Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Study on Cloning and Expression of TNF-α Variants in E. coli: Production, Purification, and Interaction with Anti-TNF-α Inhibitors

Author(s): Gülşah Akçadağ, Demet Cansaran-Duman*, Emine Sümer Aras* and Haluk Ataoğlu

Volume 31, Issue 5, 2024

Published on: 05 June, 2024

Page: [395 - 408] Pages: 14

DOI: 10.2174/0109298665312592240516111404

Abstract

Background: TNF-α is a proinflammatory cytokine and plays a role in cell proliferation, differentiation, survival, and death pathways. When administered at high doses, it may cause damage to the tumor vasculature, thereby increasing the permeability of the blood vessels. Therefore, monitoring the dose and the response of the TNF-α molecule is essential for patients' health.

Objectives: This study aimed to clone, express, and purify the active form of the TNF-α protein, which can interact with various anti-TNF-α inhibitors with high efficiency.

Methods: Recombinant DNA technology was used to clone three different versions of codon-optimized human TNF-α sequences to E. coli. Colony PCR protocol was used for verification and produced proteins were analyzed through SDS-PAGE and western blot. Size exclusion chromatography was used to purify sTNF-α. ELISA techniques were used to analyze and compare binding efficiency of sTNF-α against three different standards.

Results: Under native condition (25°C), interaction between sTNF-α and anti-TNF-α antibody was 3,970, compared to positive control. The interaction was 0,587, whereas it was 0,535 for TNF- α and anti-TNF-α antibodies under denaturing conditions (37°C). F7 of sTNF-α (920 μg/mL) had the same/higher binding efficiency to adalimumab, etanercept, and infliximab, compared to commercial TNF-α.

Conclusion: This study was the first to analyze binding efficiency of homemade sTNF-α protein against three major TNF-α inhibitors (adalimumab, etanercept, and infliximab) in a single study. The high binding efficiency of sTNF-α with adalimumab, etanercept, and infliximab, evidenced in this study supports the feasibility of its use in therapeutic applications, contributing to more sustainable, cost-effective, and independent healthcare system.

« Previous
Graphical Abstract

[1]
Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci., 1975, 72(9), 3666-3670.
[http://dx.doi.org/10.1073/pnas.72.9.3666] [PMID: 1103152]
[2]
Sharif, M.P.; Jabbari, P.; Razi, S.; Fathi, K.M.; Rezaei, N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine, 2020, 130(155066), 155066.
[http://dx.doi.org/10.1016/j.cyto.2020.155066] [PMID: 32208336]
[3]
Damough, S.; Sabzalinezhad, M.; Talebkhan, Y.; Nematollahi, L.; Bayat, E.; Torkashvand, F.; Adeli, A.; Jahandar, H.; Barkhordari, F.; Mahboudi, F. Optimization of culture conditions for high-level expression of soluble and active tumor necrosis factor-α in E. coli. Protein Expr. Purif., 2021, 179, 105805.
[http://dx.doi.org/10.1016/j.pep.2020.105805] [PMID: 33290843]
[4]
O’Connell, J.; Porter, J.; Kroeplien, B.; Norman, T.; Rapecki, S.; Davis, R.; McMillan, D.; Arakaki, T.; Burgin, A.; Fox, D., III; Ceska, T.; Lecomte, F.; Maloney, A.; Vugler, A.; Carrington, B.; Cossins, B.P.; Bourne, T.; Lawson, A. Small molecules that inhibit TNF signalling by stabilising an asymmetric form of the trimer. Nat. Commun., 2019, 10(1), 5795.
[http://dx.doi.org/10.1038/s41467-019-13616-1] [PMID: 31857588]
[5]
Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell, 2001, 104(4), 487-501.
[http://dx.doi.org/10.1016/S0092-8674(01)00237-9] [PMID: 11239407]
[6]
Mackay, F.; Browning, J.L. BAFF: A fundamental survival factor for B cells. Nat. Rev. Immunol., 2002, 2(7), 465-475.
[http://dx.doi.org/10.1038/nri844] [PMID: 12094221]
[7]
Riches, D.W.H.; Chan, E.D.; Winston, B.W. TNF-α-induced regulation and signalling in macrophages. Immunobiology, 1996, 195(4-5), 477-490.
[http://dx.doi.org/10.1016/S0171-2985(96)80017-9] [PMID: 8933152]
[8]
Szaba, F.M.; Smiley, S.T. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood, 2002, 99(3), 1053-1059.
[http://dx.doi.org/10.1182/blood.V99.3.1053] [PMID: 11807012]
[9]
Black, R.A.; Rauch, C.T.; Kozlosky, C.J.; Peschon, J.J.; Slack, J.L.; Wolfson, M.F.; Castner, B.J.; Stocking, K.L.; Reddy, P.; Srinivasan, S.; Nelson, N.; Boiani, N.; Schooley, K.A.; Gerhart, M.; Davis, R.; Fitzner, J.N.; Johnson, R.S.; Paxton, R.J.; March, C.J.; Cerretti, D.P. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature, 1997, 385(6618), 729-733.
[http://dx.doi.org/10.1038/385729a0] [PMID: 9034190]
[10]
Tracey, D.; Klareskog, L.; Sasso, E.H.; Salfeld, J.G.; Tak, P.P. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol. Ther., 2008, 117(2), 244-279.
[http://dx.doi.org/10.1016/j.pharmthera.2007.10.001] [PMID: 18155297]
[11]
Jones, E.Y.; Stuart, D.I.; Walker, N.P.C. Structure of tumour necrosis factor. Nature, 1989, 338(6212), 225-228.
[http://dx.doi.org/10.1038/338225a0] [PMID: 2922050]
[12]
Surovtseva, E.V.; Kuznetsova, T.V.; Khomenkov, V.G.; Domogatskiĭ, S.P.; Shevelev, A.B. A new Escherichia coli strain producing human tumor necrosis factor. Russ. J. Bioorganic Chem., 2005, 31(5), 426-432.
[http://dx.doi.org/10.1007/s11171-005-0059-8] [PMID: 16245690]
[13]
Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF family of ligands and receptors: Communication modules in the immune system and beyond. Physiol. Rev., 2019, 99(1), 115-160.
[http://dx.doi.org/10.1152/physrev.00045.2017] [PMID: 30354964]
[14]
Faustman, D.; Davis, M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat. Rev. Drug Discov., 2010, 9(6), 482-493.
[http://dx.doi.org/10.1038/nrd3030] [PMID: 20489699]
[15]
Grell, M.; Douni, E.; Wajant, H.; Löhden, M.; Clauss, M.; Maxeiner, B.; Georgopoulos, S.; Lesslauer, W.; Kollias, G.; Pfizenmaier, K.; Scheurich, P. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell, 1995, 83(5), 793-802.
[http://dx.doi.org/10.1016/0092-8674(95)90192-2] [PMID: 8521496]
[16]
Lipsky, P.E.; van der Heijde, D.M.; St Clair, E.W.; Furst, D.E.; Breedveld, F.C.; Kalden, J.R.; Smolen, J.S.; Weisman, M.; Emery, P.; Feldmann, M.; Harriman, G.R.; Maini, R.N. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med., 2000, 343(22), 1594-1602.
[http://dx.doi.org/10.1056/NEJM200011303432202] [PMID: 11096166]
[17]
Choy, E.H.S.; Hazleman, B.; Smith, M.; Moss, K.; Lisi, L.; Scott, D.G.I.; Patel, J.; Sopwith, M.; Isenberg, D.A. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: A phase II double-blinded, randomized, dose-escalating trial. Br. J. Rheumatol., 2002, 41(10), 1133-1137.
[http://dx.doi.org/10.1093/rheumatology/41.10.1133] [PMID: 12364632]
[18]
Jani, M.; Dixon, W.G.; Chinoy, H. Drug safety and immunogenicity of tumour necrosis factor inhibitors: The story so far. Rheumatology, 2018, 57(11), 1896-1907.
[http://dx.doi.org/10.1093/rheumatology/kex434] [PMID: 29325166]
[19]
van Schouwenburg, P.A.; Rispens, T.; Wolbink, G.J. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat. Rev. Rheumatol., 2013, 9(3), 164-172.
[http://dx.doi.org/10.1038/nrrheum.2013.4] [PMID: 23399692]
[20]
Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol., 2014, 5, 172.
[http://dx.doi.org/10.3389/fmicb.2014.00172] [PMID: 24860555]
[21]
New England Biolabs. Ligation protocol with T4 DNA ligase (M0202). Available from: https://www.neb.com/en/protocols/0001/01/01/dna-ligation-with-t4-dna-ligase-m0202
[22]
Walser, M.; Pellaux, R.; Meyer, A.; Bechtold, M.; Vanderschuren, H.; Reinhardt, R.; Magyar, J.; Panke, S.; Held, M. Novel method for high-throughput colony PCR screening in nanoliter-reactors. Nucleic Acids Res., 2009, 37(8), e57-e57.
[http://dx.doi.org/10.1093/nar/gkp160] [PMID: 19282448]
[23]
Rhee, M.S.; Kim, J.; Qian, Y.; Ingram, L.O.; Shanmugam, K.T. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans. Plasmid, 2007, 58(1), 13-22.
[http://dx.doi.org/10.1016/j.plasmid.2006.11.006] [PMID: 17215040]
[24]
Larentis, A.L.; Argondizzo, A.P.C.; Esteves, G.S.; Jessouron, E.; Galler, R.; Medeiros, M.A. Cloning and optimization of induction conditions for mature PsaA (pneumococcal surface adhesin A) expression in Escherichia coli and recombinant protein stability during long-term storage. Protein Expr. Purif., 2011, 78(1), 38-47.
[http://dx.doi.org/10.1016/j.pep.2011.02.013] [PMID: 21362478]
[25]
Soldo, B.; Lazarevic, V.; Pooley, H.M.; Karamata, D. Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: Gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase. J. Bacteriol., 2002, 184(15), 4316-4320.
[http://dx.doi.org/10.1128/JB.184.15.4316-4320.2002] [PMID: 12107153]
[26]
Sule, R.; Rivera, G.; Gomes, A.V. Western blotting (immunoblotting): History, theory, uses, protocol and problems. Biotechniques, 2023, 75(3), 99-114.
[http://dx.doi.org/10.2144/btn-2022-0034] [PMID: 36971113]
[27]
MatriksBiotek. Shikari® (Q-ATI) anti-infliximab ELISA. Available from: https://matriksbiotek.com/products/226/shikari-q-ati-anti-infliximab-elisa
[28]
MatriksBiotek. Shikari® (Q-ADA) adalimumab ELISA. https://matriksbiotek.com/products/184/shikari-q-ada-adalimumab-elisa
[29]
MatriksBiotek. Shikari® (Q-ETA) etanercept ELISA. Available from: https://matriksbiotek.com/products/216/shikari-q-eta-etanercept-elisa
[30]
MatriksBiotek. Shikari® (Q-INFLIXI) infliximab ELISA. Available from: https://matriksbiotek.com/products/224/shikari-q-inflixi-infliximab-elisa
[31]
Dömling, A.; Li, X. TNF-α: The shape of small molecules to come? Drug Discov. Today, 2022, 27(1), 3-7.
[http://dx.doi.org/10.1016/j.drudis.2021.06.018] [PMID: 34229081]
[32]
Baky, E.N.A.; Fakharany, E.E.M.; Sabry, S.A.; El-Helow, E.R.; Redwan, E.M.; Sabry, A. A de novo optimized cell-free system for the expression of soluble and active human tumor necrosis factor-alpha. Biology, 2022, 11(2), 157.
[http://dx.doi.org/10.3390/biology11020157] [PMID: 35205024]
[33]
Wang, Z.; Li, H.; Guan, W.; Ling, H.; Wang, Z.; Mu, T.; Shuler, F.D.; Fang, X. Human SUMO fusion systems enhance protein expression and solubility. Protein Expr. Purif., 2010, 73(2), 203-208.
[http://dx.doi.org/10.1016/j.pep.2010.05.001] [PMID: 20457256]
[34]
Marblestone, J.G.; Edavettal, S.C.; Lim, Y.; Lim, P.; Zuo, X.; Butt, T.R. Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Sci., 2006, 15(1), 182-189.
[http://dx.doi.org/10.1110/ps.051812706] [PMID: 16322573]
[35]
Hoffmann, A.; Müller, M.Q.; Gloser, M.; Sinz, A.; Rudolph, R.; Pfeifer, S. Recombinant production of bioactive human TNF-α by SUMO-fusion system – High yields from shake-flask culture. Protein Expr. Purif., 2010, 72(2), 238-243.
[http://dx.doi.org/10.1016/j.pep.2010.03.022] [PMID: 20363332]
[36]
Sidhom, K.; Obi, P.O.; Saleem, A. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int. J. Mol. Sci., 2020, 21(18), 6466.
[http://dx.doi.org/10.3390/ijms21186466] [PMID: 32899828]
[37]
Huang, T.Y.; Chi, L.M.; Chien, K.Y. Size-exclusion chromatography using reverse-phase columns for protein separation. J. Chromatogr. A, 2018, 1571, 201-212.
[http://dx.doi.org/10.1016/j.chroma.2018.08.020] [PMID: 30146374]
[38]
Chen, X.; DuBois, D.C.; Almon, R.R.; Jusko, W.J. Interrelationships between infliximab and recombinant tumor necrosis factor-α in plasma using minimal physiologically based pharmacokinetic models. Drug Metab. Dispos., 2017, 45(7), 790-797.
[http://dx.doi.org/10.1124/dmd.116.074807] [PMID: 28411280]
[39]
Hu, S.; Liang, S.; Guo, H.; Zhang, D.; Li, H.; Wang, X.; Yang, W.; Qian, W.; Hou, S.; Wang, H.; Guo, Y.; Lou, Z. Comparison of the inhibition mechanisms of Adalimumab and Infliximab in treating tumor necrosis factor α-associated diseases from a molecular view. J. Biol. Chem., 2014, 289(31), 21296-21297.
[http://dx.doi.org/10.1074/jbc.A113.491530] [PMID: 24966330]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy