Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

1,3,5-Triazine: Recent Development in Synthesis of its Analogs and Biological Profile

In Press, (this is not the final "Version of Record"). Available online 06 June, 2024
Author(s): Jyoti Kumawat, Sonika Jain*, Namita Misra, Jaya Dwivedi and Dharma Kishore
Published on: 06 June, 2024

DOI: 10.2174/0113895575309800240526180356

Price: $95

Abstract

Triazine is an important pharmacophore in the field of research for the development of novel medications due to its presence in numerous powerful physiologically active compounds with significant medical potential, such as anti-tumor, anti-viral, anti-inflammatory, anti-microbial, anti- HIV, anti-leishmanial and others. The easy availability of triazine, high reactivity, simple synthesis of their analog, and their notable broad range of biological activities have garnered chemist interest in designing s-triazine-based drugs. The interest of medicinal chemists has been sparked by the structure-activity relationship of these biologically active entities, leading to the discovery of several promising lead molecules. Its importance for medicinal chemistry research is demonstrated by the remarkable progress made with triazine derivatives in treating a variety of disorders in a very short period. Authors have collated and reviewed the medicinal potential of s-triazine analogous to afford medicinal chemists with a thorough and target-oriented overview of triazine-derived compounds. We hope the present compilation will help people from the industry and research working in the medicinal chemistry area.

[1]
Sharma, A.; Sheyi, R.; de la Torre, B.G.; El-Faham, A.; Albericio, F. s-Triazine: A privileged structure for drug discovery and bioconjugation. Molecules, 2021, 26(4), 864.
[http://dx.doi.org/10.3390/molecules26040864] [PMID: 33562072]
[2]
Maliszewski, D.; Drozdowska, D. Recent advances in the biological activity of s-triazine core compounds. Pharmaceuticals, 2022, 15(2), 221.
[http://dx.doi.org/10.3390/ph15020221] [PMID: 35215333]
[3]
Liao, L.; Li, M.; Yin, Y.; Chen, J.; Zhong, Q.; Du, R.; Liu, S.; He, Y.; Fu, W.; Zeng, F. Advances in the synthesis of covalent triazine frameworks. ACS Omega, 2023, 8(5), 4527-4542.
[http://dx.doi.org/10.1021/acsomega.2c06961] [PMID: 36777586]
[4]
Wang, X.; Xiao, H.; Wang, J.; Huang, Z.; Peng, G.; Xie, W.; Bian, X.; Liu, H.; Shi, C.; Yang, T.; Li, X.; Gao, J.; Meng, Y.; Jiang, Q.; Chen, W.; Hu, F.; Wei, N.; Wang, X.; Zhang, L.; Wang, K.; Sun, Q. Synthesis and biological evaluation of novel triazine derivatives as positive allosteric modulators of α7 nicotinic acetylcholine receptors. J. Med. Chem., 2021, 64(16), 12379-12396.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01058] [PMID: 34374537]
[5]
Junaid, A.; Lim, F.P.; Tiekink, E.R.; Dolzhenko, A.V. A New one-pot three-component synthesis of 4-Aryl-6-cycloamino-1, 3, 5-triazin-2-amines under microwave irradiation. RSC Advances, 2020, 10(43), 25517-25528.
[http://dx.doi.org/10.1039/D0RA04970K] [PMID: 35518627]
[6]
Junaid, A.; Lim, F.P.L.; Zhou, Y.P.; Chui, W.K.; Dolzhenko, A.V. Fused heterocyclic systems with an s-triazine ring. 34. Development of a Practical Approach for the Synthesis of 5-Aza-isoguanines. Molecules, 2019, 24(8), 1453.
[http://dx.doi.org/10.3390/molecules24081453] [PMID: 31013786]
[7]
Alelaimat, M.A.; Al-Sha’er, M.A.; Basheer, H.A. Novel sulfonamide–triazine hybrid derivatives: Docking, synthesis, and biological evaluation as anticancer agents. ACS Omega, 2023, 8(15), 14247-14263.
[http://dx.doi.org/10.1021/acsomega.3c01273] [PMID: 37091406]
[8]
Katritzky, A.R. Advances in heterocyclic chemistry; Academic press, 1997.
[9]
Jain, S.; Sharma, A.; Agrawal, M.; Sharma, S.; Dwivedi, J.; Kishore, D. Synthesis and antimicrobial evaluation of some novel trisubstituted s-triazine derivatives based on isatinimino, sulphonamido, and azacarbazole. J. Chem., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/925439]
[10]
Liu, H.; Long, S.; Rakesh, K.P.; Zha, G.F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur. J. Med. Chem., 2020, 185, 111804.
[http://dx.doi.org/10.1016/j.ejmech.2019.111804] [PMID: 31675510]
[11]
Dhall, E.; Sain, S.; Jain, S.; Dwivedi, J. Synthesis of triazole derivatives manifesting antimicrobial and anti-tubercular activities. Mini Rev. Org. Chem., 2018, 15(4), 291-314.
[http://dx.doi.org/10.2174/1570193X15666180108152302]
[12]
Jain, S.; Dwivedi, J.; Jain, P.; Kishore, D. Use of 2,4,6-trichloro-1,3,5-triazine (TCT) as organic catalyst in organic synthesis. Synth. Commun., 2016, 46(14), 1155-1174.
[http://dx.doi.org/10.1080/00397911.2016.1192651]
[13]
Oudah, K.H.; Najm, M.A.A.; Samir, N.; Serya, R.A.T.; Abouzid, K.A.M. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors. Bioorg. Chem., 2019, 92, 103239.
[http://dx.doi.org/10.1016/j.bioorg.2019.103239] [PMID: 31513938]
[14]
Yan, M.; Ma, R.; Chen, R.; Wang, L.; Wang, Z.; Ma, Y. Synthesis of 1,2-dihydro-1,3,5-triazine derivatives via Cu( II )-catalyzed C(sp 3 )–H activation of N, N -dimethylethanolamine with amidines. Chem. Commun. (Camb.), 2020, 56(74), 10946-10949.
[http://dx.doi.org/10.1039/D0CC03820B] [PMID: 32940285]
[15]
Bigdeli, M.A.; Heravi, M.M.; Mahdavinia, G.H. Wet 2,4,6-trichloro[1,3,5]triazine (TCT) an efficient catalyst for synthesis of α, α′-bis (substituted-benzylidene) cycloalkanones under solvent-free conditions. Catal. Commun., 2007, 8, 1595-1598.
[http://dx.doi.org/10.1016/j.catcom.2007.01.007]
[16]
Blotny, G. Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis. Tetrahedron, 2006, 62(41), 9507-9522.
[http://dx.doi.org/10.1016/j.tet.2006.07.039]
[17]
Ye, L.; Zheng, Y.; Khan, N.A.; Ni, X.; Zhang, K.A.; Shen, Y.; Huang, N.; Kong, X.Y. Emerging covalent triazine frameworks-based nanomaterials for electrochemical energy storage and conversion. Chem. Comm., 2023, 42, 6314-6334.
[18]
Gilava, V.P.; Patel, P.K. Synthesis characterization and biological evaluation of 2,4,6-trisubstituted 1,3,5-triazine derivatives. Int. J. Adv. Sci. Res., 2023, 14(11), 7-13.
[19]
Bandgar, B.P.; Joshi, N.S.; Kamble, V.T. 2,4,6-Trichloro-1,3,5-triazine catalyzed synthesis of thiiranes from oxiranes under solvent-free and mild conditions. Tetrahedron Lett., 2006, 47(27), 4775-4777.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.171]
[20]
Scriven, E.F.; Ramsden, C.A. Advances in heterocyclic chemistry; Elsevier, 2024.
[21]
Van der Plas, H.C.; Katritzky, A.R. Advances in Heterocyclic Chemistry; Elsevier, 1999.
[22]
Tang, R.; Wen, J.; Stote, R.E.; Sun, Y. Cyanuric chloride-based reactive dyes for use in the antimicrobial treatments of polymeric materials. ACS Appl. Mater. Interfaces, 2021, 13(1), 1524-1534.
[http://dx.doi.org/10.1021/acsami.0c18613] [PMID: 33378153]
[23]
Das, A.; Ghosh, S.K.; Bhat, H.R.; Kalita, J.; Kashyap, A.; Adhikari, N. Docking, synthesis and antimalarial evaluation of hybrid phenyl thiazole 1, 3, 5-triazine derivatives. Curr. Bioact. Compd., 2020, 16(5), 639-653.
[http://dx.doi.org/10.2174/1573407215666190308154139]
[24]
Arya, K.; Dandia, A. Synthesis and cytotoxic activity of trisubstituted-1,3,5-triazines. Bioorg. Med. Chem. Lett., 2007, 17(12), 3298-3304.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.007] [PMID: 17449247]
[25]
Melato, S.; Coghi, P.; Basilico, N.; Prosperi, D.; Monti, D. Novel 4‐aminoquinolines through microwave‐assisted reactions: A practical route to antimalarial agents. Eur. J. Org. Chem., 2007, 2007(36), 6118-6123.
[http://dx.doi.org/10.1002/ejoc.200700612]
[26]
Xiong, Y.Z.; Chen, F.E.; Balzarini, J.; De Clercq, E.; Pannecouque, C. Non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 11: Structural modulations of diaryltriazines with potent anti-HIV activity. Eur. J. Med. Chem., 2008, 43(6), 1230-1236.
[http://dx.doi.org/10.1016/j.ejmech.2007.08.001] [PMID: 17869386]
[27]
Zhou, C.; Min, J.; Liu, Z.; Young, A.; Deshazer, H.; Gao, T.; Chang, Y.T.; Kallenbach, N.R. Synthesis and biological evaluation of novel 1,3,5-triazine derivatives as antimicrobial agents. Bioorg. Med. Chem. Lett., 2008, 18(4), 1308-1311.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.031] [PMID: 18226902]
[28]
Srinivas, K.; Srinivas, U.; Bhanuprakash, K.; Harakishore, K.; Murthy, U.S.N.; Jayathirtha Rao, V. Synthesis and antibacterial activity of various substituted s-triazines. Eur. J. Med. Chem., 2006, 41(11), 1240-1246.
[http://dx.doi.org/10.1016/j.ejmech.2006.05.013] [PMID: 16815597]
[29]
Guan, B.; Jiang, C. Design and development of 1,3,5-triazine derivatives as protective agent against spinal cord injury in rat via inhibition of NF-ĸB. Bioorg. Med. Chem. Lett., 2021, 41, 127964.
[http://dx.doi.org/10.1016/j.bmcl.2021.127964] [PMID: 33744436]
[30]
Jaraph-Alhadad, L.A.; Mekheimer, R.A.; Abd-Elmonem, M.; Moustafa, M.S.; Abdel-Hameed, A.; Abuo-Rahma, G.E.; Sadek, K. A novel one-pot three-component synthesis of 4-aryl-6-alkylamino/piperidinyl-1, 3, 5-triazine-2-amines under controlled microwave irradiation. ARKIVOC, 2023, 2023, 4460660.
[http://dx.doi.org/10.24820/ark.5550190.p012.043]
[31]
Pavan, P.; Angajala, G.; Subashini, R.; Aruna, V. Ultrasound assisted MK-10 catalyzed new benzimidazole bejeweled quinoline molecular hybrids: Facile synthesis, sar, molecular modelling and biological evaluation as free radical scavengers and antiinflammatory agents. J. Mol. Str., 2024, 1305, 137702.
[32]
Maji, L.; Sengupta, S.; Purawarga Matada, G.S.; Teli, G.; Biswas, G.; Das, P.K. Medicinal chemistry perspective of JAK inhibitors: Synthesis, biological profile, selectivity, and structure activity relationship. Mol. Divers., 2024, 1-47.
[33]
Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. Synthesis and antitumor activities of 1,2,3-triazines and their benzo- and heterofused derivatives. Eur. J. Med. Chem., 2017, 142, 74-86.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.003] [PMID: 28615111]
[34]
Moreno, L.M.; Quiroga, J.; Abonia, R.; Lauria, A.; Martorana, A.; Insuasty, H.; Insuasty, B. Synthesis, biological evaluation, and in silico studies of novel chalcone- and pyrazoline-based 1,3,5-triazines as potential anticancer agents. RSC Advances, 2020, 10(56), 34114-34129.
[http://dx.doi.org/10.1039/D0RA06799G] [PMID: 35519030]
[35]
Ranjbari, S.; Behzadi, M.; Sepehri, S.; Dadkhah Aseman, M.; Jarrahpour, A.; Mohkam, M.; Ghasemi, Y.; Reza Akbarizadeh, A.; Kianpour, S.; Atioğlu, Z.; Özdemir, N.; Akkurt, M.; Masoud Nabavizadeh, S.; Turos, E. Investigations of antiproliferative and antioxidant activity of β-lactam morpholino-1,3,5-triazine hybrids. Bioorg. Med. Chem., 2020, 28(8), 115408.
[http://dx.doi.org/10.1016/j.bmc.2020.115408] [PMID: 32165076]
[36]
Kuthyala, S.; Hanumanthappa, M.; Madan Kumar, S.; Sheik, S.; Gundibasappa Karikannar, N.; Prabhu, A. Crystal, Hirshfeld, ADMET, drug-like and anticancer study of some newly synthesized imidazopyridine containing pyrazoline derivatives. J. Mol. Struct., 2019, 1197, 65-72.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.031]
[37]
Verma, S.K.; Rangappa, S.; Verma, R.; Xue, F.; Verma, S.; Sharath Kumar, K.S.; Rangappa, K.S. Sulfur (S)-containing heterocyclic hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and its SAR. Bioorg. Chem., 2024, 145, 107241.
[http://dx.doi.org/10.1016/j.bioorg.2024.107241] [PMID: 38437761]
[38]
Singla, P.; Luxami, V.; Paul, K. Triazine as a promising scaffold for its versatile biological behavior. Eur. J. Med. Chem., 2015, 102, 39-57.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.037] [PMID: 26241876]
[39]
Pan, Z.; Fu, Y.; Peng, C.; Xiao, L.; Zhu, S.; Peng, F.; Liu, Q.; Zhou, B. Triazine-Porphyrin-based aminal linked porous organic polymer as self-enhanced photo/enzyme synergistic antibacterial agent for wound healing. Microporous Mesoporous Mater., 2024, 365, 112881.
[http://dx.doi.org/10.1016/j.micromeso.2023.112881]
[40]
Kumar, R.; Kumar, N.; Roy, R.K.; Singh, A. 1, 3, 5-triazine analogs: A potent anticancer scaffold. Curr. Signal Transduct. Ther., 2019, 14(2), 87-106.
[http://dx.doi.org/10.2174/1574362413666180221113805]
[41]
Kumar, R.; Kumar, N.; Roy, R.K.; Singh, A. Triazines – A comprehensive review of their synthesis and diverse biological importance. Curr. Med. Drug Res., 2017, 1(1), 173.
[http://dx.doi.org/10.53517/CMDR.2581-5008.112017173]
[42]
Sukhadia, B.; Tan, D.; Oh, Y.; Chae, Y.K. EP08.02-023 Differentiation syndrome in a patient with non-small-cell lung cancer harboring IDH2 mutation treated with enasidenib. J. Thorac. Oncol., 2022, 17(9), S407-S408.
[http://dx.doi.org/10.1016/j.jtho.2022.07.705]
[43]
Yao, K.; Liu, H.; Yu, S.; Zhu, H.; Pan, J. Resistance to mutant IDH inhibitors in acute myeloid leukemia: Molecular mechanisms and therapeutic strategies. Cancer Lett., 2022, 533, 215603.
[http://dx.doi.org/10.1016/j.canlet.2022.215603] [PMID: 35227786]
[44]
Alirezapour, F.; Khanmohammadi, A. The effect of cation–π interactions on the stability and electronic properties of anticancer drug Altretamine: A theoretical study. Acta Crystallogr. C Struct. Chem., 2020, 76(10), 982-991.
[http://dx.doi.org/10.1107/S2053229620012589] [PMID: 33016269]
[45]
Hassanzadeh, K.; Akhtari, K.; Esmaeili, S.S.; Vaziri, A.; Zamani, H.; Maghsoodi, M.; Noori, S.; Moradi, A.; Hamidi, P. Encapsulation of thiotepa and altretamine as neurotoxic anticancer drugs in Cucurbit[n]uril (n=7, 8) nanocapsules: A DFT study. J. Theor. Comput. Chem., 2016, 15(7), 1650056.
[http://dx.doi.org/10.1142/S0219633616500565]
[46]
Issa, J.P.J.; Kantarjian, H.M.; Kirkpatrick, P. Azacitidine. Nat. Rev. Drug Discov., 2005, 4(4), 275-276.
[http://dx.doi.org/10.1038/nrd1698] [PMID: 15861567]
[47]
Rastelli, G.; Sirawaraporn, W.; Sompornpisut, P.; Vilaivan, T.; Kamchonwongpaisan, S.; Quarrell, R.; Lowe, G.; Thebtaranonth, Y.; Yuthavong, Y. Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: Structural basis of antifolate resistance. Bioorg. Med. Chem., 2000, 8(5), 1117-1128.
[http://dx.doi.org/10.1016/S0968-0896(00)00022-5] [PMID: 10882022]
[48]
Barchanska, H.; Sajdak, M.; Szczypka, K.; Swientek, A.; Tworek, M.; Kurek, M. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland. Environ. Sci. Pollut. Res. Int., 2017, 24(1), 644-658.
[http://dx.doi.org/10.1007/s11356-016-7798-3] [PMID: 27743329]
[49]
Bonora, S.; Benassi, E.; Maris, A.; Tugnoli, V.; Ottani, S.; Di Foggia, M. Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides. J. Mol. Struct., 2013, 1040, 139-148.
[http://dx.doi.org/10.1016/j.molstruc.2013.02.025]
[50]
Silva, T.S.; de Freitas Souza, M.; Maria da Silva Teófilo, T.; Silva dos Santos, M.; Formiga Porto, M.A.; Martins Souza, C.M.; Barbosa dos Santos, J.; Silva, D.V. Use of neural networks to estimate the sorption and desorption coefficients of herbicides: A case study of diuron, hexazinone, and sulfometuron-methyl in Brazil. Chemosphere, 2019, 236, 124333.
[http://dx.doi.org/10.1016/j.chemosphere.2019.07.064] [PMID: 31319303]
[51]
Abdalla, N.S.; E Amr, A.E.; S M El-Tantawy, A.; A Al-Omar, M.; H Kamel, A.; Khalifa, N.M. Tailor-made specific recognition of cyromazine pesticide integrated in a potentiometric strip cell for environmental and food analysis. Polymers, 2019, 11(9), 1526.
[http://dx.doi.org/10.3390/polym11091526] [PMID: 31546880]
[52]
Kasozi, K.I.; MacLeod, E.T.; Welburn, S.C.; Welburn, S.C. African animal trypanocide resistance: A systematic review and meta-analysis. Front. Vet. Sci., 2023, 9, 950248.
[http://dx.doi.org/10.3389/fvets.2022.950248] [PMID: 36686196]
[53]
Asif, M. Diverse chemical and pharmacological properties of triazine compounds. Int. J. Hetero. Chem., 2019, 9(2), 49-79.
[54]
Bespalov, V.G.; Beliaeva, O.A.; Kireeva, G.S.; Senchik, K.Iu.; Stukov, A.N.; Aristova, V.A.; Vyshinskaia, E.A.; Kon’kov, S.A.; Krylova, I.A.; Semënov, A.L.; Maĭdin, M.A.; Aleksandrov, V.A.; Beliaev, A.M. [Antitumor effect of dioxadet in intraperitoneal chemoperfusion treatment for advanced ovarian cancer in experimental setting]. Vopr. Onkol., 2014, 60(2), 72-79.
[PMID: 24919266]
[55]
D’Ruiz, C.D.; Plautz, J.R.; Schuetz, R.; Sanabria, C.; Hammonds, J.; Erato, C.; Klock, J.; Vollhardt, J.; Mesaros, S. Preliminary clinical pharmacokinetic evaluation of bemotrizinol - A new sunscreen active ingredient being considered for inclusion under FDA’s over-the-counter (OTC) sunscreen monograph. Regul. Toxicol. Pharmacol., 2023, 139, 105344.
[http://dx.doi.org/10.1016/j.yrtph.2023.105344] [PMID: 36738872]
[56]
Santos, F.P.S.; Kantarjian, H.; Garcia-Manero, G.; Issa, J.P.; Ravandi, F. Decitabine in the treatment of myelodysplastic syndromes. Expert Rev. Anticancer Ther., 2010, 10(1), 9-22.
[http://dx.doi.org/10.1586/era.09.164] [PMID: 20014881]
[57]
Fernández-Calviño, D.; Rousk, J.; Bååth, E.; Bollmann, U.E.; Bester, K.; Brandt, K.K. Short-term toxicity assessment of a triazine herbicide (terbutryn) underestimates the sensitivity of soil microorganisms. Soil Biol. Biochem., 2021, 154, 108130.
[http://dx.doi.org/10.1016/j.soilbio.2021.108130]
[58]
Oturan, N.; Brillas, E.; Oturan, M.A. Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ. Chem. Lett., 2012, 10(2), 165-170.
[http://dx.doi.org/10.1007/s10311-011-0337-z]
[59]
Das, S.K.; Mukherjee, I.; Das, S.K. Application of biochar in agriculture and environment, and its safety issues. Int. J. Bio-Resour. Stress Manag., 2017, 8(2), 236-241.
[http://dx.doi.org/10.23910/IJBSM/2017.8.2.1712]
[60]
Albarrán, A.; Celis, R.; Hermosín, M.C.; López-Piñeiro, A.; Cornejo, J. Behaviour of simazine in soil amended with the final residue of the olive-oil extraction process. Chemosphere, 2004, 54(6), 717-724.
[http://dx.doi.org/10.1016/j.chemosphere.2003.09.004] [PMID: 14602104]
[61]
Kourbeli, V.; Chontzopoulou, E.; Moschovou, K.; Pavlos, D.; Mavromoustakos, T.; Papanastasiou, I.P. An overview on target-based drug design against kinetoplastid protozoan infections: Human African trypanosomiasis. Molecules, 2021, 26(15), 4629.
[http://dx.doi.org/10.3390/molecules26154629] [PMID: 34361781]
[62]
Golder, F.J.; Hewitt, M.M.; McLeod, J.F. Respiratory stimulant drugs in the post-operative setting. Respir. Physiol. Neurobiol., 2013, 189(2), 395-402.
[http://dx.doi.org/10.1016/j.resp.2013.06.010] [PMID: 23791825]
[63]
Laurent, S. Antihypertensive drugs. Pharmacol. Res., 2017, 124, 116-125.
[http://dx.doi.org/10.1016/j.phrs.2017.07.026] [PMID: 28780421]
[64]
Islam, M.M.; Oyarzun-Gonzalez, X.; Bose-Brill, S.; Donneyong, M.M. Supplemental nutrition assistance program and adherence to antihypertensive medications. JAMA Netw. Open, 2024, 7(2), e2356619.
[http://dx.doi.org/10.1001/jamanetworkopen.2023.56619] [PMID: 38393731]
[65]
Singla, P.; Luxami, V.; Paul, K. Triazine–benzimidazole hybrids: Anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg. Med. Chem., 2015, 23(8), 1691-1700.
[http://dx.doi.org/10.1016/j.bmc.2015.03.012] [PMID: 25792141]
[66]
Hu, J.; Zhang, Y.; Tang, N.; Lu, Y.; Guo, P.; Huang, Z. Discovery of novel 1,3,5-triazine derivatives as potent inhibitor of cervical cancer via dual inhibition of PI3K/mTOR. Bioorg. Med. Chem., 2021, 32, 115997.
[http://dx.doi.org/10.1016/j.bmc.2021.115997] [PMID: 33440319]
[67]
Shawish, I.; Barakat, A.; Aldalbahi, A.; Alshaer, W.; Daoud, F.; Alqudah, D.A.; Al Zoubi, M.; Hatmal, M.M.; Nafie, M.S.; Haukka, M.; Sharma, A.; de la Torre, B.G.; Albericio, F.; El-Faham, A. Acetic acid mediated for one-pot synthesis of novel pyrazolyl s-triazine derivatives for the targeted therapy of triple-negative breast tumor cells (MDA-MB-231) via EGFR/PI3K/AKT/mTOR signaling cascades. Pharmaceutics, 2022, 14(8), 1558.
[http://dx.doi.org/10.3390/pharmaceutics14081558] [PMID: 36015186]
[68]
Murase, Y.; Hosoya, K.; Sato, T.; Kim, S.; Okumura, M. Antitumor activity of the dual PI3K/mTOR inhibitor gedatolisib and the involvement of ABCB1 in gedatolisib resistance in canine tumor cells. Oncol. Rep., 2022, 47(4), 61.
[http://dx.doi.org/10.3892/or.2022.8272] [PMID: 35088890]
[69]
Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem., 2017, 142, 328-375.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.009] [PMID: 28851503]
[70]
Guo, H.; Diao, Q.P. 1, 3, 5-Triazine-azole hybrids and their anticancer activity. Curr. Top. Med. Chem., 2020, 20(16), 1481-1492.
[http://dx.doi.org/10.2174/1568026620666200310122741] [PMID: 32156236]
[71]
Zou, J.P.; Zhang, Z.; Lv, J.Y.; Zhang, X.Q.; Zhang, Z.Y.; Han, S.T.; Liu, Y.W.; Liu, W.W.; Ji, J.; Shi, D.H. Design, synthesis and anti-cancer evaluation of genistein-1,3,5-triazine derivatives. Tetrahedron, 2023, 134, 133293.
[http://dx.doi.org/10.1016/j.tet.2023.133293]
[72]
Developmental therapeutics program. Available From: dtp.nci.nih.gov
[73]
Singla, P.; Luxami, V.; Paul, K. Synthesis and in vitro evaluation of novel triazine analogues as anticancer agents and their interaction studies with bovine serum albumin. Eur. J. Med. Chem., 2016, 117, 59-69.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.088] [PMID: 27089212]
[74]
Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The National Cancer Institute: Cancer drug discovery and development program. Semin. Oncol., 1992, 19(6), 622-638.
[PMID: 1462164]
[75]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[76]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[77]
Chua, M.S.; Shi, D.F.; Wrigley, S.; Bradshaw, T.D.; Hutchinson, I.; Shaw, P.N.; Barrett, D.A.; Stanley, L.A.; Stevens, M.F.G. Antitumor benzothiazoles. 7. Synthesis of 2-(4-acylaminophenyl)benzothiazoles and investigations into the role of acetylation in the antitumor activities of the parent amines. J. Med. Chem., 1999, 42(3), 381-392.
[http://dx.doi.org/10.1021/jm981076x] [PMID: 9986708]
[78]
Singla, P.; Luxami, V.; Paul, K. Synthesis, in vitro antitumor activity, dihydrofolate reductase inhibition, DNA intercalation and structure–activity relationship studies of 1,3,5-triazine analogues. Bioorg. Med. Chem. Lett., 2016, 26(2), 518-523.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.083] [PMID: 26670841]
[79]
Zheng, M.; Xu, C.; Ma, J.; Sun, Y.; Du, F.; Liu, H.; Lin, L.; Li, C.; Ding, J.; Chen, K.; Jiang, H. Synthesis and antitumor evaluation of a novel series of triaminotriazine derivatives. Bioorg. Med. Chem., 2007, 15(4), 1815-1827.
[http://dx.doi.org/10.1016/j.bmc.2006.11.028] [PMID: 17157510]
[80]
McKay, G.A.; Reddy, R.; Arhin, F.; Belley, A.; Lehoux, D.; Moeck, G.; Sarmiento, I.; Parr, T.R.; Gros, P.; Pelletier, J.; Far, A.R. Triaminotriazine DNA helicase inhibitors with antibacterial activity. Bioorg. Med. Chem. Lett., 2006, 16(5), 1286-1290.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.076] [PMID: 16343901]
[81]
Jagadeesh Kumar, G.; Sriramkumar Bomma, H.V.S.; Srihari, E.; Shrivastava, S.; Naidu, V.G.M.; Srinivas, K.; Jayathirtha Rao, V. Synthesis and anticancer activity of some new s-triazine derivatives. Med. Chem. Res., 2013, 22(12), 5973-5981.
[http://dx.doi.org/10.1007/s00044-013-0584-6]
[82]
Maga, G.; Falchi, F.; Radi, M.; Botta, L.; Casaluce, G.; Bernardini, M.; Irannejad, H.; Manetti, F.; Garbelli, A.; Samuele, A.; Zanoli, S.; Esté, J.A.; Gonzalez, E.; Zucca, E.; Paolucci, S.; Baldanti, F.; De Rijck, J.; Debyser, Z.; Botta, M. Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity: Synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation. ChemMedChem, 2011, 6(8), 1371-1389.
[http://dx.doi.org/10.1002/cmdc.201100166] [PMID: 21698775]
[83]
Rania, M.G.; Mohamed, A.M.; Hassan, M.E. Molecular modeling of new 1, 3, 5-triazine derivatives as anticancer agents. Der. Pharma Chem., 2019, 11, 7-14.
[84]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[85]
Moreno, L.; Quiroga, J.; Abonia, R.; Ramírez-Prada, J.; Insuasty, B. Synthesis of new 1, 3, 5-triazine-based 2-pyrazolines as potential anticancer agents. Molecules, 2018, 23(8), 1956.
[http://dx.doi.org/10.3390/molecules23081956] [PMID: 30082588]
[86]
Mikhaylichenko, S.N.; Patel, S.M.; Dalili, S.; Chesnyuk, A.A.; Zaplishny, V.N. Synthesis and structure of new 1,3,5-triazine-pyrazole derivatives. Tetrahedron Lett., 2009, 50(21), 2505-2508.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.054]
[87]
Farooq, M.; Taha, N.; Butorac, R.; Evans, D.; Elzatahry, A.; Elsayed, E.; Wadaan, M.; Al-Deyab, S.; Cowley, A. Biological screening of newly synthesized BIAN N-heterocyclic gold carbene complexes in zebrafish embryos. Int. J. Mol. Sci., 2015, 16(10), 24718-24731.
[http://dx.doi.org/10.3390/ijms161024718] [PMID: 26501273]
[88]
Farooq, M.; Sharma, A.; Almarhoon, Z.; Al-Dhfyan, A.; El-Faham, A.; Taha, N.A.; Wadaan, M.A.M.; Torre, B.G.; Albericio, F. Design and synthesis of mono-and di-pyrazolyl-s-triazine derivatives, their anticancer profile in human cancer cell lines, and in vivo toxicity in zebrafish embryos. Bioorg. Chem., 2019, 87, 457-464.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.063] [PMID: 30927586]
[89]
Sączewski, F.; Bułakowska, A. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2006, 41(5), 611-615.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.012] [PMID: 16540207]
[90]
(a) Brzozowski, Z.; Sączewski, F. Synthesis and antitumor activity of novel 2-amino-4-(3,5,5-trimethyl-2-pyrazolino)-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2002, 37(9), 709-720.
[http://dx.doi.org/10.1016/S0223-5234(02)01379-X] [PMID: 12350288];
(b) Sączewski, F.; Bułakowska, A.; Bednarski, P.; Grunert, R. Synthesis of 2, 4-diamino-1, 3, 5-triazine analogues of methotrexate with potential antitumor activity. Eur. J. Med. Chem., 2002, 37(9), 709-720.
[http://dx.doi.org/10.1016/S0223-5234(02)01379-X] [PMID: 12350288]
[91]
Sączewski, F.; Bułakowska, A.; Bednarski, P.; Grunert, R. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2006, 41(2), 219-225.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.013] [PMID: 16377034]
[92]
Čurillová, J.; Pecháčová, M.; Padrtová, T.; Pecher, D.; Mascaretti, Š.; Jampílek, J.; Paškov, Ľ.; Bilka, F.; Kováč, G.; Malík, I. Synthesis and critical view on the structure-activity relationships of N-(substituted phenyl)-/N-diphenylmethyl-piperazine-based conjugates as antimycobacterial agents. Appli. Sci., 2021, 12(1), 300.
[93]
Barrow, F.; Thorneycroft, F.J. 159. N-oximino-ethers. Part IV. Formation of oximino-ethers in the Ehrlich–Sachs reaction. J. Chem. Soc., 1939, 0(0), 769-773.
[http://dx.doi.org/10.1039/JR9390000769]
[94]
Hoffman, R.; Bartsh, A.; Cho, B.R. Base-promoted, imine-forming 1, 2-elimination reactions. Acc. Chem. Rev., 1989, 6, 211-217.
[95]
Brzozowski, Z.; Kamiński, Z.; Kozakiewicz, I.; Angielski, S.; Rogulski, J.; Synteza, I. [Synthesis and hypoglycemic activity of various N-(2-pyrazoline-1-carbaimidoyl)-guanidine derivatives]. Acta Pol. Pharm., 1979, 36(4), 401-410.
[PMID: 532682]
[96]
Pomarnacka, E.; Bednarski, P.; Grunert, R.; Reszka, P. Synthesis and anticancer activity of novel 2-amino-4-(4-phenylpiperazino)- 1,3,5-triazine derivatives. Acta Pol. Pharm., 2004, 61(6), 461-466.
[PMID: 15794339]
[97]
Makowska, A.; Sączewski, F.; Bednarski, P.; Sączewski, J.; Balewski, Ł. Hybrid molecules composed of 2, 4-diamino-1, 3, 5-triazines and 2-imino-coumarins and coumarins. Synthesis and cytotoxic properties. Molecules, 2018, 23(7), 1616.
[http://dx.doi.org/10.3390/molecules23071616] [PMID: 29970833]
[98]
(a) Singh, U.P.; Bhat, H.R.; Gahtori, P. Antifungal activity, SAR and physicochemical correlation of some thiazole-1,3,5-triazine derivatives. J. Mycol. Med., 2012, 22(2), 134-141.
[http://dx.doi.org/10.1016/j.mycmed.2011.12.073] [PMID: 23518015];
(b) Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[99]
Srivastava, J.K.; Pillai, G.G.; Bhat, H.R.; Verma, A.; Singh, U.P. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase. Sci. Rep., 2017, 7(1), 5851.
[http://dx.doi.org/10.1038/s41598-017-05934-5] [PMID: 28724908]
[100]
Machakanur, S.S.; Patil, B.R.; Badiger, D.S.; Bakale, R.P.; Gudasi, K.B.; Annie Bligh, S.W. Synthesis, characterization and anticancer evaluation of novel tri-arm star shaped 1,3,5-triazine hydrazones. J. Mol. Struct., 2012, 1011, 121-127.
[http://dx.doi.org/10.1016/j.molstruc.2011.12.023]
[101]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[102]
Betancur-Galvis, L.A.; Saez, J.; Granados, H.; Salazar, A.; Ossa, J.E. Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem. Inst. Oswaldo Cruz, 1999, 94(4), 531-535.
[http://dx.doi.org/10.1590/S0074-02761999000400019] [PMID: 10446015]
[103]
Kothayer, H.; Elshanawani, A.A.; Abu Kull, M.E.; El-Sabbagh, O.I.; Shekhar, M.P.V.; Brancale, A.; Jones, A.T.; Westwell, A.D. Design, synthesis and in vitro anticancer evaluation of 4,6-diamino-1,3,5-triazine-2-carbohydrazides and -carboxamides. Bioorg. Med. Chem. Lett., 2013, 23(24), 6886-6889.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.087] [PMID: 24153206]
[104]
Rowan, N.J.; Deans, K.; Anderson, J.G.; Gemmell, C.G.; Hunter, I.S.; Chaithong, T. Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Appl. Environ. Microbiol., 2001, 67(9), 3873-3881.
[http://dx.doi.org/10.1128/AEM.67.9.3873-3881.2001] [PMID: 11525980]
[105]
Sachs, J.; Malaney, P. The economic and social burden of malaria. Nature, 2002, 415(6872), 680-685.
[http://dx.doi.org/10.1038/415680a] [PMID: 11832956]
[106]
White, N.J. Artemisinin resistance—the clock is ticking. Lancet, 2010, 376(9758), 2051-2052.
[http://dx.doi.org/10.1016/S0140-6736(10)61963-0] [PMID: 21168039]
[107]
Kremsner, P.G.; Krishna, S. Antimalarial combinations. Lancet, 2004, 364(9430), 285-294.
[http://dx.doi.org/10.1016/S0140-6736(04)16680-4] [PMID: 15262108]
[108]
Snow, R.W.; Guerra, C.A.; Noor, A.M.; Myint, H.Y.; Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 2005, 434(7030), 214-217.
[http://dx.doi.org/10.1038/nature03342] [PMID: 15759000]
[109]
Kumar, A.; Paliwal, D.; Saini, D.; Thakur, A.; Aggarwal, S.; Kaushik, D. A comprehensive review on synthetic approach for antimalarial agents. Eur. J. Med. Chem., 2014, 85, 147-178.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.084] [PMID: 25084143]
[110]
Patel, R.; Keum, Y.S.; Park, S. Medicinal chemistry discoveries among 1,3,5-triazines: Recent advances (2000-2013) as antimicrobial, anti-TB, anti-HIV and antimalarials. Mini Rev. Med. Chem., 2014, 14(9), 768-789.
[http://dx.doi.org/10.2174/1389557514666140622205904] [PMID: 24958216]
[111]
World Health Organization. Malaria. 2018.https://www.who.int/news-room/fact-sheets/detail/malaria
[112]
Kumar, A.; Srivastava, K.; Kumar, S.R.; Puri, S.K.; Chauhan, P.M. Synthesis of new 4-aminoquinolines and quinoline–acridine hybrids as antimalarial agents. Bioorg. Med. Chem. Lett., 2009, 19, 6996-6999.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.010] [PMID: 19879137]
[113]
Höglund, I.P.J.; Silver, S.; Engström, M.T.; Salo, H.; Tauber, A.; Kyyrönen, H.K.; Saarenketo, P.; Hoffrén, A.M.; Kokko, K.; Pohjanoksa, K.; Sallinen, J.; Savola, J.M.; Wurster, S.; Kallatsa, O.A. Structure-activity relationship of quinoline derivatives as potent and selective α(2C)-adrenoceptor antagonists. J. Med. Chem., 2006, 49(21), 6351-6363.
[http://dx.doi.org/10.1021/jm060262x] [PMID: 17034141]
[114]
Kumar, A.; Srivastava, K.; Raja Kumar, S.; Siddiqi, M.I.; Puri, S.K.; Sexana, J.K.; Chauhan, P.M.S. 4-Anilinoquinoline triazines: A novel class of hybrid antimalarial agents. Eur. J. Med. Chem., 2011, 46(2), 676-690.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.003] [PMID: 21194812]
[115]
Kumar, D.; Khan, S.I.; Ponnan, P.; Rawat, D.S. Triazine–pyrimidine based molecular hybrids: Synthesis, docking studies and evaluation of antimalarial activity. New J. Chem., 2014, 38(10), 5087-5095.
[http://dx.doi.org/10.1039/C4NJ00978A]
[116]
Doktorov, K.; Kurteva, V.B.; Ivanova, D.; Timtcheva, I. Microwave assisted solventless synthesis of melamines with flexible aromatic substituents. ARKIVOC, 2007, 2007(15), 232-245.
[http://dx.doi.org/10.3998/ark.5550190.0008.f23]
[117]
Sahu, S.; Ghosh, S.K.; Kalita, J.; Dutta, M.; Bhat, H.R. Design, synthesis and antimalarial screening of some hybrid 4-aminoquinoline-triazine derivatives against pf-DHFR-TS. Exp. Parasitol., 2016, 163, 38-45.
[http://dx.doi.org/10.1016/j.exppara.2016.01.010] [PMID: 26821296]
[118]
Sahu, S.; Ghosh, S.K.; Gahtori, P.; Pratap Singh, U.; Bhattacharyya, D.R.; Bhat, H.R. In silico ADMET study, docking, synthesis and antimalarial evaluation of thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor. Pharmacol. Rep., 2019, 71(5), 762-767.
[http://dx.doi.org/10.1016/j.pharep.2019.04.006] [PMID: 31351317]
[119]
Gahtori, P.; Pandey, R.; Kumar, V.; Ghosh, S.K.; Das, A.; Kalita, J.M.; Sahu, S.; Prakash, A.; Bhattacharyya, D.R. Toward resistance‐compromised DHFR inhibitors part 1: Combined structure/ligand‐based virtual screenings and ADME‐Tox profiling. J. Chemometr., 2016, 30(8), 462-481.
[http://dx.doi.org/10.1002/cem.2814]
[120]
Bhat, H.R.; Singh, U.P.; Yadav, P.S.; Kumar, V.; Gahtori, P.; Das, A.; Chetia, D.; Prakash, A.; Mahanta, J. Synthesis, characterization and antimalarial activity of hybrid 4-aminoquinoline-1,3,5-triazine derivatives. Arab. J. Chem., 2016, 9, S625-S631.
[http://dx.doi.org/10.1016/j.arabjc.2011.07.001]
[121]
Bhat, H.R.; Singh, U.P.; Gahtori, P.; Ghosh, S.K.; Gogoi, K.; Prakash, A.; Singh, R.K. 4-Aminoquinoline-1,3,5-triazine: Design, synthesis, in vitro antimalarial activity and docking studies. New J. Chem., 2013, 37(9), 2654-2662.
[http://dx.doi.org/10.1039/c3nj00317e]
[122]
Bhat, H.R. Singh. U.P.; Gahtori, P.; Ghosh, S.P.; Gogoi, K.; Prakash, A.; Singh, R.K. in vitro and in vivo antimalarial activity of hybrid 4‐aminoquinoline–1, 3, 5‐triazine derivatives against wild and mutant malaria parasites. Chem. Biol. Drug Des., 2015, 86, 265-271.
[http://dx.doi.org/10.1111/cbdd.12490] [PMID: 25487527]
[123]
Bhat, H.R.; Singh, U.P.; Thakur, A.; Kumar Ghosh, S.; Gogoi, K.; Prakash, A.; Singh, R.K. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives. Exp. Parasitol., 2015, 157, 59-67.
[http://dx.doi.org/10.1016/j.exppara.2015.06.016] [PMID: 26164360]
[124]
Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis, antimalarial activity and cytotoxicity of 4-aminoquinoline–triazine conjugates. Bioorg. Med. Chem. Lett., 2010, 20(1), 322-325.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.106] [PMID: 19910192]
[125]
Gogoi, P.; Shakya, A.; Ghosh, S.K.; Gogoi, N.; Gahtori, P.; Singh, N.; Bhattacharyya, D.R.; Singh, U.P.; Bhat, H.R. In silico study, synthesis, and evaluation of the antimalarial activity of hybrid dimethoxy pyrazole 1,3,5‐triazine derivatives. J. Biochem. Mol. Toxicol., 2021, 35(3), e22682.
[http://dx.doi.org/10.1002/jbt.22682] [PMID: 33332673]
[126]
Katiyar, S.B.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Synthesis of 2-[3,5-substituted pyrazol-1-yl]-4,6-trisubstituted triazine derivatives as antimalarial agents. Bioorg. Med. Chem. Lett., 2005, 15(22), 4957-4960.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.023] [PMID: 16168643]
[127]
Adhikari, N.; Kashyap, A.; Shakya, A.; Ghosh, S.K.; Bhattacharyya, D.R.; Bhat, H.R.; Singh, U.P. Microwave assisted synthesis, docking and antimalarial evaluation of hybrid PABA‐substituted 1,3,5‐triazine derivatives. J. Heterocycl. Chem., 2020, 57(6), 2389-2399.
[http://dx.doi.org/10.1002/jhet.3955]
[128]
Gavade, S.N.; Markad, V.L.; Kodam, K.M.; Shingare, M.S.; Mane, D.V. Synthesis and biological evaluation of novel 2,4,6-triazine derivatives as antimicrobial agents. Bioorg. Med. Chem. Lett., 2012, 22(15), 5075-5077.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.111] [PMID: 22742908]
[129]
Chu, D.T.W.; Plattner, J.J.; Katz, L. New directions in antibacterial research. J. Med. Chem., 1996, 39(20), 3853-3874.
[http://dx.doi.org/10.1021/jm960294s] [PMID: 8831751]
[130]
Beović, B. The issue of antimicrobial resistance in human medicine. Int. J. Food Microbiol., 2006, 112(3), 280-287.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.05.001] [PMID: 16815582]
[131]
Suree, N.; Jung, M.; Clubb, R. Recent advances towards new anti-infective agents that inhibit cell surface protein anchoring in Staphylococcus aureus and other gram-positive pathogens. Mini Rev. Med. Chem., 2007, 7(10), 991-1000.
[http://dx.doi.org/10.2174/138955707782110097] [PMID: 17979801]
[132]
Buzzini, P.; Arapitsas, P.; Goretti, M.; Branda, E.; Turchetti, B.; Pinelli, P.; Ieri, F.; Romani, A. Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev. Med. Chem., 2008, 8(12), 1179-1187.
[http://dx.doi.org/10.2174/138955708786140990] [PMID: 18855732]
[133]
Al-Zaydi, K.M.; Khalil, H.H.; El-Faham, A.; Khattab, S.N. Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity. Chem. Cent. J., 2017, 11(1), 39.
[http://dx.doi.org/10.1186/s13065-017-0267-3] [PMID: 29086830]
[134]
Modh, R.P.; Patel, A.C.; Chikhalia, K.H. Design, synthesis, antibacterial, and antifungal studies of novel 3-substituted coumarinyl-triazine derivatives. hc, 2013, 19(5), 343-349.
[http://dx.doi.org/10.1515/hc-2013-0104]
[135]
Desai, N.C.; Makwana, A.H.; Senta, R.D. Synthesis, characterization and antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2-ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides. J. Saudi Chem. Soc., 2016, 20(6), 686-694.
[http://dx.doi.org/10.1016/j.jscs.2015.01.004]
[136]
Patel, D.H.; Chikhalia, K.H.; Shah, N.K.; Patel, D.P.; Kaswala, P.B.; Buha, V.M. Synthesis and antimicrobial studies of s -triazine based heterocycles. J. Enzyme Inhib. Med. Chem., 2010, 25(1), 121-125.
[http://dx.doi.org/10.3109/14756360903027956] [PMID: 19814592]
[137]
Baldaniya, B.B.; Patel, P.K. Synthesis, antibacterial and antifungal activities of s-triazine derivatives. J. Chem., 2009, 6(3), 673-680.
[138]
Mane, D.V.; Mane, M.; Pardeshi, R.K. Synthesis and antimicrobial activity of 2,4,6-substituted S-triazine derivatives. In: Current Research in Biochemistry and Microbiology; Microbiologist society of India, 2015; pp. 50-63.
[139]
Dinari, M.; Gharahi, F.; Asadi, P. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids. J. Mol. Struct., 2018, 1156, 43-50.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.087]
[140]
Shah, D.R.; Lakum, H.P.; Chikhalia, K.H. Synthesis and in vitro antimicrobial evaluation of amine substituted s-triazine based thiazolidinone/chalcone hybrids. Int. Lett. Chem. Phy. Astron, 2014, 36, 207-219. 17.
[141]
Gahtori, P.; Ghosh, S.K.; Singh, B.; Singh, U.P.; Bhat, H.R.; Uppal, A. Synthesis, SAR and antibacterial activity of hybrid chloro, dichloro-phenylthiazolyl-s-triazines. Saudi Pharm. J., 2012, 20(1), 35-43.
[http://dx.doi.org/10.1016/j.jsps.2011.05.003] [PMID: 23960775]
[142]
Singh, U.P.; Pathak, M.; Dubey, V.; Bhat, H.R.; Gahtori, P.; Singh, R.K. Design, synthesis, antibacterial activity, and molecular docking studies of novel hybrid 1,3-thiazine-1,3,5-triazine derivatives as potential bacterial translation inhibitor. Chem. Biol. Drug Des., 2012, 80(4), 572-583.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01430.x] [PMID: 22702334]
[143]
Kumar, S.; Bhat, H.R.; Kumawat, M.K.; Singh, U.P. Design and one-pot synthesis of hybrid thiazolidin-4-one-1,3,5-triazines as potent antibacterial agents against human disease-causing pathogens. New J. Chem., 2013, 37(3), 581-584.
[http://dx.doi.org/10.1039/c2nj41028a]
[144]
Kaswala, P.B.; Chikhalia, K.H.; Shah, N.K.; Patel, D.P.; Patel, D.H.; Mudaliar, G.V. Design, synthesis and antimicrobial evaluation of s-triazinyl urea and thiourea derivatives. ARKIVOC, 2009, 2009(11), 326-335.
[http://dx.doi.org/10.3998/ark.5550190.0010.b30]
[145]
Patil, V.; Noonikara-Poyil, A.; Joshi, S.D.; Patil, S.A.; Patil, S.A.; Lewis, A.M.; Bugarin, A. Synthesis, molecular docking studies, and in vitro evaluation of 1,3,5-triazine derivatives as promising antimicrobial agents. J. Mol. Struct., 2020, 1220, 128687.
[http://dx.doi.org/10.1016/j.molstruc.2020.128687]
[146]
Dandia, A.; Arya, K.; Sati, M.; Sarawgi, P. Green chemical synthesis of fluorinated 1,3,5-triaryl-s-triazines in aqueous medium under microwaves as potential antifungal agents. J. Fluor. Chem., 2004, 125(9), 1273-1277.
[http://dx.doi.org/10.1016/j.jfluchem.2004.03.002]
[147]
Shinde, R.S.; Dake, S.A.; Pawar, R.P. Design, synthesis and antimicrobial activity of some triazine chalcone derivatives. Antiinfect. Agents, 2021, 18(4), 332-338.
[http://dx.doi.org/10.2174/2211352517666190710115111]
[148]
Sharma, A.; Ghabbour, H.; Khan, S.T.; de la Torre, B.G.; Albericio, F.; El-Faham, A. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity. J. Mol. Struct., 2017, 1145, 244-253.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.040]
[149]
Klenk, H.D.; Rott, R. The molecular biology of influenza virus pathogenicity. Adv. Virus Res., 1988, 34, 247-281.
[http://dx.doi.org/10.1016/S0065-3527(08)60520-5] [PMID: 3046255]
[150]
Kuznetsov, O.K.; Kiselev, O.I. Potential of several triazene derivatives against DENGUE viruses. J. Med. Acad., 2003, 2, 112-121.
[151]
Abimbola Salubi, C.; Abbo, H.S.; Jahed, N.; Titinchi, S. Medicinal chemistry perspectives on the development of piperazine-containing HIV-1 inhibitors. Bioorg. Med. Chem., 2024, 99, 117605.
[http://dx.doi.org/10.1016/j.bmc.2024.117605] [PMID: 38246116]
[152]
Khodair, A.I.; El-Barbary, A.A.; Imam, D.R.; Kheder, N.A.; Elmalki, F.; Ben Hadda, T. Synthesis, antiviral, DFT and molecular docking studies of some novel 1,2,4-triazine nucleosides as potential bioactive compounds. Carbohydr. Res., 2021, 500, 108246.
[http://dx.doi.org/10.1016/j.carres.2021.108246] [PMID: 33516074]
[153]
Majeed Ganai, A.; Khan Pathan, T.; Hampannavar, G.A.; Pawar, C.; Obakachi, V.A.; Kushwaha, B.; Deshwar Kushwaha, N.; Karpoormath, R. Recent advances on the s‐triazine scaffold with emphasis on synthesis, structure‐activity and pharmacological aspects: A concise review. ChemistrySelect, 2021, 6(7), 1616-1660.
[http://dx.doi.org/10.1002/slct.202004591]
[154]
Maarouf, A.R.; Farahat, A.A.; Selim, K.B.; Eisa, H.M. Synthesis and antiviral activity of benzimidazolyl- and triazolyl-1,3,5-triazines. Med. Chem. Res., 2012, 21(6), 703-710.
[http://dx.doi.org/10.1007/s00044-011-9574-8]
[155]
Pandey, V.K.; Tusi, Z.; Tandon, M.; Joshi, M.N.; Bajpai, S.K. Synthesis of thiadiazolo-s-triazines for their antiviral activity based on QSAR studies. Indian J. Chem., 2003, 42, 2583-2588.
[156]
Mibu, N.; Yokomizo, K.; Koga, A.; Honda, M.; Mizokami, K.; Fujii, H.; Ota, N.; Yuzuriha, A.; Ishimaru, K.; Zhou, J.; Miyata, T.; Sumoto, K. Synthesis and antiviral activities of some 2,4,6-trisubstituted 1,3,5-triazines. Chem. Pharm. Bull., 2014, 62(10), 1032-1040.
[http://dx.doi.org/10.1248/cpb.c14-00421] [PMID: 25273062]
[157]
Gupta, O.; Pradhan, T.; Bhatia, R.; Monga, V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur. J. Med. Chem., 2021, 223, 113606.
[http://dx.doi.org/10.1016/j.ejmech.2021.113606] [PMID: 34171661]
[158]
Manathanath, M.; Sasidharan, S.; Saudagar, P.; Gopalakrishna Panicker, U.; Sujatha, S. Photodynamic evaluation of triazine appended porphyrins as anti-leishmanial and anti-tumor agents. Polyhedron, 2022, 217, 115711.
[http://dx.doi.org/10.1016/j.poly.2022.115711]
[159]
Croft, S.L.; Coombs, G.H. Leishmaniasis– current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol., 2003, 19(11), 502-508.
[http://dx.doi.org/10.1016/j.pt.2003.09.008] [PMID: 14580961]
[160]
Ouellette, M.; Drummelsmith, J.; Papadopoulou, B. Leishmaniasis: Drugs in the clinic, resistance and new developments. Drug Resist. Updat., 2004, 7(4-5), 257-266.
[http://dx.doi.org/10.1016/j.drup.2004.07.002] [PMID: 15533763]
[161]
Manathanath, M.; Sasidharan, S.; Saudagar, P.; Panicker, U.G.; Sujatha, S. New antileishmanial quinoline linked isatin derivatives targeting DHFR-TS and PTR1: Design, synthesis, and molecular modeling studies. Polyhedron, 2022, 217, 115711.
[http://dx.doi.org/10.1016/j.poly.2022.115711]
[162]
Sharma, M.; Chauhan, K.; Shivahare, R.; Vishwakarma, P.; Suthar, M.K.; Sharma, A.; Gupta, S.; Saxena, J.K.; Lal, J.; Chandra, P.; Kumar, B.; Chauhan, P.M.S. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents. J. Med. Chem., 2013, 56(11), 4374-4392.
[http://dx.doi.org/10.1021/jm400053v] [PMID: 23611626]
[163]
Gupta, L.; Sunduru, N.; Verma, A.; Srivastava, S.; Gupta, S.; Goyal, N.; Chauhan, P.M.S. Synthesis and biological evaluation of new [1,2,4]triazino[5,6-b]indol-3-ylthio-1,3,5-triazines and [1,2,4]triazino[5,6-b]indol-3-ylthio-pyrimidines against Leishmania donovani. Eur. J. Med. Chem., 2010, 45(6), 2359-2365.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.015] [PMID: 20371140]
[164]
Baréa, P.; Barbosa, V.A.; Bidóia, D.L.; de Paula, J.C.; Stefanello, T.F.; da Costa, W.F.; Nakamura, C.V.; Sarragiotto, M.H. Synthesis, antileishmanial activity and mechanism of action studies of novel β-carboline-1,3,5-triazine hybrids. Eur. J. Med. Chem., 2018, 150, 579-590.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.014] [PMID: 29549842]
[165]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Pannecouque, C.; De Clercq, E.; Chikhalia, K.H. Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of new s -triazine-based heterocycles. Future Med. Chem., 2012, 4(9), 1053-1065.
[http://dx.doi.org/10.4155/fmc.12.57] [PMID: 22709250]
[166]
Barré-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 1983, 220(4599), 868-871.
[http://dx.doi.org/10.1126/science.6189183] [PMID: 6189183]
[167]
Arnold, E.; Das, K.; Ding, J.; Yadav, P.N.; Hsiou, Y.; Boyer, P.L.; Hughes, S.H. Targeting HIV reverse transcriptase for anti-AIDS drug design: Structural and biological considerations for chemotherapeutic strategies. Drug Des. Discov., 1996, 13(3-4), 29-47.
[PMID: 8874042]
[168]
Sakakibara, N.; Balboni, G.; Congiu, C.; Onnis, V.; Demizu, Y.; Misawa, T.; Kurihara, M.; Kato, Y.; Maruyama, T.; Toyama, M.; Okamoto, M.; Baba, M. Design, synthesis, and anti-HIV-1 activity of 1-substituted 3-(3,5-dimethylbenzyl)triazine derivatives. Antivir. Chem. Chemother., 2015, 24(2), 62-71.
[http://dx.doi.org/10.1177/2040206615612208] [PMID: 26514833]
[169]
Gazzard, B.; Graeme, G. 1998 revision to the British HIV Association guidelines for antiretroviral treatment of HIV seropositive individuals. Lancet, 1998, 352(9124), 314-316.
[http://dx.doi.org/10.1016/S0140-6736(98)04084-7] [PMID: 9690427]
[170]
De Clercq, E. Targets and strategies for the antiviral chemotherapy of AIDS. Trends Pharmacol. Sci., 1990, 11(5), 198-205.
[http://dx.doi.org/10.1016/0165-6147(90)90115-O] [PMID: 2188403]
[171]
Desai, S.D.; Desai, K.R.; Chikhalia, K.H.; Pannecouque, C.; De Clercq, E. Synthesis of a novel class of some 1, 3, 5-triazine derivatives and their anti-HIV activity. Int. J. Drug Design Discov., 2011, 2, 361-368.
[172]
Patel, R.B.; Chikhalia, K.H.; Pannecouque, C.; Clercq, E. Synthesis of novel PETT analogues: 3,4-dimethoxy phenyl ethyl 1,3,5-triazinyl thiourea derivatives and their antibacterial and anti-HIV studies. J. Braz. Chem. Soc., 2007, 18(2), 312.
[http://dx.doi.org/10.1590/S0103-50532007000200011]
[173]
Hamdi, N.; Lidrissi, C.; Saoud, M.; Romerosa Nievas, A.; Zarrouk, H. Synthesis of some new biologically active coumarin derivatives. Chem. Heterocycl. Compd., 2006, 42(3), 320-325.
[http://dx.doi.org/10.1007/s10593-006-0088-0]
[174]
Liu, B.; Lee, Y.; Zou, J.; Petrassi, H.M.; Joseph, R.W.; Chao, W.; Michelotti, E.L.; Bukhtiyarova, M.; Springman, E.B.; Dorsey, B.D. Discovery and SAR of a series of 4,6-diamino-1,3,5-triazin-2-ol as novel non-nucleoside reverse transcriptase inhibitors of HIV-1. Bioorg. Med. Chem. Lett., 2010, 20(22), 6592-6596.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.034] [PMID: 20888224]
[175]
Mahajan, D.H.; Pannecouque, C.; De Clercq, E.; Chikhalia, K.H. Synthesis and studies of new 2-(coumarin-4-yloxy)-4,6-(substituted)-S-triazine derivatives as potential anti-HIV agents. Arch. Pharm., 2009, 342(5), 281-290.
[http://dx.doi.org/10.1002/ardp.200800149] [PMID: 19415671]
[176]
Ludovici, D.W.; Kavash, R.W.; Kukla, M.J.; Ho, C.Y.; Ye, H.; De Corte, B.L.; Andries, K.; de Béthune, M.P.; Azijn, H.; Pauwels, R.; Moereels, H.E.; Heeres, J.; Koymans, L.M.; de Jonge, M.R.; Van Aken, K.J.; Daeyaert, F.F.; Lewi, P.J.; Das, K.; Arnold, E.; Janssen, P.A. Evolution of anti-HIV drug candidates. Part 2: Diaryltriazine (DATA) analogues. Bioorg. Med. Chem. Lett., 2001, 11(17), 2229-2234.
[http://dx.doi.org/10.1016/S0960-894X(01)00411-5] [PMID: 11527704]
[177]
Chen, X.; Zhan, P.; Pannecouque, C.; Balzarini, J.; De Clercq, E.; Liu, X. Synthesis and biological evaluation of piperidine-substituted triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors. Eur. J. Med. Chem., 2012, 51, 60-66.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.019] [PMID: 22405288]
[178]
(a) Zacharie, B.; Abbott, S.D.; Bienvenu, J.F.; Cameron, A.D.; Cloutier, J.; Duceppe, J.S.; Ezzitouni, A.; Fortin, D.; Houde, K.; Lauzon, C.; Moreau, N.; Perron, V.; Wilb, N.; Asselin, M.; Doucet, A.; Fafard, M.E.; Gaudreau, D.; Grouix, B.; Sarra-Bournet, F.; St-Amant, N.; Gagnon, L. 2, 4, 6-trisubstituted triazines as protein a mimetics for the treatment of autoimmune diseases. J. Med. Chem., 2010, 53, 1138-1145.
[http://dx.doi.org/10.1021/jm901403r] [PMID: 20047277];
(b) Wuest, J.D.; Lebel, O. Anarchy in the solid state: Structural dependence on glass-forming ability in triazine-based molecular glasses. Tetrahedron, 2009, 65(36), 7393-7402.
[http://dx.doi.org/10.1016/j.tet.2009.07.026]
[179]
El-Saghier, A.M.; Enaili, S.S.; Abdou, A.; Hamed, A.M.; Kadry, A.M. An operationally simple, one‐pot, convenient synthesis, and in vitro anti‐inflammatory activity of some new spirotriazolotriazine derivatives. J. Heterocycl. Chem., 2024, 61(1), 146-162.
[http://dx.doi.org/10.1002/jhet.4752]
[180]
Łażewska, D.; Więcek, M.; Ner, J.; Kamińska, K.; Kottke, T.; Schwed, J.S.; Zygmunt, M.; Karcz, T.; Olejarz, A.; Kuder, K.; Latacz, G.; Grosicki, M.; Sapa, J.; Karolak-Wojciechowska, J.; Stark, H.; Kieć-Kononowicz, K. Aryl-1,3,5-triazine derivatives as histamine H4 receptor ligands. Eur. J. Med. Chem., 2014, 83, 534-546.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.032] [PMID: 24996140]
[181]
World Health Organization. WHO mental health gap action programme. 2008. Available From :https://www.who.int/publications/i/item/9789240084278
[182]
Prince, M.; Ali, G.C.; Guerchet, M.; Prina, A.M.; Albanese, E.; Wu, Y.T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res. Ther., 2016, 8(1), 23.
[http://dx.doi.org/10.1186/s13195-016-0188-8] [PMID: 27473681]
[183]
Selkoe, D.J. Alzheimer disease: Mechanistic understanding predicts novel therapies. Ann. Intern. Med., 2004, 140(8), 627-638.
[http://dx.doi.org/10.7326/0003-4819-140-8-200404200-00047] [PMID: 15096334]
[184]
World Health Organisation. Diabetes Fact sheets, 2018. https:// www.who.int/news-room/fact-sheets/detail/diabetes
[185]
Salloway, S.; Correia, S. Alzheimer disease: Time to improve its diagnosis and treatment. Cleve. Clin. J. Med., 2009, 76(1), 49-58.
[http://dx.doi.org/10.3949/ccjm.76a.072178] [PMID: 19122111]
[186]
WHO Fact sheets. 2018. Available From: https://www.who.int/en/news-room/factsheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed December 12, 2020).
[187]
Honjo, K.; Black, S.E.; Verhoeff, N.P.L.G. Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade. Can. J. Neurol. Sci., 2012, 39(6), 712-728.
[http://dx.doi.org/10.1017/S0317167100015547] [PMID: 23227576]
[188]
Abu-Hashem, A.A.; Al-Hussain, S.A.; Zaki, M.E.A. Synthesis of novel benzodifuranyl; 1, 3, 5-triazines; 1, 3, 5-oxadiazepines; and thiazolopyrimidines derived from visnaginone and khellinone as anti-inflammatory and analgesic agents. Molecules, 2020, 25(1), 220.
[http://dx.doi.org/10.3390/molecules25010220] [PMID: 31948127]
[189]
Maqbool, M.; Manral, A.; Jameel, E.; Kumar, J.; Saini, V.; Shandilya, A.; Tiwari, M.; Hoda, N.; Jayaram, B. Development of cyanopyridine–triazine hybrids as lead multitarget anti-Alzheimer agents. Bioorg. Med. Chem., 2016, 24(12), 2777-2788.
[http://dx.doi.org/10.1016/j.bmc.2016.04.041] [PMID: 27157006]
[190]
Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.064] [PMID: 28478343]
[191]
Baliani, A.; Bueno, G.J.; Stewart, M.L.; Yardley, V.; Brun, R.; Barrett, M.P.; Gilbert, I.H. Design and synthesis of a series of melamine-based nitroheterocycles with activity against Trypanosomatid parasites. J. Med. Chem., 2005, 48(17), 5570-5579.
[http://dx.doi.org/10.1021/jm050177+] [PMID: 16107157]
[192]
Klenke, B.; Stewart, M.; Barrett, M.P.; Brun, R.; Gilbert, I.H. Synthesis and biological evaluation of s-triazine substituted polyamines as potential new anti-trypanosomal drugs. J. Med. Chem., 2001, 44(21), 3440-3452.
[http://dx.doi.org/10.1021/jm010854+] [PMID: 11585449]
[193]
Shinde, R.S.; Salunke, S.D. Facile synthesis of some triazine based chalcones as potential antioxidant and anti-diabetic agents. J. Chem. Pharm. Res., 2015, 7, 114.
[194]
Srivastava, J.K.; Dubey, P.; Singh, S.; Bhat, H.R.; Kumawat, M.K.; Singh, U.P. Discovery of novel 1,3,5-triazine-thiazolidine-2,4-diones as dipeptidyl peptidase-4 inhibitors with antibacterial activity targeting the S1 pocket for the treatment of type 2 diabetes. RSC Advances, 2015, 5(19), 14095-14102.
[http://dx.doi.org/10.1039/C4RA16903D]
[195]
Zheng, X.Z.; Zhou, J.L.; Ye, J.; Guo, P.P.; Lin, C.S. Cardioprotective effect of novel sulphonamides‐1,3,5‐triazine conjugates against ischaemic–reperfusion injury via selective inhibition of MMP ‐9. Chem. Biol. Drug Des., 2016, 88(5), 756-765.
[http://dx.doi.org/10.1111/cbdd.12807] [PMID: 27317634]
[196]
Bekircan, O.; Küxük, M.; Kahveci, B.; Kolaylı, S. Convenient synthesis of fused heterocyclic 1,3,5-triazines from some N-acyl imidates and heterocyclic amines as anticancer and antioxidant agents. Arch. Pharm. (Weinheim), 2005, 338(8), 365-372.
[http://dx.doi.org/10.1002/ardp.200400964] [PMID: 16041836]
[197]
Watanabe, Y.; Usui, H.; Kobayashi, S.; Yoshiwara, H.; Shibano, T.; Tanaka, T.; Morishima, Y.; Yasuoka, M.; Kanao, M. Syntheses of 5-HT2 antagonist activity of bicyclic 1,2,4-triazol-3(2H)-one and 1,3,5-triazine-2,4(3H)-dione derivatives. J. Med. Chem., 1992, 35(1), 189-194.
[http://dx.doi.org/10.1021/jm00079a026] [PMID: 1732528]
[198]
Yan Xia, ; Mirzai, B.; Chackalamannil, S.; Czarniecki, M.; Wang, S.; Clemmons, A.; Ahn, H.S.; Boykow, G.C. Substituted 1,3,5-triazines as cholesteryl ester transfer protein inhibitors. Bioorg. Med. Chem. Lett., 1996, 6(7), 919-922.
[http://dx.doi.org/10.1016/0960-894X(96)00145-X]
[199]
Wani, M.Y.; Bhat, A.R.; Azam, A.; Choi, I.; Athar, F. Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives. Eur. J. Med. Chem., 2012, 48, 313-320.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.033] [PMID: 22236470]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy