Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Hypothesizing the Oleic Acid-Mediated Enhanced and Sustained Transdermal Codelivery of Pregabalin and Diclofenac Adhesive Nanogel: A Proof of Concept

Author(s): Deepanjan Datta*, Afeefa Noor, Anjali Rathee, Snigdha Singh and Kanchan Kohli*

Volume 24, Issue 11, 2024

Published on: 05 June, 2024

Page: [1317 - 1328] Pages: 12

DOI: 10.2174/0115665240291343240306054318

Price: $65

Abstract

Pregabalin (PG) and diclofenac diethylamine (DEE) are anti-inflammatory molecules that are effective in relieving inflammation and pain associated with musculoskeletal disorders, arthritis, and post-traumatic pain, among others. Intravenous and oral delivery of these two molecules has their limitations. However, the transdermal route is believed to be an alternate viable option for the delivery of therapeutic molecules with desired physicochemical properties. To this end, it is vital to understand the physicochemical properties of these drugs, dosage, and strategies to enhance permeation, thereby surmounting the associated constraints and concurrently attaining a sustained release of these therapeutic molecules when administered in combination. The present work hypothesizes the enhanced permeation and sustained release of pregabalin and diclofenac diethylamine across the skin, entrapped in the adhesive nano-organogel formulation, including permeation enhancers. The solubility studies of pregabalin and diclofenac diethylamine in combination were performed in different permeation enhancers. Oleic acid was optimized as the best permeation enhancer based on in vitro studies. Pluronic organogel containing pregabalin and diclofenac diethylamine with oleic acid was fabricated. Duro-Tak® (87-2196) was added to the organogel formulation as a pressure-sensitive adhesive to sustain the release profile of these two therapeutic molecules. The adhesive organogel was characterized for particle size, scanning electron microscopy, and contact angle measurement. The HPLC method developed for the quantification of the dual drug showed a retention time of 3.84 minutes and 9.69 minutes for pregabalin and diclofenac, respectively. The fabricated nanogel adhesive formulation showed the desired results with particle size and contact angle of 282 ± 57 nm and ≥120⁰, respectively. In vitro studies showed the percentage cumulative release of 24.90 ± 4.65% and 33.29 ± 4.81% for pregabalin and diclofenac, respectively. In order to accomplish transdermal permeation, the suggested hypothesis of fabricating PG and DEE nano-organogel in combination with permeation enhancers will be a viable drug delivery method. In comparison to a traditional gel formulation, oleic acid as a permeation enhancer increased the penetration of both PG and DEE from the organogel formulation. Notably, the studies showed that the use of pressure-sensitive adhesives enabled the sustained release of both PG and DEE.Therefore, the results anticipated the hypothesis that the transdermal delivery of adhesive PG and DEEbased nanogel across the human skin can be achieved to inhibit inflammation and pain.

Next »
[1]
Barkin RL. Topical nonsteroidal anti-inflammatory drugs. Am J Ther 2015; 22(5): 388-407.
[http://dx.doi.org/10.1097/MJT.0b013e3182459abd] [PMID: 22367354]
[2]
Pradal J, Vallet C, Frappin G, Bariguian F, Lombardi MS. Importance of the formulation in the skin delivery of topical diclofenac: not all topical diclofenac formulations are the same. J Pain Res 2019; 12: 1149-54.
[http://dx.doi.org/10.2147/JPR.S191300] [PMID: 31114298]
[3]
Rodrigues RF, Nunes JB, Agostini SBN, et al. Preclinical evaluation of polymeric nanocomposite containing pregabalin for sustained release as potential therapy for neuropathic pain. Polymers 2021; 13(21): 3837.
[http://dx.doi.org/10.3390/polym13213837] [PMID: 34771392]
[4]
Xia M, Tian C, Liu L, Hu R, Gui S, Chu X. Transdermal administration of ibuprofen-loaded gel: Preparation, pharmacokinetic profile, and tissue distribution. AAPS PharmSciTech 2020; 21(3): 84.
[http://dx.doi.org/10.1208/s12249-020-1627-1]
[5]
Manikkath J, Hegde AR, Kalthur G, Parekh HS, Mutalik S. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int J Pharm 2017; 521(1-2): 110-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.002] [PMID: 28163223]
[6]
Liu N, Song W, Song T, Fang L. Design and evaluation of a novel felbinac transdermal patch: combining ion-pair and chemical enhancer strategy. AAPS Pharm Sci Tech 2016; 17(2): 262-71.
[http://dx.doi.org/10.1208/s12249-015-0342-9] [PMID: 26070544]
[7]
Vanaja K, S S, Shivakumar HN, Murthy SN. Influence of iontophoresis on delivery of NSAID-loaded deformable liposomal dispersions: in vitro and in vivo evaluation. Ther Deliv 2023; 14(4): 281-94.
[http://dx.doi.org/10.4155/tde-2023-0005] [PMID: 37340895]
[8]
Coskun Benlidayi I, Gokcen N, Basaran S. Comparative short-term effectiveness of ibuprofen gel and cream phonophoresis in patients with knee osteoarthritis. Rheumatol Int 2018; 38(10): 1927-32.
[http://dx.doi.org/10.1007/s00296-018-4099-9] [PMID: 30003324]
[9]
Environmental assessment: Pregabalin for use in management of central neuropathic pain due to spinal cord injury. Neuro J 2012; 67(10): 1792-800.
[10]
Patel V, Lalani R, Bardoliwala D, Ghosh S, Misra A. Lipid-based oral formulation strategies for lipophilic drugs. AAPS PharmSciTech 2018; 19(8): 3609-30.
[http://dx.doi.org/10.1208/s12249-018-1188-8] [PMID: 30255474]
[11]
Kokate A, Li X, Jasti B. Effect of drug lipophilicity and ionization on permeability across the buccal mucosa: A technical note. AAPS PharmSciTech 2008; 9(2): 501-4.
[http://dx.doi.org/10.1208/s12249-008-9071-7] [PMID: 18431653]
[12]
Shafique N, Siddiqui T, Zaman M, et al. Transdermal patch, co-loaded with Pregabalin and Ketoprofen for improved bioavailability; in vitro studies. Polym Polymer Compos 2021; 29(9_suppl): S376-88.
[http://dx.doi.org/10.1177/09673911211004516]
[13]
Arafa MG, Ayoub BM. DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled drug delivery systems. Sci Rep 2017; 7(1): 41503.
[http://dx.doi.org/10.1038/srep41503] [PMID: 28134262]
[14]
Dias SFL, Nogueira SS, de França Dourado F, et al. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydr Polym 2016; 143: 254-61.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.004] [PMID: 27083367]
[15]
Al-Mawla L, Al-Akayleh F, Daadoue S, et al. Development, characterization, and ex vivo permeation assessment of diclofenac diethylamine deep eutectic systems across human skin. J Pharm Innov 2023; 18(4): 2196-209.
[http://dx.doi.org/10.1007/s12247-023-09784-9]
[16]
Hamed R, Mahmoud NN, Alnadi SH, Alkilani AZ, Hussein G. Diclofenac diethylamine nanosystems-loaded bigels for topical delivery: Development, rheological characterization, and release studies. Drug Dev Ind Pharm 2020; 46(10): 1705-15.
[http://dx.doi.org/10.1080/03639045.2020.1820038] [PMID: 32892653]
[17]
Sharma A, Verma N. Formulation and evaluation of double-layered (matrix and drug-in-adhesive) transdermal patches of diclofenac diethylamine: In vitro and ex vivo permeation studies. Indian J Pharma Edu Res 2023; 57(2s): s234-43.
[http://dx.doi.org/10.5530/ijper.57.2s.27]
[18]
Arora P, Mukherjee B. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt. J Pharm Sci 2002; 91(9): 2076-89.
[http://dx.doi.org/10.1002/jps.10200] [PMID: 12210054]
[19]
Rouse CK, Martin AD, Easton CJ, Thordarson P. A peptide amphiphile organogelator of polar organic solvents. Sci Rep 2017; 7(1): 43668.
[http://dx.doi.org/10.1038/srep43668] [PMID: 28255169]
[20]
Sahoo S, Kumar N, Bhattacharya C, et al. Organogels: Properties and applications in drug delivery. Des Monomers Polym 2011; 14(2): 95-108.
[http://dx.doi.org/10.1163/138577211X555721]
[21]
Ilomuanya MO, Ubani-Ukoma UN, Sowemimo AA, Akande GW, Kunal P. Formulation and evaluation of detarium oil based organogel for sustained release of metronidazole via topical delivery. J Pharm Bioresour 2021; 17(2): 96-104.
[http://dx.doi.org/10.4314/jpb.v17i2.3]
[22]
Iwanaga K, Kawai M, Miyazaki M, Kakemi M. Application of organogels as oral controlled release formulations of hydrophilic drugs. Int J Pharm 2012; 436(1-2): 869-72.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.041] [PMID: 22766444]
[23]
Wu Q, Qi S, Zhao T, Yan H, Liu M. Multiple network organohydrogels with high strength and anti-swelling properties in different solvents. Giant 2021; 6: 100058.
[http://dx.doi.org/10.1016/j.giant.2021.100058]
[24]
Gräbner D, Hoffmann H. Rheology of cosmetic formulations. Cosmet Sci Technol Theor Princ Appl 2017; pp. 471-88.
[http://dx.doi.org/10.1016/B978-0-12-802005-0.00027-6]
[25]
Alsaab H, Bonam SP, Bahl D, Chowdhury P, Alexander K, Boddu SHS. Organogels in drug delivery: A special emphasis on organogels pluronic lecithin. J Pharm Pharm Sci 2016; 19: 252-73.
[http://dx.doi.org/10.18433/J3V89W] [PMID: 27518174]
[26]
Dr. Mariya S. Organogels in topical drug delivery system : A systematic review. World J Pharm Res 2022; 11: 1810-33.
[http://dx.doi.org/10.20959/wjpr202216-26293]
[27]
Boddu SH, Bonam SP, Wei Y, Alexander K. Preparation and in vitro evaluation of a pluronic lecithin organogel containing ricinoleic acid for transdermal delivery. Int J Pharm Compd 2014; 18(3): 256-61.
[PMID: 25306775]
[28]
Belgamwar VS, Surana SJ, Pandey MS. Topical delivery of flurbiprofen from pluronic lecithin organogel. Indian J Pharm Sci 2009; 71(1): 87-90.
[http://dx.doi.org/10.4103/0250-474X.51955] [PMID: 20177469]
[29]
Jhawat V, Gupta S, Saini V. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid. Drug Deliv 2016; 23(9): 3573-81.
[http://dx.doi.org/10.1080/10717544.2016.1212439] [PMID: 27494650]
[30]
Narula A, Sabra R, Li N. Mechanisms and extent of enhanced passive permeation by colloidal drug particles. Mol Pharm 2022; 19(9): 3085-99.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00124] [PMID: 35998304]
[31]
Pham QD, Björklund S, Engblom J, Topgaard D, Sparr E. Chemical penetration enhancers in stratum corneum: Relation between molecular effects and barrier function. J Control Release 2016; 232: 175-87.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.030] [PMID: 27108613]
[32]
Karande P, Mitragotri S. Biochimica et Biophysica Acta Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta 2009; 1788(11): 2362-73.
[http://dx.doi.org/10.1016/j.bbamem.2009.08.015]
[33]
Moser K, Kriwet K, Naik A, Kalia YN, Guy RH. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm 2001; 52(2): 103-12.
[http://dx.doi.org/10.1016/S0939-6411(01)00166-7] [PMID: 11522474]
[34]
Ishii H, Todo H, Sugibayashi K. Effect of thermodynamic activity on skin permeation and skin concentration of triamcinolone acetonide. Chem Pharm Bull 2010; 58(4): 556-61.
[http://dx.doi.org/10.1248/cpb.58.556]
[35]
Sloan KB, Koch SAM, Siver KG, Flowers FP. Use of solubility parameters of drug and vehicle to predict flux through skin. J Invest Dermatol 1986; 87(2): 244-52.
[http://dx.doi.org/10.1111/1523-1747.ep12696635] [PMID: 3734472]
[36]
Mills SEE, Nicolson KP, Smith BH. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br J Anaesth 2019; 123(2): e273-83.
[http://dx.doi.org/10.1016/j.bja.2019.03.023] [PMID: 31079836]
[37]
Malik KM, Beckerly R, Imani F. Musculoskeletal disorders a universal source of pain and disability misunderstood and mismanaged: A critical analysis based on the U.S. model of care. Anesth Pain Med 2018; In Press(In Press): e85532.
[http://dx.doi.org/10.5812/aapm.85532] [PMID: 30775292]
[38]
Pabón-Porras MA, Molina-Ríos S, Flórez-Suárez JB, Coral-Alvarado PX, Méndez-Patarroyo P, Quintana-López G. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med 2019; 7.
[http://dx.doi.org/10.1177/2050312119876146] [PMID: 35154753]
[39]
Derry S, Bell RF, Straube S, Wiffen PJ, Aldington D, Moore RA. Pregabalin for neuropathic pain in adults. Cochrane Libr 2019; 1(1): CD007076.
[http://dx.doi.org/10.1002/14651858.CD007076.pub3] [PMID: 30673120]
[40]
Predel HG, Giannetti B, Pabst H, Schaefer A, Hug AM, Burnett I. Efficacy and safety of diclofenac diethylamine 1.16% gel in acute neck pain: a randomized, double-blind, placebo-controlled study. BMC Musculoskelet Disord 2013; 14(1): 250.
[http://dx.doi.org/10.1186/1471-2474-14-250] [PMID: 23964752]
[41]
Kim YE, Jung HY, Park N, Kim J. Adhesive composite hydrogel patch for sustained transdermal drug delivery to treat atopic dermatitis. Chem Mater 2023; 35(3): 1209-17.
[http://dx.doi.org/10.1021/acs.chemmater.2c03234]
[42]
Su Y, Lu W, Fu X, et al. Formulation and pharmacokinetic evaluation of a drug-in-adhesive patch for transdermal delivery of koumine. AAPS Pharm Sci Tech 2020; 21(8): 297.
[http://dx.doi.org/10.1208/s12249-020-01793-y] [PMID: 33099696]
[43]
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal control of skin function: The skin as a neuroimmunoendocrine organ. Physiol Rev 2006; 86(4): 1309-79.
[http://dx.doi.org/10.1152/physrev.00026.2005] [PMID: 17015491]
[44]
Amanullah A, Upadhyay A, Dhiman R, et al. Development and challenges of diclofenac-based novel therapeutics: Targeting cancer and complex diseases. Cancers 2022; 14(18): 4385.
[http://dx.doi.org/10.3390/cancers14184385] [PMID: 36139546]
[45]
Datta D, Panchal DS, Venuganti VVK, Venuganti K. Transdermal delivery of vancomycin hydrochloride: Influence of chemical and physical permeation enhancers. Int J Pharm 2021; 602: 120663.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120663] [PMID: 33933644]
[46]
Venuganti VVK, Perumal OP. Effect of poly(amidoamine) (PAMAM) dendrimer on skin permeation of 5-fluorouracil. Int J Pharm 2008; 361(1-2): 230-8.
[http://dx.doi.org/10.1016/j.ijpharm.2008.05.034] [PMID: 18582550]
[47]
Prasanthi D, Lakshmi PK. Effect of chemical enhancers in transdermal permeation of alfuzosin hydrochloride. ISRN Pharm 2012; 2012: 1-8.
[http://dx.doi.org/10.5402/2012/965280] [PMID: 23316394]
[48]
Osborne DW, Musakhanian J. Skin penetration and permeation properties of transcutol®—neat or diluted mixtures. AAPS Pharm Sci Tech 2018; 19(8): 3512-33.
[http://dx.doi.org/10.1208/s12249-018-1196-8] [PMID: 30421383]
[49]
Pitzanti G, Rosa A, Nieddu M, et al. Transcutol® p containing slns for improving 8-methoxypsoralen skin delivery. Pharmaceutics 2020; 12(10): 973.
[http://dx.doi.org/10.3390/pharmaceutics12100973] [PMID: 33076355]
[50]
Censi R, Martena V, Hoti E, Malaj L, Di Martino P. Permeation and skin retention of quercetin from microemulsions containing Transcutol ® P. Drug Dev Ind Pharm 2012; 38(9): 1128-33.
[http://dx.doi.org/10.3109/03639045.2011.641564] [PMID: 22188183]
[51]
Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010; 70(2): 440-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[52]
Wróblewska M, Szymańska E, Winnicka K. The influence of tea tree oil on antifungal activity and pharmaceutical characteristics of pluronic®F‐127 gel formulations with Ketoconazole. Int J Mol Sci 2021; 22(21): 11326.
[http://dx.doi.org/10.3390/ijms222111326] [PMID: 34768755]
[53]
Çelen Ç, Keçeciler C, Yapar EA, Gökçe EH, Nalbantsoy A. Evaluation of resveratrol organogels prepared by micro-irradiation: Fibroblast proliferation through in vitro wound healing. Turk Biyokim Derg 2018; 43(4): 385-92.
[http://dx.doi.org/10.1515/tjb-2016-0283]
[54]
Patel D, Patel V. Development and characterization of pluronic lecithin organogel containing fluocinolone acetonide. Drug Dev Ind Pharm 2021; 47(3): 377-84.
[http://dx.doi.org/10.1080/03639045.2021.1879832] [PMID: 33493079]
[55]
Balata G, El Nahas HM, Radwan S. Propolis organogel as a novel topical delivery system for treating wounds. Drug Deliv 2014; 21(1): 55-61.
[http://dx.doi.org/10.3109/10717544.2013.847032] [PMID: 24295500]
[56]
Ba W, Li Z, Wang L, et al. Optimization and evaluation of pluronic lecithin organogels as a transdermal delivery vehicle for sinomenine. Pharm Dev Technol 2016; 21(5): 535-45.
[http://dx.doi.org/10.3109/10837450.2015.1022791] [PMID: 25757643]
[57]
Sharma G, Kaur B, Thakur K, et al. Pluronic F127-tailored lecithin organogel of acyclovir: Preclinical evidence of antiviral activity using BALB/c murine model of cutaneous HSV-1 infection. Drug Deliv Transl Res 2022; 12(1): 213-28.
[http://dx.doi.org/10.1007/s13346-021-00899-5] [PMID: 33486688]
[58]
Parhi R, Suresh P, Pattnaik S. Pluronic lecithin organogel (PLO) of diltiazem hydrochloride: Effect of solvents/penetration enhancers on ex vivo permeation. Drug Deliv Transl Res 2016; 6(3): 243-53.
[http://dx.doi.org/10.1007/s13346-015-0276-5] [PMID: 26754742]
[59]
Lalan MS, Khode SS, Shah KS, Patel PC. Preliminary development studies of halobetasol propionate organogel for management of atopic dermatitis. Int J Pharm Sci Res 2017; 8: 1000-9.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.8(2).1000-09]
[60]
Giordano J, Daleo C, Sacks SM. Topical ondansetron attenuates nociceptive and inflammatory effects of intradermal capsaicin in humans. Eur J Pharmacol 1998; 354(1): R13-4.
[http://dx.doi.org/10.1016/S0014-2999(98)00492-0] [PMID: 9726643]
[61]
Hussein A, El-Ammawi T, Mady F, Abd elkader H, Essa H. Formulation and clinical evaluation of silymarin pluronic-lecithin organogels for treatment of atopic dermatitis. Drug Des Devel Ther 2016; 10: 1101-10.
[http://dx.doi.org/10.2147/DDDT.S103423] [PMID: 27022248]
[62]
Esposito E, Ravani L, Mariani P, et al. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Eur J Pharm Biopharm 2014; 86(2): 121-32.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.011] [PMID: 24361485]
[63]
Bhatia A, Singh B, Raza K, Wadhwa S, Katare OP. Tamoxifen-loaded lecithin organogel (LO) for topical application: Development, optimization and characterization. Int J Pharm 2013; 444(1-2): 47-59.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.029] [PMID: 23353077]
[64]
Jadhav K, Kadam V, Pisal S. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole. Curr Drug Deliv 2009; 6(2): 174-83.
[http://dx.doi.org/10.2174/156720109787846252] [PMID: 19450224]
[65]
Aboofazeli R, Zia H, Needham TE. Transdermal delivery of nicardipine: An approach to in vitro permeation enhancement. Drug Deliv 2002; 9(4): 239-47.
[http://dx.doi.org/10.1080/10717540260397855] [PMID: 12511202]
[66]
Fayez SM, Shadeed SG, Khafagy ESA, Abdel Jaleel GA, Ghorab MM, El-Nahhas SA. Formulation and evaluation of etodolac lecithin organogel transdermal delivery systems. Int J Pharm Pharm Sci 2015; 7: 325-34.
[67]
Lim PFC, Liu XY, Kang L, Ho PCL, Chan YW, Chan SY. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int J Pharm 2006; 311(1-2): 157-64.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.042] [PMID: 16451823]
[68]
Rajpoot K. Acyclovir-loaded sorbitan esters-based organogel: development and rheological characterization. Artif Cells Nanomed Biotechnol 2017; 45(3): 551-9.
[http://dx.doi.org/10.3109/21691401.2016.1161639] [PMID: 27019055]
[69]
Gopalan K, Jose J. Development of amphotericin b Based organogels against mucocutaneous fungal infections. Braz J Pharm Sci 2020; 56: e17509.
[http://dx.doi.org/10.1590/s2175-97902020000117509]
[70]
Upadhyay KK, Tiwari C, Khopade AJ, Bohidar HB, Jain SK. Sorbitan ester organogels for transdermal delivery of sumatriptan. Drug Dev Ind Pharm 2007; 33(6): 617-25.
[http://dx.doi.org/10.1080/03639040701199266] [PMID: 17613026]
[71]
Goto S, Kawata M, Suzuki T, Kim NS, Ito C. Preparation and evaluation of Eudragit gels. I: Eudragit organogels containing drugs as rectal sustained-release preparations. J Pharm Sci 1991; 80(10): 958-61.
[http://dx.doi.org/10.1002/jps.2600801011] [PMID: 1784005]
[72]
Liu H, Wang Y, Han F, Yao H, Li S. Gelatin‐stabilised microemulsion‐based organogels facilitates percutaneous penetration of Cyclosporin A In vitro and dermal pharmacokinetics In vivo. J Pharm Sci 2007; 96(11): 3000-9.
[http://dx.doi.org/10.1002/jps.20898] [PMID: 17705159]
[73]
Kantaria S, Rees GD, Lawrence MJ. Gelatin-stabilised microemulsion-based organogels: rheology and application in iontophoretic transdermal drug delivery. J Control Release 1999; 60(2-3): 355-65.
[http://dx.doi.org/10.1016/S0168-3659(99)00092-9] [PMID: 10425340]
[74]
Virani A, Puri V, Mohd H, Michniak-Kohn B. Effect of penetration enhancers on transdermal delivery of oxcarbazepine, an antiepileptic drug using microemulsions. Pharmaceutics 2023; 15(1): 183.
[http://dx.doi.org/10.3390/pharmaceutics15010183] [PMID: 36678811]
[75]
Moreira TSA, Pereira de Sousa V, Pierre MBR. A novel transdermal delivery system for the anti-inflammatory lumiracoxib: Influence of oleic acid on in vitro percutaneous absorption and in vivo potential cutaneous irritation. AAPS Pharm Sci Tech 2010; 11(2): 621-9.
[http://dx.doi.org/10.1208/s12249-010-9420-1] [PMID: 20373151]
[76]
Harjoh N, Wong TW, Caramella C. Transdermal insulin delivery with microwave and fatty acids as permeation enhancers. Int J Pharm 2020; 584: 119416.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119416] [PMID: 32423875]
[77]
El-Say KM, Ahmed TA, Aljefri AH, El-Sawy HS, Fassihi R, Abou-Gharbia M. Oleic acid-reinforced PEGylated polymethacrylate transdermal film with enhanced antidyslipidemic activity and bioavailability of atorvastatin: A mechanistic ex-vivo/in-vivo analysis. Int J Pharm 2021; 608: 121057.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121057] [PMID: 34461173]
[78]
Hashmat D, Shoaib MH, Ali FR, Siddiqui F. Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers. PLoS One 2020; 15(2): e0228908.
[http://dx.doi.org/10.1371/journal.pone.0228908] [PMID: 32107483]
[79]
Haq A, Michniak-Kohn B. Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: Permeability and skin deposition study. Drug Deliv 2018; 25(1): 1943-9.
[http://dx.doi.org/10.1080/10717544.2018.1523256] [PMID: 30463442]
[80]
Cristiano MC, Mancuso A, Fresta M, et al. Topical unsaturated fatty acid vesicles improve antioxidant activity of ammonium glycyrrhizinate. Pharmaceutics 2021; 13(4): 548.
[http://dx.doi.org/10.3390/pharmaceutics13040548] [PMID: 33919824]
[81]
Zakir F, Vaidya B, Goyal AK, Malik B, Vyas SP. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv 2010; 17(4): 238-48.
[http://dx.doi.org/10.3109/10717541003680981] [PMID: 20235758]
[82]
Sharma A, Arora S. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate. ISRN Pharm 2012; 2012: 1-8.
[http://dx.doi.org/10.5402/2012/873653] [PMID: 22745918]
[83]
Mittal R, Sharma A, Arora S. Ufasomes mediated cutaneous delivery of dexamethasone: formulation and evaluation of anti-inflammatory activity by carrageenin-induced rat paw edema model. J Pharm 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/680580] [PMID: 26555990]
[84]
Gaur PK, Mishra S, Verma A, Verma N. Ceramide-palmitic acid complex based Curcumin solid lipid nanoparticles for transdermal delivery: Pharmacokinetic and pharmacodynamic study. J Exp Nanosci 2016; 11(1): 38-53.
[http://dx.doi.org/10.1080/17458080.2015.1025301]
[85]
Choi J, Choi MK, Chong S, Chung SJ, Shim CK, Kim DD. Effect of fatty acids on the transdermal delivery of donepezil: In vitro and in vivo evaluation. Int J Pharm 2012; 422(1-2): 83-90.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.031] [PMID: 22037444]
[86]
Han SB, Kwon SS, Jeong YM, Yu ER, Park SN. Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin. Int J Cosmet Sci 2014; 36(6): 588-97.
[http://dx.doi.org/10.1111/ics.12160] [PMID: 25220288]
[87]
Al-Akayleh F, Adwan S, Khanfar M, Idkaidek N, Al-Remawi M. A novel eutectic-based transdermal delivery system for risperidone. AAPS Pharm Sci Tech 2021; 22(1): 4.
[http://dx.doi.org/10.1208/s12249-020-01844-4] [PMID: 33221990]
[88]
Zidan AS, Kamal N, Alayoubi A, et al. Effect of isopropyl myristate on transdermal permeation of testosterone from carbopol gel. J Pharm Sci 2017; 106(7): 1805-13.
[http://dx.doi.org/10.1016/j.xphs.2017.03.016] [PMID: 28341597]
[89]
Malakar J, Sen SO, Nayak AK, Sen KK. Development and evaluation of microemulsions for transdermal delivery of insulin. ISRN Pharm 2011; 2011: 1-7.
[http://dx.doi.org/10.5402/2011/780150] [PMID: 22389858]
[90]
Liu Y, Zhao F, Dun J, Qi X, Cao D. Lecithin/isopropyl myristate reverse micelles as transdermal insulin carriers: Experimental evaluation and molecular dynamics simulation. J Drug Deliv Sci Technol 2020; 59: 101891.
[http://dx.doi.org/10.1016/j.jddst.2020.101891]
[91]
Panchagnula R, Desu H, Jain A, Khandavilli S. Feasibility studies of dermal delivery of paclitaxel with binary combinations of ethanol and isopropyl myristate: Role of solubility, partitioning and lipid bilayer perturbation. Farmaco 2005; 60(11-12): 894-9.
[http://dx.doi.org/10.1016/j.farmac.2005.07.004] [PMID: 16126203]
[92]
Zhao C, Quan P, Liu C, Li Q, Fang L. Effect of isopropyl myristate on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserin. Acta Pharm Sin B 2016; 6(6): 623-8.
[http://dx.doi.org/10.1016/j.apsb.2016.05.012] [PMID: 27818930]
[93]
Akram R, Ahmad M, Abrar A, Sarfraz RM, Mahmood A. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride. Drug Des Devel Ther 2018; 12: 349-64.
[http://dx.doi.org/10.2147/DDDT.S147082] [PMID: 29503528]
[94]
Shrestha N, Banga AK. Development and evaluation of transdermal delivery system of tranylcypromine for the treatment of depression. Drug Deliv Transl Res 2023; 13(4): 1048-58.
[http://dx.doi.org/10.1007/s13346-022-01269-5] [PMID: 36482163]
[95]
Jose A, Mandapalli PK, Venuganti VVK. Liposomal hydrogel formulation for transdermal delivery of pirfenidone. J Liposome Res 2015; 26(2): 1-9.
[http://dx.doi.org/10.3109/08982104.2015.1060611] [PMID: 26114208]
[96]
Lee SG, Kang JB, Kim SR, et al. Enhanced topical delivery of tacrolimus by a carbomer hydrogel formulation with transcutol P. Drug Dev Ind Pharm 2016; 42(10): 1636-42.
[http://dx.doi.org/10.3109/03639045.2016.1160107] [PMID: 26925849]
[97]
Zaid Alkilani A, Hamed R, Al-Marabeh S, Kamal A, Abu-Huwaij R, Hamad I. Nanoemulsion-based film formulation for transdermal delivery of carvedilol. J Drug Deliv Sci Technol 2018; 46: 122-8.
[http://dx.doi.org/10.1016/j.jddst.2018.05.015]
[98]
Shen M, Liu C, Wan X, Farah N, Fang L. Development of a daphnetin transdermal patch using chemical enhancer strategy: insights of the enhancement effect of Transcutol P and the assessment of pharmacodynamics. Drug Dev Ind Pharm 2018; 44(10): 1642-9.
[http://dx.doi.org/10.1080/03639045.2018.1483391] [PMID: 29851521]
[99]
Mura S, Manconi M, Valenti D, Sinico C, Vila AO, Fadda AM. Transcutol containing vesicles for topical delivery of minoxidil. J Drug Target 2011; 19(3): 189-96.
[http://dx.doi.org/10.3109/1061186X.2010.483516] [PMID: 20446805]
[100]
Godwin DA, Kim NH, Felton LA. Influence of Transcutol® CG on the skin accumulation and transdermal permeation of ultraviolet absorbers. Eur J Pharm Biopharm 2002; 53(1): 23-7.
[http://dx.doi.org/10.1016/S0939-6411(01)00215-6] [PMID: 11777749]
[101]
Mura P, Faucci MT, Bramanti G, Corti P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur J Pharm Sci 2000; 9(4): 365-72.
[http://dx.doi.org/10.1016/S0928-0987(99)00075-5] [PMID: 10664476]
[102]
Špaglová M, Čuchorová M, Šimunková V, et al. Possibilities of the microemulsion use as indomethacin solubilizer and its effect on in vitro and ex vivo drug permeation from dermal gels in comparison with transcutol ®. Drug Dev Ind Pharm 2020; 46(9): 1468-76.
[http://dx.doi.org/10.1080/03639045.2020.1802483] [PMID: 32715801]
[103]
Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS Pharm Sci Tech 2007; 8(4): 191.
[http://dx.doi.org/10.1208/pt0804104] [PMID: 18181525]

Rights & Permissions Print Cite