[http://dx.doi.org/10.1093/aje/154.1.69] [PMID: 11427406]
[170]
Sundström P, Nyström L. Smoking worsens the prognosis in multiple sclerosis. Mult Scler 2008; 14(8): 1031-5.
[http://dx.doi.org/10.1177/1352458508093615] [PMID: 18632778]
[171]
Nizri E, Sinai ITM, Lory O, Urtreger OA, Lavi E, Brenner T. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. J Immunol 2009; 183(10): 6681-8.
[http://dx.doi.org/10.4049/jimmunol.0902212] [PMID: 19846875]
[172]
Pittas F, Ponsonby AL, Mei IAF, et al. Smoking is associated with progressive disease course and increased progression in clinical disability in a prospective cohort of people with multiple sclerosis. J Neurol 2009; 256(4): 577-85.
[http://dx.doi.org/10.1007/s00415-009-0120-2] [PMID: 19365595]
[173]
Shi FD, Piao WH, Kuo YP, Campagnolo DI, Vollmer TL, Lukas RJ. Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol 2009; 182(3): 1730-9.
[http://dx.doi.org/10.4049/jimmunol.182.3.1730] [PMID: 19155522]
[174]
Gao Z, Tsirka SE. Animal models of MS reveal multiple roles of microglia in disease pathogenesis. Neurol Res Int 2011; 2011: 1-9.
[http://dx.doi.org/10.1155/2011/383087] [PMID: 22203900]
[175]
Hao J, Simard AR, Turner GH, et al. Attenuation of CNS inflammatory responses by nicotine involves α7 and non-α7 nicotinic receptors. Exp Neurol 2011; 227(1): 110-9.
[http://dx.doi.org/10.1016/j.expneurol.2010.09.020] [PMID: 20932827]
[176]
van Noort JM, van den Elsen PJ, van Horssen J, Geurts JJ, van der Valk P, Amor S. Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies. CNS Neurol Disord Drug Targets 2011; 10(1): 68-81.
[http://dx.doi.org/10.2174/187152711794488566] [PMID: 21143143]
[177]
Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ. Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 2011; 237(1-2): 73-9.
[http://dx.doi.org/10.1016/j.jneuroim.2011.06.006] [PMID: 21737148]
[178]
Grade S, Bernardino L, Malva JO. Oligodendrogenesis from neural stem cells: Perspectives for remyelinating strategies. Int J Dev Neurosci 2013; 31(7): 692-700.
[http://dx.doi.org/10.1016/j.ijdevneu.2013.01.004] [PMID: 23340483]
[179]
Naddafi F, Haidari RM, Azizi G, Sedaghat R, Mirshafiey A. Novel therapeutic approach by nicotine in experimental model of multiple sclerosis. Innov Clin Neurosci 2013; 10(4): 20-5.
[PMID: 23696955]
[180]
Simard AR, Gan Y, Pierre SS, et al. Differential modulation of EAE by α9*‐ and β2*‐nicotinic acetylcholine receptors. Immunol Cell Biol 2013; 91(3): 195-200.
[http://dx.doi.org/10.1038/icb.2013.1] [PMID: 23399696]
[181]
Gao Z, Nissen JC, Legakis L, Tsirka SE. Nicotine modulates neurogenesis in the central canal during experimental autoimmune encephalomyelitis. Neuroscience 2015; 297: 11-21.
[http://dx.doi.org/10.1016/j.neuroscience.2015.03.031] [PMID: 25813705]
[182]
Gao Z, Nissen JC, Ji K, Tsirka SE. The experimental autoimmune encephalomyelitis disease course is modulated by nicotine and other cigarette smoke components. PLoS One 2014; 9(9): e107979.
[http://dx.doi.org/10.1371/journal.pone.0107979] [PMID: 25250777]
[183]
Choy EHS, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001; 344(12): 907-16.
[http://dx.doi.org/10.1056/NEJM200103223441207] [PMID: 11259725]
[184]
Wu S, Luo H, Xiao X, Zhang H, Li T, Zuo X. Attenuation of collagen induced arthritis via suppression on Th17 response by activating cholinergic anti-inflammatory pathway with nicotine. Eur J Pharmacol 2014; 735: 97-104.
[http://dx.doi.org/10.1016/j.ejphar.2014.04.019] [PMID: 24755145]
[185]
Blake DR, Robson P, Ho M, Jubb RW, McCabe CS. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology 2006; 45(1): 50-2.
[http://dx.doi.org/10.1093/rheumatology/kei183] [PMID: 16282192]
[186]
Zurier RB, Rossetti RG, Lane JH, Goldberg JM, Hunter SA, Burstein SH. Dimethylheptyl-THC-11 OIC acid: A nonpsychoactive antiinflammatory agent with a cannabinoid template structure. Arthritis Rheum 1998; 41(1): 163-70.
[http://dx.doi.org/10.1002/1529-0131(199801)41:1<163::AID-ART20>3.0.CO;2-9] [PMID: 9433882]
[187]
Sumariwalla PF, Gallily R, Tchilibon S, Fride E, Mechoulam R, Feldmann M. A novel synthetic, nonpsychoactive cannabinoid acid (HU‐320) with antiinflammatory properties in murine collagen‐induced arthritis. Arthritis Rheum 2004; 50(3): 985-98.
[http://dx.doi.org/10.1002/art.20050] [PMID: 15022343]
[188]
Zurier RB, Rossetti RG, Burstein SH, Bidinger B. Suppression of human monocyte interleukin-1β production by ajulemic acid, a nonpsychoactive cannabinoid. Biochem Pharmacol 2003; 65(4): 649-55.
[http://dx.doi.org/10.1016/S0006-2952(02)01604-0] [PMID: 12566094]
[189]
Johnson DR, Stebulis JA, Rossetti RG, Burstein SH, Zurier RB. Suppression of fibroblast metalloproteinases by ajulemic acid, a nonpsychoactive cannabinoid acid. J Cell Biochem 2007; 100(1): 184-90.
[http://dx.doi.org/10.1002/jcb.21046] [PMID: 16927387]
[190]
Selvi E, Lorenzini S, Gonzalez GE, et al. Inhibitory effect of synthetic cannabinoids on cytokine production in rheumatoid fibroblast-like synoviocytes. Clin Exp Rheumatol 2008; 26(4): 574-81.
[PMID: 18799087]
[191]
Lowin T, Kok C, Smutny S, Pongratz G. Impact of Δ9-tetrahydrocannabinol on rheumatoid arthritis synovial fibroblasts alone and in co-culture with peripheral blood mononuclear cells. Biomedicines 2022; 10(5): 1118.
[http://dx.doi.org/10.3390/biomedicines10051118] [PMID: 35625855]
[192]
Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): A killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis 2020; 11(8): 714.
[http://dx.doi.org/10.1038/s41419-020-02892-1] [PMID: 32873774]
[193]
van Maanen MA, Lebre MC, van der Poll T, et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen‐induced arthritis in mice. Arthritis Rheum 2009; 60(1): 114-22.
[http://dx.doi.org/10.1002/art.24177] [PMID: 19116908]
[194]
Yang Y, Yang Y, Yang J, Xie R, Ren Y, Fan H. Regulatory effect of nicotine on collagen-induced arthritis and on the induction and function of in vitro-cultured Th17 cells. Mod Rheumatol 2014; 24(5): 781-7.
[http://dx.doi.org/10.3109/14397595.2013.862352] [PMID: 24313917]
[195]
Mao J, Price DD, Lu J, Keniston L, Mayer DJ. Two distinctive antinociceptive systems in rats with pathological pain. Neurosci Lett 2000; 280(1): 13-6.
[http://dx.doi.org/10.1016/S0304-3940(99)00998-2] [PMID: 10696800]
[196]
Cox ML, Welch SP. The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat. Eur J Pharmacol 2004; 493(1-3): 65-74.
[http://dx.doi.org/10.1016/j.ejphar.2004.04.022] [PMID: 15189765]
[197]
Schley M, Legler A, Skopp G, Schmelz M, Konrad C, Rukwied R. Delta‐9-THC based monotherapy in fibromyalgia patients on experimentally induced pain, axon reflex flare, and pain relief. Curr Med Res Opin 2006; 22(7): 1269-76.
[http://dx.doi.org/10.1185/030079906X112651] [PMID: 16834825]
[198]
Lynch ME, Ware MA. Cannabinoids for the treatment of chronic non-cancer pain: An updated systematic review of randomized controlled trials. J Neuroimmune Pharmacol 2015; 10(2): 293-301.
[http://dx.doi.org/10.1007/s11481-015-9600-6] [PMID: 25796592]
[199]
Ditre JW, Brandon TH, Zale EL, Meagher MM. Pain, nicotine, and smoking: Research findings and mechanistic considerations. Psychol Bull 2011; 137(6): 1065-93.
[http://dx.doi.org/10.1037/a0025544] [PMID: 21967450]
[200]
Smuck M, Schneider BJ, Ehsanian R, Martin E, Kao MCJ. Smoking is associated with pain in all body regions, with greatest influence on spinal pain. Pain Med 2020; 21(9): 1759-68.
[http://dx.doi.org/10.1093/pm/pnz224] [PMID: 31578562]
[201]
Rabinovitch A. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab Rev 1998; 14(2): 129-51.
[http://dx.doi.org/10.1002/(SICI)1099-0895(199806)14:2<129::AID-DMR208>3.0.CO;2-V] [PMID: 9679667]
[202]
Rabinovitch A, Pinzon SWL. Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol 1998; 55(8): 1139-49.
[http://dx.doi.org/10.1016/S0006-2952(97)00492-9] [PMID: 9719467]
[203]
Li X, Kaminski NE, Fischer LJ. Examination of the immunosuppressive effect of Δ9-tetrahydrocannabinol in streptozotocin-induced autoimmune diabetes. Int Immunopharmacol 2001; 1(4): 699-712.
[http://dx.doi.org/10.1016/S1567-5769(01)00003-0] [PMID: 11357882]
[204]
Ibrahim MM, Deng H, Zvonok A, et al. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: Pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci 2003; 100(18): 10529-33.
[http://dx.doi.org/10.1073/pnas.1834309100] [PMID: 12917492]
[205]
Bottazzo GF, Bonifacio E. Immune factors in the pathogenesis of Insulin-dependent diabetes mellitus. Textbook Diabetes 1991; pp. 122-40.
[206]
Rabinovitch A. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes 1994; 43(5): 613-21.
[http://dx.doi.org/10.2337/diab.43.5.613] [PMID: 8168635]
[207]
Noorchashm H, Kwok W, Rabinovitch A, Harrison LC. Immunology of IDDM. Diabetologia 1997; 40(S3): B50-7.
[http://dx.doi.org/10.1007/BF03168187] [PMID: 9345646]
[208]
Izzo AA, Camilleri M. Emerging role of cannabinoids in gastrointestinal and liver diseases: Basic and clinical aspects. Gut 2008; 57(8): 1140-55.
[http://dx.doi.org/10.1136/gut.2008.148791] [PMID: 18397936]
[209]
Hegde VL, Hegde S, Cravatt BF, Hofseth LJ, Nagarkatti M, Nagarkatti PS. Attenuation of experimental autoimmune hepatitis by exogenous and endogenous cannabinoids: Involvement of regulatory T cells. Mol Pharmacol 2008; 74(1): 20-33.
[http://dx.doi.org/10.1124/mol.108.047035] [PMID: 18388242]
[210]
Abdrakhmanova GR, AlSharari S, Kang M, Damaj MI, Akbarali HI. α7-nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2010; 299(3): G761-8.
[http://dx.doi.org/10.1152/ajpgi.00175.2010] [PMID: 20595621]
[211]
Lakhan SE, Kirchgessner A. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis. J Transl Med 2011; 9(1): 129.
[http://dx.doi.org/10.1186/1479-5876-9-129] [PMID: 21810260]
[212]
Golub V, Reddy DS. Cannabidiol therapy for refractory epilepsy and seizure disorderscannabinoids and neuropsychiatric disorders. Cham: Springer International Publishing 2021; pp. 93-110.
[http://dx.doi.org/10.1007/978-3-030-57369-0_7]
[213]
O’Sullivan SE, Jensen SS, Nikolajsen GN, Bruun HZ, Bhuller R, Hoeng J. The therapeutic potential of purified cannabidiol. J Cannabis Res 2023; 5(1): 21.
[http://dx.doi.org/10.1186/s42238-023-00186-9] [PMID: 37312194]
[214]
D’Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the “cytokine storm” for therapeutic benefit. Clin Vaccine Immunol 2013; 20(3): 319-27.
[http://dx.doi.org/10.1128/CVI.00636-12] [PMID: 23283640]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy