Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Luminescence Detection of Cr3+, Bi3+, and Acetone in Aqueous Solution by Core-Shell Tb-MOF

In Press, (this is not the final "Version of Record"). Available online 06 June, 2024
Author(s): Mengfei Yang, Jing Shi, Taiming Luo* and Xiaozhan Yang*
Published on: 06 June, 2024

DOI: 10.2174/0115734110297005240531055254

Price: $95

Abstract

Aims: By using terephthalic acid, 2, 5-furandicarboxylic acid, and terbium nitrate hexahydrate, a Tb-MOF with a core-shell structure was successfully designed and prepared.

Method: A one-pot method was employed to design and synthesize core-shell Tb-MOF. The morphology, luminescence performance, and stability were well characterized.

Results: Tb-MOF demonstrated good water stability, acid and alkali resistance, and thermal stability. Tb-MOF was found to have high sensitivity to detect Cr3+, Bi3+, and acetone in an aqueous solution, and the LOD of Cr3+, Bi3+, and acetone were calculated to be 0.18 μM, 4.22 μM, and 0.26%, respectively. The sensing mechanism of Cr3+ and acetone was explained as energy-competitive absorption, and the sensing mechanism of Bi3+ was explained as ion replacement.

Conclusion: The prepared Tb-MOF can be developed as a multifunctional light-emitting sensor with high selectivity.

[1]
Yu, Y.; Wang, Y.; Yan, H.; Lu, J.; Liu, H.; Li, Y.; Wang, S.; Li, D.; Dou, J.; Yang, L.; Zhou, Z. Multiresponsive luminescent sensitivities of a 3D Cd-CP with visual turn-on and ratiometric sensing toward Al3+ and Cr3+ as well as turn-off sensing toward Fe3+. Inorg. Chem., 2020, 59(6), 3828-3837.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03496] [PMID: 32129611]
[2]
Guo, H.; Wu, N.; Xue, R.; Liu, H.; Wang, M.; Yao, W.; Wang, X.; Yang, W. An Eu(III)-functionalized Sr-based metal-organic framework for fluorometric determination of Cr(III) and Cr(VI) ions. Mikrochim. Acta, 2020, 187(7), 374.
[http://dx.doi.org/10.1007/s00604-020-04292-w] [PMID: 32506282]
[3]
Saravana Kumar, S.; Selva Kumar, R.; Ashok Kumar, S.K. Development of highly selective dual mode chromogenic and fluorogenic chemosensor for Bi3+ ions. J. Mol. Struct., 2020, 1212, 128143.
[http://dx.doi.org/10.1016/j.molstruc.2020.128143]
[4]
Wang, G.Q.; Huang, X.F.; Wu, C.H.; Shen, Y.; Cai, S.L.; Fan, J.; Zhang, W.G.; Zheng, S.R. A hydrolytically stable hydrogen-bonded inorganic-organic network as a luminescence turn-on sensor for the detection of Bi3+ and Fe3+ cations in water. Polyhedron, 2021, 205, 115284.
[http://dx.doi.org/10.1016/j.poly.2021.115284]
[5]
Wang, J.; Yu, M.; Chen, L.; Li, Z.; Li, S.; Jiang, F.; Hong, M. Construction of a stable lanthanide metal-organic framework as a luminescent probe for rapid naked-eye recognition of Fe3+ and acetone. Molecules, 2021, 26(6), 1695.
[http://dx.doi.org/10.3390/molecules26061695] [PMID: 33803563]
[6]
Pan, M.Q.; Hao, X.M.; Chen, C.; Zhang, Y.; Xing, G.J.; Wu, Y.B.; Guo, W.L.; Muhammad, Y.; Wang, H. Enhanced acetone sensing from Zn(II)-MOFs comprising tetranuclear metal clusters built with EDC and BDC ligands. Inorg. Chem. Commun., 2021, 123, 108339.
[http://dx.doi.org/10.1016/j.inoche.2020.108339]
[7]
Drinčić, A.; Zuliani, T.; Ščančar, J.; Milačič, R. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry. Sci. Total Environ., 2018, 637-638, 1286-1294.
[http://dx.doi.org/10.1016/j.scitotenv.2018.05.112] [PMID: 29801221]
[8]
Sabarudin, A.; Noguchi, O.; Oshima, M.; Higuchi, K.; Motomizu, S. Application of chitosan functionalized with 3,4-dihydroxy benzoic acid moiety for on-line preconcentration and determination of trace elements in water samples. Mikrochim. Acta, 2007, 159(3-4), 341-348.
[http://dx.doi.org/10.1007/s00604-007-0734-y]
[9]
Antunes, G.A.; dos Santos, H.S.; da Silva, Y.P.; Silva, M.M.; Piatnicki, C.M.S.; Samios, D. Determination of iron, copper, zinc, aluminum, and chromium in biodiesel by flame atomic absorption spectrometry using a microemulsion preparation method. Energy Fuels, 2017, 31(3), 2944-2950.
[http://dx.doi.org/10.1021/acs.energyfuels.6b03360]
[10]
Liu, Y.; Fan, X.; Zhang, Z.; Wu, H.H.; Liu, D.; Dou, A.; Su, M.; Zhang, Q.; Chu, D. Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating. ACS Sustain. Chem.& Eng., 2019, 7(2), 2225-2235.
[http://dx.doi.org/10.1021/acssuschemeng.8b04905]
[11]
Yang, M.S.; Jin, J.H.; An, X.; Cui, F.L. Determination of bismuth in pharmaceutical products by resonance light scattering using quaternary ammonium salts as molecular probe. J. Anal. Chem., 2014, 69(10), 942-947.
[http://dx.doi.org/10.1134/S1061934814100177]
[12]
Hussain Shar, A.; Nazim Lakhan, M.; Tawfik Alali, K.; Liu, J.; Ahmed, M.; Hussain Shah, A.; Wang, J. Facile synthesis of reduced graphene oxide encapsulated selenium nanoparticles prepared by hydrothermal method for acetone gas sensors. Chem. Phys. Lett., 2020, 755, 137797.
[http://dx.doi.org/10.1016/j.cplett.2020.137797]
[13]
Liu, X.; Zhang, T.; Li, F.; Zhao, H.; Ren, H. Influence of the exposed 0001 and 10 1 - 0 crystal facets on acetone sensing performances of ZnO. Mater. Lett., 2020, 273, 127931.
[http://dx.doi.org/10.1016/j.matlet.2020.127931]
[14]
Fu, T.; Wei, Y.L.; Zhang, C.; Li, L.K.; Liu, X.F.; Li, H.Y.; Zang, S.Q. A viologen-based multifunctional Eu-MOF: Photo/electro-modulated chromism and luminescence. Chem. Commun., 2020, 56(86), 13093-13096.
[http://dx.doi.org/10.1039/D0CC06096H] [PMID: 33034609]
[15]
Wang, M.; Guo, L.; Cao, D. Amino-functionalized luminescent metal–organic framework test paper for rapid and selective sensing of SO2 gas and its derivatives by luminescence turn-on effect. Anal. Chem., 2018, 90(5), 3608-3614.
[http://dx.doi.org/10.1021/acs.analchem.8b00146] [PMID: 29405067]
[16]
Kong, L.; Zhu, J.; Shuang, W.; Bu, X.H. Nitrogen‐doped wrinkled carbon foils derived from mof nanosheets for superior sodium storage. Adv. Energy Mater., 2018, 8(25), 1801515.
[http://dx.doi.org/10.1002/aenm.201801515]
[17]
Yang, L.; Li, H.; Yu, Y.; Wu, Y.; Zhang, L. Assembled 3D MOF on 2D nanosheets for self-boosting catalytic synthesis of N-doped carbon nanotube encapsulated metallic Co electrocatalysts for overall water splitting. Appl. Catal. B, 2020, 271, 118939.
[http://dx.doi.org/10.1016/j.apcatb.2020.118939]
[18]
Zhang, L.; Chen, Y.; Shi, R.; Kang, T.; Pang, G.; Wang, B.; Zhao, Y.; Zeng, X.; Zou, C.; Wu, P.; Li, J. Synthesis of hollow nanocages MOF-5 as drug delivery vehicle to solve the load-bearing problem of insoluble antitumor drug oleanolic acid (OA). Inorg. Chem. Commun., 2018, 96, 20-23.
[http://dx.doi.org/10.1016/j.inoche.2018.07.029]
[19]
Li, H.; Shi, L.; Li, C.; Fu, X.; Huang, Q.; Zhang, B. Metal-organic framework based on α-cyclodextrin gives high ethylene gas adsorption capacity and storage stability. ACS Appl. Mater. Interfaces, 2020, 12(30), 34095-34104.
[http://dx.doi.org/10.1021/acsami.0c08594] [PMID: 32627528]
[20]
Ding, Y.; Lu, Y.; Yu, K.; Wang, S.; Zhao, D.; Chen, B. MOF‐nanocomposite mixed‐matrix membrane for dual‐luminescence ratiometric temperature sensing. Adv. Opt. Mater., 2021, 9(19), 2100945.
[http://dx.doi.org/10.1002/adom.202100945]
[21]
Yakout, A.A.; Basha, M.T.; Shahat, A. Robust and ultrasensitive chemosensor based on bifunctionalized MIL‐101 (Al) for fluorescent detection of ferric ions in serum and pharmaceutical tablets. ChemistrySelect, 2022, 7(33), e202202110.
[http://dx.doi.org/10.1002/slct.202202110]
[22]
Basha, M.T.; Shahat, A.; Yakout, A.A. Innovative covalently modified Al‐MOF as a highly selective fluorescent sensor for Al (III) detection in tap water, human serum, and tea samples. Appl. Organomet. Chem., 2024, 38(1), e7304.
[http://dx.doi.org/10.1002/aoc.7304]
[23]
Gao, Y.; Yu, G.; Liu, K.; Wang, B. Luminescent mixed-crystal Ln-MOF thin film for the recognition and detection of pharmaceuticals. Sens. Actuators B Chem., 2018, 257, 931-935.
[http://dx.doi.org/10.1016/j.snb.2017.10.180]
[24]
Wang, Z.; Dong, L.; Huang, W.; Jia, H.; Zhao, Q.; Wang, Y.; Fei, B.; Pan, F. Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett., 2021, 13(1), 73.
[http://dx.doi.org/10.1007/s40820-021-00594-7] [PMID: 34138302]
[25]
Hu, P.P.; Liu, N.; Wu, K.Y.; Zhai, L.Y.; Xie, B.P.; Sun, B.; Duan, W.J.; Zhang, W.H.; Chen, J.X. Successive and specific detection of Hg2+ and I- by a DNA@MOF biosensor: Experimental and simulation studies. Inorg. Chem., 2018, 57(14), 8382-8389.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01051] [PMID: 29943970]
[26]
Yu, Z.; Wang, J.; Tai, M.; Wang, Q.; Wu, Q.; Guo, J.; Cheng, Y.; Jin, D.; Wang, L. A multifunctional Tb-MOF luminescent probe: Synthesis, characterization and mechanism exploration. Inorg. Chem. Commun., 2023, 158, 111679.
[http://dx.doi.org/10.1016/j.inoche.2023.111679]
[27]
Tsai, M.J.; Liao, K.S.; Hsu, L.J.; Wu, J.Y. A luminescent Cd(II) coordination polymer as a fluorescence-responsive sensor for enhancement sensing of Al3+ and Cr3+ ions and quenching detection of chromium(VI) oxyanions. J. Solid State Chem., 2021, 304, 122564.
[http://dx.doi.org/10.1016/j.jssc.2021.122564]
[28]
Faraz, M.; Abbasi, A.; Naqvi, F.K.; Khare, N.; Prasad, R.; Barman, I.; Pandey, R. Polyindole/cadmium sulphide nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sens. Actuators B Chem., 2018, 269, 195-202.
[http://dx.doi.org/10.1016/j.snb.2018.04.110]
[29]
Tian, X.M.; Yao, S.L.; Qiu, C.Q.; Zheng, T.F.; Chen, Y.Q.; Huang, H.; Chen, J.L.; Liu, S.J.; Wen, H.R. Turn-on luminescent sensor toward Fe3+, Cr3+, and Al3+ based on a Co (II) Metal-Organic Framework with open functional sites. Inorg. Chem., 2020, 59(5), 2803-2810.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03152] [PMID: 32073839]
[30]
Zhan, Z.; Liang, X.; Zhang, X.; Jia, Y.; Hu, M. A water-stable europium-MOF as a multifunctional luminescent sensor for some trivalent metal ions (Fe 3+, Cr 3+, Al 3+), PO 43− ions, and nitroaromatic explosives. Dalton Trans., 2019, 48(5), 1786-1794.
[http://dx.doi.org/10.1039/C8DT04653K] [PMID: 30644483]
[31]
Lin, C.; Wang, M.; Tang, J.; Zhu, Z.; Wu, P.; Hu, A.; Zhang, L.; Wang, J. A two-fold interpenetrated dual-emitting luminescent metal-organic framework as a ratiometric sensor for chromium (III). Inorg. Chem., 2021, 60(21), 16803-16809.
[http://dx.doi.org/10.1021/acs.inorgchem.1c02694] [PMID: 34658234]
[32]
Meng, X.; Wei, M.J.; Wang, H.N.; Zang, H.Y.; Zhou, Z.Y. Multifunctional luminescent Zn(II)-based metal–organic framework for high proton-conductivity and detection of Cr 3+ ions in the presence of mixed metal ions. Dalton Trans., 2018, 47(5), 1383-1387.
[http://dx.doi.org/10.1039/C7DT03932H] [PMID: 29292431]
[33]
El-Sewify, I.M.; Shenashen, M.A.; Shahat, A.; Yamaguchi, H.; Selim, M.M.; Khalil, M.M.H.; El-Safty, S.A. Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. J. Lumin., 2018, 198, 438-448.
[http://dx.doi.org/10.1016/j.jlumin.2018.02.028]
[34]
Gao, X.; Zhao, H.; Zhao, X.; Li, Z.; Gao, Z.; Wang, Y.; Huang, H. Aqueous phase sensing of bismuth ion using fluorescent metal-organic framework. Sens. Actuators B Chem., 2018, 266, 323-328.
[http://dx.doi.org/10.1016/j.snb.2018.03.139]
[35]
Guang, S.; Wei, G.; Yan, Z.; Zhang, Y.; Zhao, G.; Wu, R.; Xu, H. A novel turn-on fluorescent probe for the multi-channel detection of Zn 2+ and Bi 3+ with different action mechanisms. Analyst, 2018, 143(2), 449-457.
[http://dx.doi.org/10.1039/C7AN01591G] [PMID: 29264597]
[36]
Yang, Y.; Chen, L.; Jiang, F.; Wu, M.; Pang, J.; Wan, X.; Hong, M. A water-stable 3D Eu-MOF based on a metallacyclodimeric secondary building unit for sensitive fluorescent detection of acetone molecules. CrystEngComm, 2019, 21(2), 321-328.
[http://dx.doi.org/10.1039/C8CE01875H]
[37]
Li, H.; Shi, W.; Zhao, K.; Niu, Z.; Li, H.; Cheng, P. Highly selective sorption and luminescent sensing of small molecules demonstrated in a multifunctional lanthanide microporous metal-organic framework containing 1D honeycomb-type channels. Chemistry, 2013, 19(10), 3358-3365.
[http://dx.doi.org/10.1002/chem.201203487] [PMID: 23348797]
[38]
Zhang, Q.; Wang, J.; Kirillov, A.M.; Dou, W.; Xu, C.; Xu, C.; Yang, L.; Fang, R.; Liu, W. Multifunctional Ln-MOF luminescent probe for efficient sensing of Fe3+, Ce3+, and acetone. ACS Appl. Mater. Interfaces, 2018, 10(28), 23976-23986.
[http://dx.doi.org/10.1021/acsami.8b06103] [PMID: 29920195]
[39]
Gao, T.; Dong, B.X.; Sun, Y.; Liu, W.L.; Teng, Y.L. Fabrication of a water-stable luminescent MOF with an open Lewis basic triazolyl group for the high-performance sensing of acetone and Fe3+ ions. J. Mater. Sci., 2019, 54(15), 10644-10655.
[http://dx.doi.org/10.1007/s10853-019-03638-x]
[40]
Zeinali, S.; Homayoonnia, S.; Homayoonnia, G. Comparative investigation of interdigitated and parallel-plate capacitive gas sensors based on Cu-BTC nanoparticles for selective detection of polar and apolar VOCs indoors. Sens. Actuators B Chem., 2019, 278, 153-164.
[http://dx.doi.org/10.1016/j.snb.2018.07.006]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy