Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

A Comprehensive Review of Food Recommendation Systems in the Context of Nutritional Therapy for Diabetes Mellitus

In Press, (this is not the final "Version of Record"). Available online 03 June, 2024
Author(s): N. Prabakaran, Nitya Rajan, Sreelasya Chagalasetty and Vijay Kakani*
Published on: 03 June, 2024

DOI: 10.2174/0115734013297002240522063241

Price: $95

Abstract

Food recommendation systems (FRS) have gained prominence for providing personalized dietary recommendations. This paper explores the integration of FRS and nutritional therapy to enhance the management of diabetes mellitus. Nutritional therapy plays a crucial role in controlling blood glucose levels and reducing complications in diabetes. The study reviews and analyzes various food recommendation models in diverse scenarios of diabetic nutritional therapy. By considering specific needs and constraints, the strengths of each model are assessed, leading to the identification of the most suitable model for each scenario. The findings contribute to improving the quality of dietary guidance for individuals with diabetes.

[1]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87(1), 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[2]
Franz, M.J.; Bantle, J.P.; Beebe, C.A. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care, 2002, 25(1), 148-198.
[http://dx.doi.org/10.2337/diacare.25.1.148]
[3]
Sami, W.; Ansari, T.; Butt, N.S.; Hamid, M.R.A. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci., 2017, 11(2), 65-71.
[PMID: 28539866]
[4]
Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet, 2014, 383(9933), 1999-2007.
[http://dx.doi.org/10.1016/S0140-6736(14)60613-9]
[5]
Pirahandeh, M.; Ullah, S.; Kim, D.H. A distributed edge-based scheduling technique with low-latency and high-bandwidth for existing driver profiling algorithms. Electronics, 2021, 10(8), 972.
[http://dx.doi.org/10.3390/electronics10080972]
[6]
Song, T.G.; Pirahandeh, M.; Ahn, C.J.; Kim, D.H. GPU-accelerated high-performance encoding and decoding of hierarchical RAID in virtual machines. J. Supercomput., 2018, 74(11), 5865-5888.
[http://dx.doi.org/10.1007/s11227-017-1969-y]
[7]
Kakani, V.; Kim, H.; Basivi, P.K.; Pasupuleti, V.R. Surface thermo-dynamic characterization of poly (vinylidene chloride-co-acrylonitrile)(P (VDC-co-AN)) using inverse-gas chromatography and investigation of visual traits using computer vision image processing algorithms. Polymers, 2020, 12(8), 1631.
[http://dx.doi.org/10.3390/polym12081631] [PMID: 32717780]
[8]
Basivi, P.K.; Kakani, V.; Hamieh, T.; Heo, S.M.; Pasupuleti, V.R.; Kim, C.W. Thermal modeling for anionic surfactant using Inverse gas chromatography and image processing techniques. J. Mol. Liq., 2023, 383, 122072.
[http://dx.doi.org/10.1016/j.molliq.2023.122072]
[9]
Chandrasekaran, K.; Ramesh, S.; Kokkarachedu, V.; Kakani, V. Toxicity reduction of ZnO cauliflower-like structure through trivalent neodymium ion substitution and investigation via computer vision and AI image analysis. Mater. Chem. Phys., 2023, 5, 128640.
[10]
Chandrasekaran, K.; Kakani, V.; Kokkarachedu, V. Toxicological assessment of divalent ion-modified ZnO nanomaterials through artificial intelligence and in vivo study. Aquat. Toxicol., 2024, 267, 106826.
[http://dx.doi.org/10.1016/j.aquatox.2023.106826] [PMID: 38219502]
[11]
Basivi, P.K.; Hamieh, T.; Kakani, V. Exploring advanced materials: Harnessing the synergy of inverse gas chromatography and artificial vision intelligence. Trends Analyt. Chem., 2024, 173, 117655.
[http://dx.doi.org/10.1016/j.trac.2024.117655]
[12]
Kumar, B.P.; Hamieh, T.; Kakani, V. Surface thermodynamic properties by reverse phase chromatography and visual traits using computer vision techniques on Amberlite XAD-7 acrylic-ester-resin. Polym. Adv. Technol., 2022, 33(10), 3572-3582.
[http://dx.doi.org/10.1002/pat.5810]
[13]
Abhari, S.; Safdari, R.; Azadbakht, L. A systematic review of nutrition recommendation systems: With focus on technical aspects. J. Biomed. Phys. Eng., 2019, 9(6), 591-602.
[http://dx.doi.org/10.31661/JBPE.V0I0.1248] [PMID: 32039089]
[14]
Kumar, A.; Tanwar, P.; Nigam, S. Survey and evaluation of food recommendation systems and techniques. 20163rd International Conference on Computing for Sustainable Global Development (INDIACom), , 3592-6.
[15]
Trattner, C; Elsweiler, D. Food recommender systems: important contributions, challenges and future research directions. arXiv , 2017, 171102760.
[16]
Norouzi, S.; Nematy, M.; Zabolinezhad, H.; Sistani, S.; Etminani, K. Food recommender systems for diabetic patients: A narrative review. Rev Clin Med, 2017, 4(3), 128-130.
[17]
Yera, R.; Alzahrani, A.A.; Martínez, L.; Rodríguez, R.M. A systematic review on food recommender systems for diabetic patients. Int. J. Environ. Res. Public Health, 2023, 20(5), 4248.
[http://dx.doi.org/10.3390/ijerph20054248] [PMID: 36901271]
[18]
Tran, T.N.T.; Felfernig, A.; Trattner, C.; Holzinger, A. Recommender systems in the healthcare domain: state-of-the-art and research issues. J. Intell. Inf. Syst., 2021, 57(1), 171-201.
[http://dx.doi.org/10.1007/s10844-020-00633-6]
[19]
Vairale, V.S.; Shukla, S. Recommendation of food items for thyroid patients using content-based KNN method.Data Science and Security Lecture Notes in Networks and Systems; Springer: Singapore, 2021, pp. 71-77.
[http://dx.doi.org/10.1007/978-981-15-5309-7_8]
[20]
Sahoo, A.K.; Pradhan, C. DeepReco: Deep learning based health recommender system using collaborative filtering. Computation, 2019, 7(2), 25.
[http://dx.doi.org/10.3390/computation7020025]
[21]
Pecune, F.; Callebert, L.; Marsella, S. 2020. A Recommender System for Healthy and Personalized Recipes Recommendations. In: In: Healthy Reesys@reccsys; , 2020; pp. 15-20.
[22]
Li, S; Zhang, Z; Liu, Y; Wang, Z; Li, X. A hybrid filtering method for recommender systems based on user preferences and item features. IEEE Access, 2019, 7, 96695-711.
[23]
Yera Toledo, R; Alzahrani, AA; Martinez, L A food recommender system considering nutritional information and user preferences. IEEE Access, 2019, 7, 96695-711.
[http://dx.doi.org/10.1109/ACCESS.2019.2929413]
[24]
Alian, S; Li, J; Pandey, V. A personalized recommendation system to support diabetes self-management for American Indians. IEEE Access, 2018, 6, 73041-51.
[http://dx.doi.org/10.1109/ACCESS.2018.2882138]
[25]
Sahoo, A.K.; Mallik, S.; Pradhan, C.; Mishra, B.S.P.; Barik, R.K.; Das, H. Intelligence-based health recommendation system using big data analytics.Big data analytics for intelligent healthcare management; Academic Press, 2019, pp. 227-246.
[http://dx.doi.org/10.1016/B978-0-12-818146-1.00009-X]
[26]
Archenaa, J.; Anita, E.M. Health recommender system using big data analytics. J Manag Sci Busin Intell, 2017, 2(2), 17-23.
[27]
Showafah, M.; Sihwi, S.W. Winarno. Ontology-based daily menu recommendation system for complementary food according to nutritional needs using naïve bayes and topsis. Int. J. Adv. Comput. Sci. Appl., 2021, 12(11)
[http://dx.doi.org/10.14569/IJACSA.2021.0121173]
[28]
Agapito, G.; Calabrese, B.; Guzzi, P.H.; Cannataro, M.; Simeoni, M.; Caré, I. DIETOS: A recommender system for adaptive diet monitoring and personalized food suggestion. In: 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob); New York, NY, USA,, 2016; pp. 1-8.
[http://dx.doi.org/10.1109/WiMOB.2016.7763190]
[29]
Lee, C.S.; Wang, M.H.; Li, H.C.; Chen, W.H. Intelligent ontological agent for diabetic food recommendation. In: 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence); Hong Kong, 2008; pp. 1803-1810.
[30]
Mckensy-Sambola, D.; Rodríguez-García, M.Á.; García-Sánchez, F.; Valencia-García, R. Ontology-based nutritional recommender system. Appl. Sci., 2021, 12(1), 143.
[http://dx.doi.org/10.3390/app12010143]
[31]
Nisheva-Pavlova, M.; Mihaylov, I.; Hadzhiyski, S.; Vassilev, D. Ontology-based decision support system for dietary recommendations for type 2 diabetes mellitus. In: International Conference on Computational Science; Springer International Publishing: Cham, 2021; pp. 735-741.
[http://dx.doi.org/10.1007/978-3-030-77967-2_61]
[32]
Tangruamsub, S.; Kappaganthu, K.; O’Donovan, J.; Madan, A. CareGraph: A graph-based recommender system for diabetes self-care. The Tenth International Conference on Learning Representations,
[33]
Song, Y.; Yang, X.; Xu, C. Self-supervised calorie-aware heterogeneous graph networks for food recommendation. ACM Trans. Multimed. Comput. Commun. Appl., 2023, 19(1s), 1-23.
[http://dx.doi.org/10.1145/3524618]
[34]
Rostami, M; Oussalah, M; Farrahi, V. A novel time-aware food recommender-system based on deep learning and graph clustering. IEEE Access, 2022, 10, 52508-24.
[http://dx.doi.org/10.1109/ACCESS.2022.3175317]
[35]
Gopalakrishnan, A.K. A food recommendation system based on BMI, BMR, k-NN algorithm, and a BPNN. In Machine Learning for Predictive Analysis. Proceedings of ICTIS, 2021, 2020, 107-118.
[36]
Manoharan, S. Patient diet recommendation system using K clique and deep learning classifiers. J Artif Intell, 2020, 2(02), 121-130.
[37]
Choi, I.; Kim, J.; Kim, W.C. Dietary pattern extraction using natural language processing techniques. Front. Nutr., 2022, 9, 765794.
[http://dx.doi.org/10.3389/fnut.2022.765794] [PMID: 35356732]
[38]
Syahputra, M.F.; Felicia, V.; Rahmat, R.F.; Budiarto, R. Scheduling diet for diabetes mellitus patients using genetic algorithm. J. Phys. Conf. Ser., 2017, 801(1), 012033.
[http://dx.doi.org/10.1088/1742-6596/801/1/012033]
[39]
Zhang, J.; Li, M.; Liu, W.; Lauria, S.; Liu, X. Many-objective optimization meets recommendation systems: A food recommendation scenario. Neurocomputing, 2022, 503, 109-117.
[http://dx.doi.org/10.1016/j.neucom.2022.06.081]
[40]
Osadchiy, T.; Poliakov, I.; Olivier, P.; Rowland, M.; Foster, E. Recommender system based on pairwise association rules. Expert Syst. with Appl., 2019, 115, 535-542.
[http://dx.doi.org/10.1016/j.eswa.2018.07.077]
[41]
Van Meteren, R.; Van Someren, M. Using content-based filtering for recommendation. In: In: Proceedings of the machine learning in the new information age: MLnet/ECML2000 workshop; , 2000; 30, pp. 47-56.
[42]
Li, Q.; Kim, B.M. An approach for combining content-based and collaborative filters. Proceedings of the sixth international workshop on Information Retrieval with Asian languages, , pp. 17-24.
[http://dx.doi.org/10.3115/1118935.1118938]
[43]
Bag, S.; Kumar, S.K.; Tiwari, M.K. An efficient recommendation generation using relevant Jaccard similarity. Inf. Sci., 2019, 483, 53-64.
[http://dx.doi.org/10.1016/j.ins.2019.01.023]
[44]
Pazzani, M.J.; Billsus, D. Content-based recommendation systems. In: In: Brusilovsky P, Kobsa A, Nejdl W, Eds. The Adaptive Web Lecture Notes in Computer Science; Berlin, Heidelberg: Springer , 2007; 4321, pp. 325-41.
[http://dx.doi.org/10.1007/978-3-540-72079-9_10]
[45]
Schafer, J.B.; Frankowski, D.; Herlocker, J.; Sen, S. Collaborative filtering recommender systems.The adaptive web: methods and strategies of web personalization; Springer, 2007, pp. 291-324.
[http://dx.doi.org/10.1007/978-3-540-72079-9_9]
[46]
Laishram, A.; Sahu, S.P.; Padmanabhan, V.; Udgata, S.K. Collaborative filtering, matrix factorization and population based search: The nexus unveiled. International Conference on Neural Information Processing, , pp. 352-61.
[http://dx.doi.org/10.1007/978-3-319-46675-0_39]
[47]
Noel, J.; Sanner, S.; Tran, K.N. New objective functions for social collaborative filtering. Proceedings of the 21st international conference on World Wide Web, , pp. 859-68.
[http://dx.doi.org/10.1145/2187836.2187952]
[48]
Ling, G.; Lyu, M.R.; King, I. Online learning for collaborative filtering. The 2012 International Joint Conference on Neural Networks (IJCNN)., 2012, 1-8.
[49]
Shao, Y.; Xie, Yh. Research on cold-start problem of collaborative filtering algorithm. Proceedings of the 3rd International Conference on Big Data Research, , 67-71.
[http://dx.doi.org/10.1145/3372454.3372470]
[50]
Zhang, Z.; Li, S.; Liu, Y.; Wang, Z.; Li, X. A hybrid filtering method for image denoising based on sparse representation and nonlocal means. IEEE Trans. Image Process., 2018, 27, 6087-6100.
[http://dx.doi.org/10.1109/TIP.2018.2866760]
[51]
Li, L.; Zhang, Z.; Zhang, S. Hybrid algorithm based on content and collaborative filtering in recommendation system optimization and simulation. Sci. Program., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/7427409]
[52]
Asghari, S.; Nematzadeh, H.; Akbari, E.; Motameni, H. Mutual information-based filter hybrid feature selection method for medical datasets using feature clustering. Multimedia Tools Appl., 2023, 82(27), 42617-42639.
[http://dx.doi.org/10.1007/s11042-023-15143-0]
[53]
Na, L.; Ming-xia, L.; Hai-yang, Q.; Hao-long, S. A hybrid user-based collaborative filtering algorithm with topic model. Appl. Intell., 2021, 51(11), 7946-7959.
[http://dx.doi.org/10.1007/s10489-021-02207-7]
[54]
Zhang, Z.; Li, Z.; Wang, L.; Zhang, X. An improved collaborative filtering recommendation algorithm based on user interest and item similarity. ScitifProg, 2022, 2022, 4544152.
[55]
Nainwal, A.; Gupta, D.; Pant, B. Probabilistic model using bayes theorem research paper recommender system. Advances in Data and Information Sciences; Springer, 2020, pp. 1035-1044.
[56]
Bozdogan, H. Model selection and akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 1987, 52(3), 345-370.
[http://dx.doi.org/10.1007/BF02294361]
[57]
Wang, J.; Zhou, J.; Chen, X. Probabilistic graphical model for continuous variables. J. Phys. Conf. Ser., 2017, 887(1), 012005.
[http://dx.doi.org/10.1088/1742-6596/887/1/012005]
[58]
Xu, M.; Li, J.; Liang, X. Graph embedding-based domain-specific knowledge graph construction for sustainable supply chain management. Sustainability, 2019, 11(23), 6714.
[http://dx.doi.org/10.3390/su11236714]
[59]
Wang, X.; Xu, H.; Tan, W.; Wang, Z.; Xu, X. Scholarly paper recommendation via related path analysis in knowledge graph. 2020 International Conference on Service Science (ICSS), 2020, 36-43.
[http://dx.doi.org/10.1109/ICSS50103.2020.00014]
[60]
Mu, N.; Zha, D.; Gong, R. Gated knowledge graph neural networks for top-n recommendation system. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD)., 2021, 1111-6.
[http://dx.doi.org/10.1109/CSCWD49262.2021.9437829]
[61]
Abdigapporov, S; Miraliev, S; Kakani, V; Kim, H Joint multiclass object detection and semantic segmentation for autonomous driving. IEEE Access, 2023, 11, 37637-49.
[http://dx.doi.org/10.1109/ACCESS.2023.3266284]
[62]
Prabakaran, N.; Kannadasan, R.; Krishnamoorthy, A.; Kakani, V. A Bidirectional LSTM approach for written script auto evaluation using keywords-based pattern matching. Nat Lang Proces J, 2023, 5, 100033.
[http://dx.doi.org/10.1016/j.nlp.2023.100033]
[63]
Pirahandeh, M.; Kim, D.H. High performance GPU-based parity computing scheduler in storage applications. Concurr. Comput., 2017, 29(4), e3889.
[http://dx.doi.org/10.1002/cpe.3889]
[64]
Song, T-G; Pirahandeh, M; Kim, D-H Hierarchicalraid’sparity generation using pass-through gpu in multi virtual-machine environment. Big Data and Smart Computing (BigComp)., , 386-9.
[http://dx.doi.org/10.1109/BIGCOMP.2016.7425954]
[65]
Ghimire, A; Kakani, V; Kim, H. SSRT: A sequential skeleton RGB transformer to recognize fine-grained human-object interactions and action recognition. IEEE Access, 2023, 11, 51930-48.
[http://dx.doi.org/10.1109/ACCESS.2023.3278974]
[66]
Kakani, V.; Li, X.; Cui, X.; Kim, H.; Kim, B.S.; Kim, H. Implementation of field-programmable gate array platform for object classification tasks using spike-based backpropagated deep convolutional spiking neural networks. Micromachines, 2023, 14(7), 1353.
[http://dx.doi.org/10.3390/mi14071353] [PMID: 37512665]
[67]
Juraev, S; Ghimire, A; Alikhanov, J; Kakani, V; Kim, H Exploring human pose estimation and the usage of synthetic data for elderly fall detection in real-world surveillance. IEEE Access, 2022, 10, 94249-61.
[http://dx.doi.org/10.1109/ACCESS.2022.3203174]
[68]
Miraliev, S.; Abdigapporov, S.; Kakani, V.; Kim, H. Real-time memory efficient multitask learning model for autonomous driving. IEEE Trans. Intell. Veh., 2024, 9(1), 247-258.
[69]
Revathi, A.R.; Kumar, D. An efficient system for anomaly detection using deep learning classifier. Signal Image Video Process., 2017, 11(2), 291-299.
[http://dx.doi.org/10.1007/s11760-016-0935-0]
[70]
Abdigapporov, S.; Miraliev, S.; Alikhanov, J.; Kakani, V.; Kim, H. Performance comparison of backbone networks for multi-tasking in self-driving operations. 22nd International Conference on Control, Automation and Systems (ICCAS), , pp. 819-24.
[http://dx.doi.org/10.23919/ICCAS55662.2022.10003816]
[71]
Park, D.H.; Kakani, V.; Kim, H.I. Automatic radial un-distortion using conditional generative adversarial network. J Inst ContRobot Syst, 2019, 25(11), 1007-1013.
[72]
Syed, T.; Kakani, V.; Cui, X.; Kim, H. Spiking neural networks using backpropagation. IEEE Region 10 Symposium (TENSYMP), 2021, 1-5.
[73]
Kakani, V.; Lee, S.; Cui, X.; Kim, H. Performance analysis of spiking neural network using temporal spike-based backpropagation on field programmable gate array (FPGA) platform. In: In: 2022 IEEE Region 10 Symposium (TENSYMP),; IEEE, 2022; pp. 1-6.
[74]
Kakani, V.; Jin, C.B.; Kim, H. Segmentation-based ID preserving iris synthesis using generative adversarial networks. Multimedia Tools Appl., 2023, 83(9), 27589-27617.
[http://dx.doi.org/10.1007/s11042-023-16508-1]
[75]
Nguyen, Q.D.; Mai, N.D.; Nguyen, V.H.; Kakani, V.; Kim, H. SynFAGnet: A fully automated generative network for realistic fire image generation. Fire Technol., 2024, 7, 1-23.
[http://dx.doi.org/10.1007/s10694-023-01540-2]
[76]
Miraliev, S.; Abdigapporov, S.; Alikhanov, J.; Kakani, V.; Kim, H. Edge device deployment of multi-tasking network for self-driving operations. arXiv:221004735, 2022.
[77]
Genuth, S.M.; Palmer, J.P.; Nathan, D.M. Classification and diagnosis of diabetes. In: In: Diabetes in America, 3rd ed; National Institute of Diabetes and Digestive and Kidney Diseases (US): Bethesda, MD, 2018.
[78]
American Diabetes Association. 13. Children and Adolescents: Standards of Medical Care in Diabetes—2021. Diabetes Care, 2021, 44(Suppl. 1), S180-S199.
[http://dx.doi.org/10.2337/dc21-S013] [PMID: 33298424]
[79]
Chiang, J.L.; Maahs, D.M.; Garvey, K.C. Type 1 diabetes in children and adolescents: A position statement by the american diabetes association. Diabetes Care, 2018, 41(9), 2026-2044.
[http://dx.doi.org/10.2337/dci18-0023] [PMID: 30093549]
[80]
Scott, S.N.; Anderson, L.; Morton, J.P.; Wagenmakers, A.J.M.; Riddell, M.C. Carbohydrate restriction in type 1 diabetes: A realistic therapy for improved glycaemic control and athletic performance? Nutrients, 2019, 11(5), 1022.
[http://dx.doi.org/10.3390/nu11051022] [PMID: 31067747]
[81]
Green, A.; Hede, S.M.; Patterson, C.C. Type 1 diabetes in 2017: Global estimates of incident and prevalent cases in children and adults. Diabetologia, 2021, 64(12), 2741-2750.
[http://dx.doi.org/10.1007/s00125-021-05571-8] [PMID: 34599655]
[82]
Wang, L.; Li, X.; Wang, Z. Trends in prevalence of diabetes and control of risk factors in diabetes among us adults, 1999-2018. JAMA, 2021, 326(8), 704.
[http://dx.doi.org/10.1001/jama.2021.9883] [PMID: 34170288]
[83]
Franz, M.J.; MacLeod, J.; Evert, A. Academy of nutrition and dietetics nutrition practice guideline for type 1 and type 2 diabetes in adults: Systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process. J. Acad. Nutr. Diet., 2017, 117(10), 1659-1679.
[http://dx.doi.org/10.1016/j.jand.2017.03.022] [PMID: 28533169]
[84]
Gupta, U.C.; Gupta, S.C.; Gupta, S.S. An evidence-based review of diabetes care: History, types, relationship to cancer and heart disease, co-morbid factors, and preventive measures. Curr. Nutr. Food Sci., 2023, 19(4), 399-408.
[http://dx.doi.org/10.2174/1573401318666220802103404]
[85]
Tipici, B.E.; Atik Altınok, Y.; Keser, A. Frequently asked questions and evidence-based answers on medical nutritional therapy in children with type 1 diabetes for health care professionals. J. Clin. Res. Pediatr. Endocrinol., 2023, 15(2), 120-126.
[http://dx.doi.org/10.4274/jcrpe.galenos.2022.2022-6-4] [PMID: 36416458]
[86]
Salis, S.; Joseph, M.; Agarwala, A.; Sharma, R.; Kapoor, N.; Irani, A.J. Medical nutrition therapy of pediatric type 1 diabetes mellitus in India: Unique aspects and challenges. Pediatr. Diabetes, 2021, 22(1), 93-100.
[http://dx.doi.org/10.1111/pedi.13080] [PMID: 32666666]
[87]
Granado-Casas, M.; Solà, I.; Hernández, M.; Rojo-López, M.I.; Julve, J.; Mauricio, D. Effectiveness of medical nutrition therapy in adolescents with type 1 diabetes: A systematic review. Nutr. Diabetes, 2022, 12(1), 24.
[http://dx.doi.org/10.1038/s41387-022-00201-7] [PMID: 35459205]
[88]
Tascini, G.; Berioli, M.; Cerquiglini, L. Carbohydrate counting in children and adolescents with type 1 diabetes. Nutrients, 2018, 10(1), 109.
[http://dx.doi.org/10.3390/nu10010109] [PMID: 29361766]
[89]
Quarta, A.; Guarino, M.; Tripodi, R.; Giannini, C.; Chiarelli, F.; Blasetti, A. Diet and glycemic index in children with type 1 diabetes. Nutrients, 2023, 15(16), 3507.
[http://dx.doi.org/10.3390/nu15163507] [PMID: 37630698]
[90]
Petroni, M.L.; Brodosi, L.; Marchignoli, F. Nutrition in patients with type 2 diabetes: Present knowledge and remaining challenges. Nutrients, 2021, 13(8), 2748.
[http://dx.doi.org/10.3390/nu13082748] [PMID: 34444908]
[91]
de Boer, I.H.; Caramori, M.L.; Chan, J.C.N. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in monitoring and treatment. Kidney Int., 2020, 98(4), 839-848.
[http://dx.doi.org/10.1016/j.kint.2020.06.024] [PMID: 32653403]
[92]
Gillespie, S.J.; Kulkarni, K.D.; Daly, A. Using carbohydrate counting in diabetes clinical practice. J. Am. Diet. Assoc., 1998, 98(8), 897-905.
[http://dx.doi.org/10.1016/S0002-8223(98)00206-5] [PMID: 9710660]
[93]
Evert, A.B.; Dennison, M.; Gardner, C.D. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care, 2019, 42(5), 731-754.
[http://dx.doi.org/10.2337/dci19-0014] [PMID: 31000505]
[94]
Pamungkas, R.; Chamroonsawasdi, K.; Vatanasomboon, P. A systematic review: family support integrated with diabetes self-management among uncontrolled type II diabetes mellitus patients. Behav. Sci., 2017, 7(4), 62.
[http://dx.doi.org/10.3390/bs7030062] [PMID: 28914815]
[95]
Lambrinou, E; Hansen, TB; Beulens, JWJ Lifestyle factors, self-management and patient empowerment in diabetes care. Eur J Prev Cardiol, 2019, 26(2_suppl)(Suppl.), 55-63.
[http://dx.doi.org/10.1177/2047487319885455] [PMID: 31766913]
[96]
Palmer, C. Providing self-management education to patients with type 2 diabetes mellitus. Nurse Pract., 2017, 42(11), 36-42.
[http://dx.doi.org/10.1097/01.NPR.0000525719.99231.41] [PMID: 29040177]
[97]
Saravanan, P.; Magee, L.A.; Banerjee, A. Gestational diabetes: Opportunities for improving maternal and child health. Lancet Diabetes Endocrinol., 2020, 8(9), 793-800.
[http://dx.doi.org/10.1016/S2213-8587(20)30161-3] [PMID: 32822601]
[98]
Mahajan, A.; Donovan, L.E.; Vallee, R.; Yamamoto, J.M. Evidenced-based nutrition for gestational diabetes mellitus. Curr. Diab. Rep., 2019, 19(10), 94.
[http://dx.doi.org/10.1007/s11892-019-1208-4] [PMID: 31473839]
[99]
Hill, A.J.; Cairnduff, V.; McCance, D.R. Nutritional and clinical associations of food cravings in pregnancy. J. Hum. Nutr. Diet., 2016, 29(3), 281-289.
[http://dx.doi.org/10.1111/jhn.12333] [PMID: 26400798]
[100]
Belzer, L.M.; Smulian, J.C.; Lu, S.E.; Tepper, B.J. Food cravings and intake of sweet foods in healthy pregnancy and mild gestational diabetes mellitus. A prospective study. Appetite, 2010, 55(3), 609-615.
[http://dx.doi.org/10.1016/j.appet.2010.09.014] [PMID: 20869416]
[101]
Rasmussen, L.; Poulsen, C.W.; Kampmann, U.; Smedegaard, S.B.; Ovesen, P.G.; Fuglsang, J. Diet and healthy lifestyle in the management of gestational diabetes mellitus. Nutrients, 2020, 12(10), 3050.
[http://dx.doi.org/10.3390/nu12103050] [PMID: 33036170]
[102]
Yamamoto, J.M.; Kellett, J.E.; Balsells, M. Gestational diabetes mellitus and diet: A systematic review and meta-analysis of randomized controlled trials examining the impact of modified dietary interventions on maternal glucose control and neonatal birth weight. Diabetes Care, 2018, 41(7), 1346-1361.
[http://dx.doi.org/10.2337/dc18-0102] [PMID: 29934478]
[103]
Filardi, T.; Panimolle, F.; Crescioli, C.; Lenzi, A.; Morano, S. Gestational diabetes mellitus: The impact of carbohydrate quality in diet. Nutrients, 2019, 11(7), 1549.
[http://dx.doi.org/10.3390/nu11071549] [PMID: 31323991]
[104]
Lende, M.; Rijhsinghani, A. Gestational diabetes: Overview with emphasis on medical management. Int. J. Environ. Res. Public Health, 2020, 17(24), 9573.
[http://dx.doi.org/10.3390/ijerph17249573] [PMID: 33371325]
[105]
Chentli, F.; Azzoug, S.; Mahgoun, S. Diabetes mellitus in elderly. Indian J. Endocrinol. Metab., 2015, 19(6), 744-752.
[http://dx.doi.org/10.4103/2230-8210.167553] [PMID: 26693423]
[106]
Abdelhafiz, A.H.; Sinclair, A.J. Management of type 2 diabetes in older people. Diabetes Ther., 2013, 4(1), 13-26.
[http://dx.doi.org/10.1007/s13300-013-0020-4] [PMID: 23605454]
[107]
Tamura, Y.; Omura, T.; Toyoshima, K.; Araki, A. Nutrition management in older adults with diabetes: A review on the importance of shifting prevention strategies from metabolic syndrome to frailty. Nutrients, 2020, 12(11), 3367.
[http://dx.doi.org/10.3390/nu12113367] [PMID: 33139628]
[108]
Doola, R.; Preiser, J.C. Nutritional therapy in critically ill patients with diabetes. Curr. Opin. Clin. Nutr. Metab. Care, 2022, 25(2), 93-98.
[http://dx.doi.org/10.1097/MCO.0000000000000807] [PMID: 34966114]
[109]
Wagner, K.H.; Schwingshackl, L.; Draxler, A.; Franzke, B. Impact of dietary and lifestyle interventions in elderly or people diagnosed with diabetes, metabolic disorders, cardiovascular disease, cancer and micronutrient deficiency on micronuclei frequency: A systematic review and meta-analysis. Mutat. Res. Rev. Mutat. Res., 2021, 787, 108367.
[http://dx.doi.org/10.1016/j.mrrev.2021.108367] [PMID: 34083034]
[110]
Eqlima, Elfira ; Girsang, B.M.; Rossevelt, F.A. Nutrition management in elderly with diabetes mellitus: Literature review. Caring: IndonJ Nurs Sci, 2022, 4(1), 39-54.
[http://dx.doi.org/10.32734/ijns.v4i1.8835]
[111]
Yanase, T.; Yanagita, I.; Muta, K.; Nawata, H. Frailty in elderly diabetes patients. Endocr. J., 2018, 65(1), 1-11.
[http://dx.doi.org/10.1507/endocrj.EJ17-0390] [PMID: 29238004]
[112]
Jadhav, S.D.; Channe, H.P. Efficient recommendation system using decision tree classifier and collaborative filtering. Int Res J Eng Technol, 2016, 3(8), 2113-2118.
[113]
Jeevamol, J.; Renumol, V.G. An ontology-based hybrid e-learning content recommender system for alleviating the cold-start problem. Educ. Inf. Technol., 2021, 26(4), 4993-5022.
[http://dx.doi.org/10.1007/s10639-021-10508-0]
[114]
Rosa, R.L.; Schwartz, G.M.; Ruggiero, W.V.; Rodríguez, D.Z. A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Trans. Industr. Inform., 2019, 15(4), 2124-2135.
[http://dx.doi.org/10.1109/TII.2018.2867174]
[115]
Chakraborty, A.; Das, U.K.; Sikder, J.; Maimuna, M.; Sarek, K.I. Content based email spam classifier as a web application using naïve Bayes classifier. International Conference on Intelligent Computing & Optimization, 2022, 389-98.
[116]
Nilashi, M.; Ibrahim, O.; Bagherifard, K. A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Syst. Appl., 2018, 92, 507-520.
[http://dx.doi.org/10.1016/j.eswa.2017.09.058]
[117]
Rabahallah, K.; Mahdaoui, L.; Azouaou, F. MOOCs recommender system using ontology and memory-based collaborative filtering. Proceedings of the 20th International Conference on Enterprise Information Systems, 1, pp. 635-41.
[http://dx.doi.org/10.5220/0006786006350641]
[118]
Bagherifard, K.; Rahmani, M.; Nilashi, M.; Rafe, V. Performance improvement for recommender systems using ontology. Telemat. Inform., 2017, 34(8), 1772-1792.
[http://dx.doi.org/10.1016/j.tele.2017.08.008]
[119]
Christakopoulou, K.; Radlinski, F.; Hofmann, K. Towards conversational recommender systems. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Towards Convers Recommend Sys, 2016, 815-24.
[http://dx.doi.org/10.1145/2939672.2939746]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy