Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Androgen Signaling in Prostate Cancer: When a Friend Turns Foe

In Press, (this is not the final "Version of Record"). Available online 31 May, 2024
Author(s): Swaroop Kumar Pandey*, Usha Sabharwal, Swati Tripathi, Anuja Mishra, Neha Yadav and Hemlata Dwivedi-Agnihotri*
Published on: 31 May, 2024

DOI: 10.2174/0118715303313528240523101940

Price: $95

Abstract

Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It’s signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.

[1]
Mohammadabadi, M.R.; Mozafari, M.R. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. J. Drug Deliv. Sci. Technol., 2018, 47, 445-453.
[http://dx.doi.org/10.1016/j.jddst.2018.08.019]
[2]
Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol., 2016, 7(1), 54-86.
[http://dx.doi.org/10.5306/wjco.v7.i1.54] [PMID: 26862491]
[3]
Barazandeh, H.; Kissane, D.W.; Saeedi, N.; Gordon, M. A systematic review of the relationship between early maladaptive schemas and borderline personality disorder/traits. Pers. Individ. Dif., 2016, 94, 130-139.
[http://dx.doi.org/10.1016/j.paid.2016.01.021]
[4]
Ashrafizadeh, M.; Hushmandi, K.; Rahmani Moghadam, E.; Zarrin, V.; Hosseinzadeh Kashani, S.; Bokaie, S.; Najafi, M.; Tavakol, S.; Mohammadinejad, R.; Nabavi, N.; Hsieh, C.L.; Zarepour, A.; Zare, E.N.; Zarrabi, A.; Makvandi, P. Progress in delivery of siRNA-based therapeutics employing nano-vehicles for treatment of prostate cancer. Bioengineering, 2020, 7(3), 91.
[http://dx.doi.org/10.3390/bioengineering7030091] [PMID: 32784981]
[5]
Bandara, V.; Capp, A.; Ahmed, G.; Arm, J.; Martin, J. Assessment and predictors of fatigue in men with prostate cancer receiving radiotherapy and androgen deprivation therapy. J. Med. Imaging Radiat. Oncol., 2019, 63(5), 683-690.
[http://dx.doi.org/10.1111/1754-9485.12922] [PMID: 31588674]
[6]
Derweesh, I.H.; Bagrodia, A.; DiBlasio, C.J.; Wake, R.W. Adverse effects of androgen deprivation therapy in prostate cancer: Current management issues. Indian J. Urol., 2009, 25(2), 169-176.
[http://dx.doi.org/10.4103/0970-1591.52907] [PMID: 19672340]
[7]
Izard, J.P.; Siemens, D.R. Androgen deprivation therapy and mental health: Impact on depression and cognition. Eur. Urol. Focus, 2020, 6(6), 1162-1164.
[http://dx.doi.org/10.1016/j.euf.2019.11.010] [PMID: 31911085]
[8]
Tsou, P-H.; Lan, T-C.; Tam, K-W.; Huang, T-W. Essential of immediate exercises on cancer-related fatigue in patients with prostate cancer receiving androgen deprivation therapy: A meta-analysis of randomized controlled trials. Semin. Oncol. Nurs., 2022, 39(3), 151368.
[PMID: 36494260]
[9]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA, 2021, 71(3), 209-249.
[10]
Greco, F.; Tafuri, A.; Panunzio, A.; Beomonte Zobel, B.; Mallio, C.A. Relationship between androgen deprivation therapy and abdominal adipose tissue. Uro, 2022, 2(4), 270-276.
[http://dx.doi.org/10.3390/uro2040030]
[11]
Watanabe, D.; Kimura, T.; Yamashita, A.; Minowa, T.; Miura, K.; Mizushima, A. The influence of androgen deprivation therapy on hip geometric properties and bone mineral density in Japanese men with prostate cancer and its relationship with the visceral fat accumulation. Aging Male, 2020, 23(5), 1158-1164.
[http://dx.doi.org/10.1080/13685538.2020.1713741] [PMID: 31959023]
[12]
Chan, J.S.K.; Lee, Y.H.A.; Liu, K.; Hui, J.M.H.; Dee, E.C.; Ng, K.; Satti, D.I.; Tang, P.; Tse, G.; Ng, C.F. Long‐term cardiovascular burden in prostate cancer patients receiving androgen deprivation therapy. Eur. J. Clin. Invest., 2023, 53(4), e13932.
[http://dx.doi.org/10.1111/eci.13932] [PMID: 36468787]
[13]
Laufer, N.; Zilber, N.; Jeczmien, P.; Gilad, R.; Gur, S.; Munitz, H. Effect of implementation of mental health services within primary care on GP detection and treatment of mental disorders in Israel. Isr. J. Health Policy Res., 2023, 12(1), 4.
[http://dx.doi.org/10.1186/s13584-023-00553-0] [PMID: 36717940]
[14]
Vasiliu, O. The current state of research for psychobiotics use in the management of psychiatric disorders–A systematic literature review. Front. Psychiatry, 2023, 14, 1074736.
[http://dx.doi.org/10.3389/fpsyt.2023.1074736] [PMID: 36911130]
[15]
Belkacemi, Y.; Coraggio, G.; Brunel, A.; Jouhaud, A.; Ingels, A.; Joly, C.; Hadhri, A.; Hassani, W.; Loganadane, G.; Saldana, C.; Ouidir, N.; Vega, B.; Debbi, K.; Taille, A.L. Effect of serelys homme on the incidence and severity of vasomotor symptoms and quality-of-life impairments in patients receiving hormone therapy and radiation for localized prostate cancer: Results of the ESCULAPE phase 2 prospective study. Adv. Radiat. Oncol., 2023, 8(5), 101255.
[http://dx.doi.org/10.1016/j.adro.2023.101255] [PMID: 37408674]
[16]
Braga-Basaria, M.; Travison, T.G.; Taplin, M-E.; Lin, A.; Dufour, A.B.; Habtemariam, D. Gaining metabolic insight in older men undergoing androgen deprivation therapy for prostate cancer (the ADT & Metabolism Study): Protocol of a longitudinal, observational, cohort study. PLoS ONE, 2023, 18(2), e0281508.
[17]
Cintra, A.R.; Linhares, B.L.; Da Rocha, E.L.; Linhares-Filho, J.; Da Trindade, K.M.; Monteiro, M.M.F.; Lopes, M.D.S.R.; Palmeira, H.T.; Da Silva, M.J.; Bessa, J., Jr; Miranda, E.P.; Reges, R. (297) Evaluation of endothelial function and metabolic profile in patients with prostate cancer undergoing androgen deprivation therapy. J. Sex. Med., 2023, 20(Suppl. 1), qdad060.278.
[http://dx.doi.org/10.1093/jsxmed/qdad060.278]
[18]
Hahn, A.W.; Siddiqui, B.A.; Leo, J.; Dondossola, E.; Basham, K.J.; Miranti, C.K. Cancer cell-extrinsic roles for the androgen receptor in prostate cancer. Endocrinology, 2023, 164(6), bqad078.
[http://dx.doi.org/10.1210/endocr/bqad078]
[19]
Chi, K.N.; Chowdhury, S.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juárez, A.; Merseburger, A.S.; Özgüroğlu, M.; Uemura, H.; Ye, D.; Brookman-May, S.; Mundle, S.D.; McCarthy, S.A.; Larsen, J.S.; Sun, W.; Bevans, K.B.; Zhang, K.; Bandyopadhyay, N.; Agarwal, N. Apalutamide in patients with metastatic castration-sensitive prostate cancer: Final survival analysis of the randomized, double-blind, phase III TITAN study. J. Clin. Oncol., 2021, 39(20), 2294-2303.
[http://dx.doi.org/10.1200/JCO.20.03488] [PMID: 33914595]
[20]
Lopez, P.; Newton, R.U.; Taaffe, D.R.; Winters-Stone, K.; Buffart, L.M.; Galvão, D.A. Effects and moderators of exercise medicine on cardiometabolic outcomes in men with prostate cancer previously or currently undergoing androgen deprivation therapy: An individual patient data meta-analysis. Crit. Rev. Oncol. Hematol., 2023, 186, 103995.
[http://dx.doi.org/10.1016/j.critrevonc.2023.103995] [PMID: 37080399]
[21]
Masuda, H. Renal impairment: A major adverse event in prostate cancer patients treated with androgen deprivation therapy. Anticancer Res., 2023, 43(1), 305-309.
[http://dx.doi.org/10.21873/anticanres.16164] [PMID: 36585176]
[22]
Sachs, G.S.; Yeung, P.P.; Rekeda, L.; Khan, A.; Adams, J.L.; Fava, M. Cariprazine for the adjunctive treatment of major depressive disorder: Results of a randomized phase 3 placebo-controlled study (study 301). CNS Spectr., 2023, 28(2), 254-255.
[http://dx.doi.org/10.1017/S1092852923001980]
[23]
Sood, A.; Baishnab, S.; Gautam, I.; Choudhary, P.; Lang, D.K.; Jaura, R.S.; Singh, T.G. Exploring various novel diagnostic and therapeutic approaches in treating diabetic retinopathy. Inflammopharmacology, 2023, 31(2), 773-786.
[http://dx.doi.org/10.1007/s10787-023-01143-x] [PMID: 36745243]
[24]
Hammad, M. Temsirolimus: Safety and efficacy in the treatment of renal cell carcinoma. Clin. Med. Rev. Oncol., 2011, 3, 29-37.
[http://dx.doi.org/10.4137/CMRO.S1632]
[25]
Mannan Baig, A.; Khan, N.A.; Effendi, V.; Rana, Z.; Ahmad, H.R.; Abbas, F. Differential receptor dependencies. Anticancer. Drugs., 2017, 28(1), 75-87.
[http://dx.doi.org/10.1097/CAD.0000000000000432] [PMID: 27606721]
[26]
Salaheldin, Y.A.; Mahmoud, S.S.M.; Ngowi, E.E.; Gbordzor, V.A.; Li, T.; Wu, D-D. Role of RONS and eIFs in cancer progression. Oxid. Med. Cell. Longev., 2021, 5522054.
[http://dx.doi.org/10.1155/2021/5522054]
[27]
Wang, P.; Liu, J.; Tan, X.; Yang, F.; McCabe, J.; Zhang, J. Pharmacokinetics and drug–drug interaction of ocedurenone (KBP-5074) in vitro and in vivo. Eur. J. Drug Metab. Pharmacokinet., 2023, 48(4), 397-410.
[http://dx.doi.org/10.1007/s13318-023-00837-5] [PMID: 37357226]
[28]
Drozdzik, M.; Lapczuk-Romanska, J.; Wenzel, C.; Skalski, L.; Szeląg-Pieniek, S.; Post, M.; Parus, A.; Syczewska, M.; Kurzawski, M.; Oswald, S. Protein abundance of drug metabolizing enzymes in human hepatitis C livers. Int. J. Mol. Sci., 2023, 24(5), 4543.
[http://dx.doi.org/10.3390/ijms24054543] [PMID: 36901973]
[29]
Foti, R.S. Cytochrome P450 and other drug-metabolizing enzymes as therapeutic targets. Drug Metab. Dispos., 2023, 51(8), 936-949.
[http://dx.doi.org/10.1124/dmd.122.001011] [PMID: 37041085]
[30]
Charni-Natan, M.; Aloni-Grinstein, R.; Osher, E.; Rotter, V. Liver and steroid hormones—Can a touch of p53 make a difference? Front. Endocrinol., 2019, 10, 374.
[http://dx.doi.org/10.3389/fendo.2019.00374] [PMID: 31244779]
[31]
Lefebvre, P.; Staels, B. Hepatic sexual dimorphism — implications for non-alcoholic fatty liver disease. Nat. Rev. Endocrinol., 2021, 17(11), 662-670.
[http://dx.doi.org/10.1038/s41574-021-00538-6] [PMID: 34417588]
[32]
Sayaf, K.; Zanotto, I.; Russo, F.P.; Gabbia, D.; De Martin, S. The nuclear receptor PXR in chronic liver disease. Cells, 2021, 11(1), 61.
[http://dx.doi.org/10.3390/cells11010061] [PMID: 35011625]
[33]
Zhou, J.; Wang, Y.; Wu, D.; Wang, S.; Chen, Z.; Xiang, S.; Chan, F.L. Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer. Oncogene, 2021, 40(15), 2625-2634.
[http://dx.doi.org/10.1038/s41388-021-01737-1] [PMID: 33750894]
[34]
Zhou, L.; Song, Z.; Hu, J.; Liu, L.; Hou, Y.; Zhang, X.; Yang, X.; Chen, K. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3. Theranostics, 2021, 11(2), 841-860.
[http://dx.doi.org/10.7150/thno.49384] [PMID: 33391508]
[35]
Chen, J.; Chou, F.; Yeh, S.; Ou, Z.; Shyr, C.; Huang, C.; Xiang, Z.; Sun, Y.; Messing, E.; Zu, X.; Chang, C. Androgen dihydrotestosterone (DHT) promotes the bladder cancer nuclear AR-negative cell invasion via a newly identified membrane androgen receptor (mAR-SLC39A9)-mediated Gαi protein/MAPK/MMP9 intracellular signaling. Oncogene, 2020, 39(3), 574-586.
[http://dx.doi.org/10.1038/s41388-019-0964-6] [PMID: 31506605]
[36]
da Silva Guimarães, G.; Cordeiro, A.O.; Gazolla, M.C.; Vecchi, L.; Pereira Zoia, M.A.; de Vasconcelos Azevedo, F.V.P.; Moreira Campos, I.; de Souza Costa, D.; Soares Mota, S.T.; Alves Ribeiro, M.; Goulart, L.R.; da Silva Filho, A.A.; Araújo, T.G. 4-nerolidylcatechol (4-NC) and docetaxel synergize in controlling androgen- independent prostate cancer cells. Curr. Top. Med. Chem., 2023, 23(11), 943-955.
[http://dx.doi.org/10.2174/1568026623666230207095253] [PMID: 36748811]
[37]
Kulik, M.; Bothe, M.; Kibar, G.; Fuchs, A.; Schöne, S.; Prekovic, S.; Mayayo-Peralta, I.; Chung, H.R.; Zwart, W.; Helsen, C.; Claessens, F.; Meijsing, S.H. Androgen and glucocorticoid receptor direct distinct transcriptional programs by receptor-specific and shared DNA binding sites. Nucleic Acids Res., 2021, 49(7), 3856-3875.
[http://dx.doi.org/10.1093/nar/gkab185] [PMID: 33751115]
[38]
Lin, H.Y.; Song, G.; Lei, F.; Li, D.; Qu, Y. Avian corticosteroid-binding globulin: Biological function and regulatory mechanisms in physiological stress responses. Front. Zool., 2021, 18(1), 22.
[http://dx.doi.org/10.1186/s12983-021-00409-w] [PMID: 33926473]
[39]
Potdar, R.; Gartrell, B.A.; Given, R.; Karsh, L.; Frankel, J.; Nenno, K.; O’MalleyLeFebvre, K.; Bhaumik, A.; McCarthy, S.; McGowan, T.; Pieczonka, C. Concomitant use of oral anticoagulants in patients with advanced prostate cancer receiving apalutamide: A post-hoc analysis of TITAN and SPARTAN studies. Am. J. Cancer Res., 2022, 12(1), 445-450.
[PMID: 35141028]
[40]
Zurth, C.; Koskinen, M.; Fricke, R.; Prien, O.; Korjamo, T.; Graudenz, K.; Denner, K.; Bairlein, M.; von Bühler, C.J.; Wilkinson, G.; Gieschen, H. Drug–drug interaction potential of darolutamide: in vitro and clinical studies. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(6), 747-759.
[http://dx.doi.org/10.1007/s13318-019-00577-5] [PMID: 31571146]
[41]
Viera, W.; Samaniego, I.; Camacho, D.; Habibi, N.; Ron, L.; Sediqui, N.; Álvarez, J.; Viteri, P.; Sotomayor, A.; Merino, J.; Vásquez-Castillo, W.; Brito, B. Phytochemical characterization of a tree tomato (Solanum betaceum Cav.) breeding population grown in the inter-andean valley of ecuador. Plants, 2022, 11(3), 268.
[http://dx.doi.org/10.3390/plants11030268] [PMID: 35161251]
[42]
Hadden, M.; Goodman, A.; Guo, C.; Guzzo, P.R.; Henderson, A.J.; Pattamana, K.; Ruenz, M.; Sargent, B.J.; Swenson, B.; Yet, L.; Liu, J.; He, S.; Sebhat, I.K.; Lin, L.S.; Tamvakopoulos, C.; Peng, Q.; Kan, Y.; Palyha, O.; Kelly, T.M.; Guan, X.M.; Metzger, J.M.; Reitman, M.L.; Nargund, R.P. Synthesis and SAR of heterocyclic carboxylic acid isosteres based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity. Bioorg. Med. Chem. Lett., 2010, 20(9), 2912-2915.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.028] [PMID: 20347296]
[43]
Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; Qin, S. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci., 2021, 22(23), 12808.
[http://dx.doi.org/10.3390/ijms222312808] [PMID: 34884615]
[44]
Silva, H.S.A.; Romeiro, R.S.; Mounteer, A. Development of a root colonization bioassay for rapid screening of rhizobacteria for potential biocontrol agents. J. Phytopathol., 2003, 151(1), 42-46.
[http://dx.doi.org/10.1046/j.1439-0434.2003.00678.x]
[45]
Camacho, L.; Zabala-Letona, A.; Cortazar, A.R.; Astobiza, I.; Dominguez-Herrera, A.; Ercilla, A.; Crespo, J.; Viera, C.; Fernández-Ruiz, S.; Martinez-Gonzalez, A.; Torrano, V.; Martín-Martín, N.; Gomez-Muñoz, A.; Carracedo, A. Identification of androgen receptor metabolic correlome reveals the repression of ceramide kinase by androgens. Cancers, 2021, 13(17), 4307.
[http://dx.doi.org/10.3390/cancers13174307] [PMID: 34503116]
[46]
Chen, Z.; Lin, X.; Wang, Y.; Xie, H.; Chen, F. Dysregulated expression of androgen metabolism genes and genetic analysis in hypospadias. Mol. Genet. Genomic Med., 2020, 8(8), e1346.
[http://dx.doi.org/10.1002/mgg3.1346] [PMID: 32515122]
[47]
Mah, C.Y.; Nassar, Z.D.; Swinnen, J.V.; Butler, L.M. Lipogenic effects of androgen signaling in normal and malignant prostate. Asian J. Urol., 2020, 7(3), 258-270.
[http://dx.doi.org/10.1016/j.ajur.2019.12.003] [PMID: 32742926]
[48]
Bastos, D.A.; Antonarakis, E.S. Darolutamide for castration-resistant prostate cancer. OncoTargets Ther., 2019, 12, 8769-8777.
[http://dx.doi.org/10.2147/OTT.S197244] [PMID: 31695432]
[49]
Lawal, B.; Kuo, Y.C., Jnr; Sumitra, M.R.; Wu, A.T.H.; Huang, H.S. In vivo pharmacokinetic and anticancer studies of HH-N25, a selective inhibitor of topoisomerase I, and hormonal signaling for treating breast cancer. J. Inflamm. Res., 2021, 14, 4901-4913.
[http://dx.doi.org/10.2147/JIR.S329401] [PMID: 34588796]
[50]
Omoboyowa, D.A.; Balogun, T.A.; Saibu, O.A.; Chukwudozie, O.S.; Alausa, A.; Olubode, S.O.; Aborode, A.T.; Batiha, G.E.; Bodun, D.S.; Musa, S.O. Structure-based discovery of selective CYP17A1 inhibitors for Castration-resistant prostate cancer treatment. Biol. Meth. Protoc., 2022, 7(1), bpab026.
[http://dx.doi.org/10.1093/biomethods/bpab026] [PMID: 35146123]
[51]
Albano, G.D.; Amico, F.; Cocimano, G.; Liberto, A.; Maglietta, F.; Esposito, M.; Rosi, G.L.; Di Nunno, N.; Salerno, M.; Montana, A. Adverse effects of anabolic-androgenic steroids: A literature review. Healthcare, 2021, 9(1), 97.
[http://dx.doi.org/10.3390/healthcare9010097] [PMID: 33477800]
[52]
Barrientos, G.; Llanos, P.; Basualto-Alarcón, C.; Estrada, M. Androgen-regulated cardiac metabolism in aging men. Front. Endocrinol., 2020, 11, 316.
[http://dx.doi.org/10.3389/fendo.2020.00316] [PMID: 32499759]
[53]
Challa, A.A.; Calaway, A.C.; Cullen, J.; Garcia, J.; Desai, N.; Weintraub, N.L.; Deswal, A.; Kutty, S.; Vallakati, A.; Addison, D.; Baliga, R.; Campbell, C.M.; Guha, A. Cardiovascular toxicities of androgen deprivation therapy. Curr. Treat. Options Oncol., 2021, 22(6), 47.
[http://dx.doi.org/10.1007/s11864-021-00846-z] [PMID: 33866442]
[54]
Tárraga, S.; Lisón, P.; López-Gresa, M.P.; Torres, C.; Rodrigo, I.; Bellés, J.M.; Conejero, V. Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. J. Exp. Bot., 2010, 61(15), 4325-4338.
[http://dx.doi.org/10.1093/jxb/erq234] [PMID: 20729481]
[55]
Rickman, J.C.; Barret, D.M.; Bruhn, C.M. Review nutritional comparison of fresh, frozen and canned fruits and vegetables. J. Sci. Food Agric., 2007, 87, 940-944.
[56]
Cone, E.B.; Reese, S.; Marchese, M.; Nabi, J.; McKay, R.R.; Kilbridge, K.L.; Trinh, Q.D. Cardiovascular toxicities associated with abiraterone compared to enzalutamide–A pharmacovigilance study. EClinicalMedicine, 2021, 36, 100887.
[http://dx.doi.org/10.1016/j.eclinm.2021.100887] [PMID: 34308305]
[57]
Kenk, M.; Grégoire, J.; Coté, M.A.; Connelly, K.A.; Davis, M.K.; Dresser, G.; Ghosh, N.; Goodman, S.; Johnson, C.; Fleshner, N. Optimizing screening and management of cardiovascular health in prostate cancer. Can. Urol. Assoc. J., 2020, 14(9), E458-E464.
[http://dx.doi.org/10.5489/cuaj.6685] [PMID: 32569573]
[58]
Feng, Z.; Graff, J.N. Next-generation androgen receptor-signaling inhibitors for prostate cancer: Considerations for older patients. Drugs Aging, 2021, 38(2), 111-123.
[http://dx.doi.org/10.1007/s40266-020-00809-3] [PMID: 33559101]
[59]
Fervaha, G.; Izard, J.P.; Tripp, D.A.; Rajan, S.; Leong, D.P.; Siemens, D.R. Depression and prostate cancer: A focused review for the clinician. Urologic Oncology: Seminars and Original Investigations, 2019, 37(4), 282-288.
[http://dx.doi.org/10.1016/j.urolonc.2018.12.020]
[60]
Kumar, J.; Jazayeri, S.B.; Gautam, S.; Norez, D.; Alam, M.U.; Tanneru, K. Comparative efficacy of apalutamide darolutamide and enzalutamide for treatment of non-metastatic castrate-resistant prostate cancer: A systematic review and network meta-analysis. Urol. Oncol. Semin. Orig. Investig., 2020, 38(11), 826-834.
[http://dx.doi.org/10.1016/j.urolonc.2020.03.022]
[61]
Maguire, R.; Drummond, F.J.; Hanly, P.; Gavin, A.; Sharp, L. Problems sleeping with prostate cancer: Exploring possible risk factors for sleep disturbance in a population-based sample of survivors. Support. Care Cancer, 2019, 27(9), 3365-3373.
[http://dx.doi.org/10.1007/s00520-018-4633-z] [PMID: 30627919]
[62]
Roy, S.; Malone, S.; Grimes, S.; Morgan, S.C. Impact of concomitant medications on biochemical outcome in localised prostate cancer treated with radiotherapy and androgen deprivation therapy. Clin. Oncol. (R. Coll. Radiol.), 2021, 33(3), 181-190.
[http://dx.doi.org/10.1016/j.clon.2020.09.005] [PMID: 32994091]
[63]
Sathianathen, N.J.; Alarid-Escudero, F.; Kuntz, K.M.; Lawrentschuk, N.; Bolton, D.M.; Murphy, D.G.; Kim, S.P.; Konety, B.R. A cost-effectiveness analysis of systemic therapy for metastatic hormone-sensitive prostate cancer. Eur. Urol. Oncol., 2019, 2(6), 649-655.
[http://dx.doi.org/10.1016/j.euo.2019.01.004] [PMID: 31411985]
[64]
Wibowo, E.; Wassersug, R.J.; Robinson, J.W.; Matthew, A.; McLeod, D.; Walker, L.M. How are patients with prostate cancer managing androgen deprivation therapy side effects? Clin. Genitourin. Cancer, 2019, 17(3), e408-e419.
[http://dx.doi.org/10.1016/j.clgc.2018.12.006] [PMID: 30745202]
[65]
Shigemura, K.; Fujisawa, M. Current status of holmium laser enucleation of the prostate. Int. J. Urol., 2018, 25(3), 206-211.
[http://dx.doi.org/10.1111/iju.13507] [PMID: 29205507]
[66]
Amis, E.S. Anatomy and Physiology of the Prostate. In: Radiology of the Lower Urinary Tract, Medical Radiology; Springer: Berlin, Heidelberg, 1994; pp. 167-169.
[67]
Eren, B.; Eren, F.; Guzelsoy, M.; Aydýn, O. Ectopic prostate presenting as a mass in bladder. Indian J. Urol., 2008, 24(4), 564-565.
[http://dx.doi.org/10.4103/0970-1591.44270] [PMID: 19468520]
[68]
Parekh, S.; Tewari, A. V10-01 A comprehensive review of neuroanatomy, prostate anatomy and peri-prostatic structures. J. Urol., 2023, 209(Suppl. 4), e926.
[http://dx.doi.org/10.1097/JU.0000000000003328.01]
[69]
Rahardjo, H.E.; Ückert, S.; Kuczyk, M.A.; Hedlund, P. Expression and distribution of the transient receptor potential cationic channel ankyrin 1 (TRPA1) in the human seminal vesicles. Health Science Report, 2023, 6(1), e987.
[70]
Vickram, S.; Rohini, K.; Srinivasan, S.; Nancy Veenakumari, D.; Archana, K.; Anbarasu, K.; Jeyanthi, P.; Thanigaivel, S.; Gulothungan, G.; Rajendiran, N.; Srikumar, P.S. Role of zinc (Zn) in human reproduction: A journey from initial spermatogenesis to childbirth. Int. J. Mol. Sci., 2021, 22(4), 2188.
[http://dx.doi.org/10.3390/ijms22042188] [PMID: 33671837]
[71]
Kumari, S.; Tevatiya, S.; Rani, J.; Das De, T.; Chauhan, C.; Sharma, P.; Sah, R.; Singh, S.; Pandey, K.C.; Pande, V.; Dixit, R. A testis-expressing heme peroxidase HPX12 regulates male fertility in the mosquito Anopheles stephensi. Sci. Rep., 2022, 12(1), 2597.
[http://dx.doi.org/10.1038/s41598-022-06531-x] [PMID: 35173215]
[72]
Small, E.J.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H.; De Porre, P.; Smith, A.A.; Zhang, K.; Lopez-Gitlitz, A.; Smith, M.R. Apalutamide and overall survival in non-metastatic castration-resistant prostate cancer. Ann. Oncol., 2019, 30(11), 1813-1820.
[http://dx.doi.org/10.1093/annonc/mdz397] [PMID: 31560066]
[73]
Ribeiro, J.C.; Braga, P.C.; Martins, A.D.; Silva, B.M.; Alves, M.G.; Oliveira, P.F. Antioxidants present in reproductive tract fluids and their relevance for fertility. Antioxidants, 2021, 10(9), 1441.
[http://dx.doi.org/10.3390/antiox10091441] [PMID: 34573073]
[74]
Rodriguez-Martinez, H.; Martinez, E.A.; Calvete, J.J.; Peña Vega, F.J.; Roca, J. seminal plasma: relevant for fertility? Int. J. Mol. Sci., 2021, 22(9), 4368.
[http://dx.doi.org/10.3390/ijms22094368] [PMID: 33922047]
[75]
Liu, C.; Zhou, J.; Zhang, S.; Fu, J.; Li, Y.; Hao, Y. Mesenchymal stem cells-derived IL-6 promotes invasion and metastasis of oral squamous cell carcinoma via JAK-STAT3 signalling. Oral Dis, 2024, 30(4), 2097-2109.
[76]
Nada, H.; Sivaraman, A.; Lu, Q.; Min, K.; Kim, S.; Goo, J.I.; Choi, Y.; Lee, K. Perspective for discovery of small molecule IL-6 inhibitors through study of structure–activity relationships and molecular docking. J. Med. Chem., 2023, 66(7), 4417-4433.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01957] [PMID: 36971365]
[77]
Yang, J.L.; Lin, W.L.; Tai, S.B.; Ciou, Y.S.; Chung, C.L.; Chen, J.J.; Liu, P.F.; Lin, M.W.; Chen, C.L. Suppression of TGFβ-induced interleukin-6 secretion by sinulariolide from soft corals through attenuation of the p38–NF-kB pathway in carcinoma cells. Int. J. Mol. Sci., 2023, 24(14), 11656.
[http://dx.doi.org/10.3390/ijms241411656] [PMID: 37511415]
[78]
Zheng, X.Q.; Kong, X.Q.; He, Y.; Wang, Y.J.; Xie, L.; Liu, L.L.; Lin, L.R.; Yang, T.C. Treponema pallidum recombinant protein Tp47 enhanced interleukin-6 secretion in human dermal fibroblasts through the toll-like receptor 2 via the p38, PI3K/Akt, and NF-κB signalling pathways. Biochim. Biophys. Acta Mol. Cell Res., 2023, 1870(7), 119540.
[http://dx.doi.org/10.1016/j.bbamcr.2023.119540] [PMID: 37468070]
[79]
Vickram, S.; Rohini, K.; Anbarasu, K.; Dey, N.; Jeyanthi, P.; Thanigaivel, S.; Issac, P.K.; Arockiaraj, J. Semenogelin, a coagulum macromolecule monitoring factor involved in the first step of fertilization: A prospective review. Int. J. Biol. Macromol., 2022, 209(Pt A), 951-962.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.04.079] [PMID: 35447263]
[80]
Szczykutowicz, J.; Kałuża, A.; Kaźmierowska-Niemczuk, M.; Ferens-Sieczkowska, M. The potential role of seminal plasma in the fertilization outcomes. BioMed Res. Int., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/5397804] [PMID: 31531356]
[81]
Barnard, M.; Mostaghel, E.A.; Auchus, R.J.; Storbeck, K.H. The role of adrenal derived androgens in castration resistant prostate cancer. J. Steroid Biochem. Mol. Biol., 2020, 197, 105506.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105506] [PMID: 31672619]
[82]
de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr; Saad, F.; Staffurth, J.N.; Mainwaring, P.; Harland, S.; Flaig, T.W.; Hutson, T.E.; Cheng, T.; Patterson, H.; Hainsworth, J.D.; Ryan, C.J.; Sternberg, C.N.; Ellard, S.L.; Fléchon, A.; Saleh, M.; Scholz, M.; Efstathiou, E.; Zivi, A.; Bianchini, D.; Loriot, Y.; Chieffo, N.; Kheoh, T.; Haqq, C.M.; Scher, H.I. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med., 2011, 364(21), 1995-2005.
[http://dx.doi.org/10.1056/NEJMoa1014618] [PMID: 21612468]
[83]
Shafi, A.A.; Yen, A.E.; Weigel, N.L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol. Ther., 2013, 140(3), 223-238.
[http://dx.doi.org/10.1016/j.pharmthera.2013.07.003] [PMID: 23859952]
[84]
Chen, F.; Zhao, X. Prostate cancer: Current treatment and prevention strategies. Iran. Red Crescent Med. J., 2013, 15(4), 279-284.
[http://dx.doi.org/10.5812/ircmj.6499] [PMID: 24082997]
[85]
Chen, N.; Zhou, Q. The evolving Gleason grading system. Chin. J. Cancer Res., 2016, 28(1), 58-64.
[PMID: 27041927]
[86]
Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Vickers, A.J.; Parwani, A.V.; Reuter, V.E.; Fine, S.W.; Eastham, J.A.; Wiklund, P.; Han, M.; Reddy, C.A.; Ciezki, J.P.; Nyberg, T.; Klein, E.A. A contemporary prostate cancer grading system: A validated alternative to the gleason score. Eur. Urol., 2016, 69(3), 428-435.
[http://dx.doi.org/10.1016/j.eururo.2015.06.046] [PMID: 26166626]
[87]
Zhang, N.; Huang, D.; Ruan, X.; Ng, A.T.L.; Tsu, J.H.L.; Jiang, G.; Huang, J.; Zhan, Y.; Na, R. CRISPR screening reveals gleason score and castration resistance related oncodriver ring finger protein 19 A (RNF19A) in prostate cancer. Drug Resist. Updat., 2023, 67, 100912.
[http://dx.doi.org/10.1016/j.drup.2022.100912] [PMID: 36623445]
[88]
Pencik, J.; Philippe, C.; Schlederer, M.; Atas, E.; Pecoraro, M.; Grund-Gröschke, S.; Li, W.; Tracz, A.; Heidegger, I.; Lagger, S.; Trachtová, K.; Oberhuber, M.; Heitzer, E.; Aksoy, O.; Neubauer, H.A.; Wingelhofer, B.; Orlova, A.; Witzeneder, N.; Dillinger, T.; Redl, E.; Greiner, G.; D’Andrea, D.; Östman, J.R.; Tangermann, S.; Hermanova, I.; Schäfer, G.; Sternberg, F.; Pohl, E.E.; Sternberg, C.; Varady, A.; Horvath, J.; Stoiber, D.; Malcolm, T.I.; Turner, S.D.; Parkes, E.E.; Hantusch, B.; Egger, G.; Rose-John, S.; Poli, V.; Jain, S.; Armstrong, C.W.D.; Hoermann, G.; Goffin, V.; Aberger, F.; Moriggl, R.; Carracedo, A.; McKinney, C.; Kennedy, R.D.; Klocker, H.; Speicher, M.R.; Tang, D.G.; Moazzami, A.A.; Heery, D.M.; Hacker, M.; Kenner, L. STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway. Mol. Cancer, 2023, 22(1), 133.
[http://dx.doi.org/10.1186/s12943-023-01825-8] [PMID: 37573301]
[89]
Chilukuri, S.; Mallick, I.; Agrawal, A.; Maitre, P.; Arunsingh, M.; James, F.V.; Kataria, T.; Narang, K.; Gurram, B.C.; Anand, A.K.; Utreja, N.; Dutta, D.; Pavamani, S.; Mitra, S.; Mallik, S.; Mahale, N.; Chandra, M.; Chinnachamy, A.N.; Shahid, T.; Raghunathan, M.S.; Kannan, V.; Mohanty, S.K.; Basu, T.; Hotwani, C.; Panigrahi, G.; Murthy, V. Multi-institutional clinical outcomes of biopsy gleason grade group 5 prostate cancers treated with contemporary high-dose radiation and long-term androgen deprivation therapy. Clin. Oncol. (R. Coll. Radiol.), 2023, 35(7), 454-462.
[http://dx.doi.org/10.1016/j.clon.2023.03.018] [PMID: 37061457]
[90]
Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. Am. J. Surg. Pathol., 2016, 40(2), 244-252.
[http://dx.doi.org/10.1097/PAS.0000000000000530] [PMID: 26492179]
[91]
Costello, L.C.; Feng, P.; Milon, B.; Tan, M.; Franklin, R.B. Role of zinc in the pathogenesis and treatment of prostate cancer: Critical issues to resolve. Prostate Cancer Prostatic Dis., 2004, 7(2), 111-117.
[http://dx.doi.org/10.1038/sj.pcan.4500712] [PMID: 15175662]
[92]
Wakwe, V.C.; Odum, E.P.; Amadi, C. The impact of plasma zinc status on the severity of prostate cancer disease. Investig. Clin. Urol., 2019, 60(3), 162-168.
[http://dx.doi.org/10.4111/icu.2019.60.3.162] [PMID: 31098423]
[93]
Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci., 2020, 21(12), 4507.
[http://dx.doi.org/10.3390/ijms21124507] [PMID: 32630372]
[94]
Shi, L.; Yan, Y.; He, Y.; Yan, B.; Pan, Y.; Orme, J.J.; Zhang, J.; Xu, W.; Pang, J.; Huang, H. Mutated SPOP E3 ligase promotes 17βHSD4 protein degradation to drive androgenesis and prostate cancer progression. Cancer Res., 2021, 81(13), 3593-3606.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3258] [PMID: 33762355]
[95]
Lu, Y; Hidaka, H; Feldman, LJ Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism. Planta, 1996, 199, 18-24.
[96]
Leung, J.K.; Sadar, M.D. Non-genomic actions of the androgen receptor in prostate cancer. Front. Endocrinol., 2017, 8, 2.
[http://dx.doi.org/10.3389/fendo.2017.00002] [PMID: 28144231]
[97]
Deng, Q.; Zhang, Z.; Wu, Y.; Yu, W.; Zhang, J.; Jiang, Z.; Zhang, Y.; Liang, H.; Gui, Y. Non-genomic action of androgens is mediated by rapid phosphorylation and regulation of androgen receptor trafficking. Cell. Physiol. Biochem., 2017, 43(1), 223-236.
[http://dx.doi.org/10.1159/000480343] [PMID: 28854419]
[98]
Foradori, C.D.; Weiser, M.J.; Handa, R.J. Non-genomic actions of androgens. Front. Neuroendocrinol., 2008, 29(2), 169-181.
[http://dx.doi.org/10.1016/j.yfrne.2007.10.005] [PMID: 18093638]
[99]
Congregado Ruiz, B.; Rivero Belenchón, I.; Lendínez Cano, G.; Medina López, R.A. Strategies to re-sensitize castration-resistant prostate cancer to antiandrogen therapy. Biomedicines, 2023, 11(4), 1105.
[http://dx.doi.org/10.3390/biomedicines11041105] [PMID: 37189723]
[100]
Zhang, H.; Zhou, Y.; Xing, Z.; Sah, R.K.; Hu, J.; Hu, H. Androgen metabolism and response in prostate cancer anti-androgen therapy resistance. Int. J. Mol. Sci., 2022, 23(21), 13521.
[http://dx.doi.org/10.3390/ijms232113521] [PMID: 36362304]
[101]
He, Y.; Xu, W.; Xiao, Y.T.; Huang, H.; Gu, D.; Ren, S. Targeting signaling pathways in prostate cancer: Mechanisms and clinical trials. Signal Transduct. Target. Ther., 2022, 7(1), 198.
[http://dx.doi.org/10.1038/s41392-022-01042-7] [PMID: 35750683]
[102]
Xu, L.; Chen, J.; Liu, W.; Liang, C.; Hu, H.; Huang, J. Targeting androgen receptor-independent pathways in therapy-resistant prostate cancer. Asian J. Urol., 2019, 6(1), 91-98.
[http://dx.doi.org/10.1016/j.ajur.2018.11.002] [PMID: 30775252]
[103]
Karantanos, T.; Corn, P.G.; Thompson, T.C. Prostate cancer progression after androgen deprivation therapy: Mechanisms of castrate resistance and novel therapeutic approaches. Oncogene, 2013, 32(49), 5501-5511.
[http://dx.doi.org/10.1038/onc.2013.206] [PMID: 23752182]
[104]
Albuquerque, A.C.C.; Bezerra, K.S.; de Fátima Vianna, J.; Batista, S.O.; de Lima Neto, J.X.; de Oliveira Campos, D.M. In silico evaluation of the binding energies of androgen receptor agonists in wild-type and mutational models. J. Phys. Chem. B., 2023, 127(22), 5005-5017.
[105]
D’Amico, R.; Genovese, T.; Cordaro, M.; Siracusa, R.; Gugliandolo, E.; Peritore, A.F.; Interdonato, L.; Crupi, R.; Cuzzocrea, S.; Di Paola, R.; Fusco, R.; Impellizzeri, D. Palmitoylethanolamide/baicalein regulates the androgen receptor signaling and NF-κB/Nrf2 pathways in benign prostatic hyperplasia. Antioxidants, 2021, 10(7), 1014.
[http://dx.doi.org/10.3390/antiox10071014] [PMID: 34202665]
[106]
Fujita, K.; Nonomura, N. Role of androgen receptor in prostate cancer: A review. World J. Mens Health, 2019, 37(3), 288-295.
[http://dx.doi.org/10.5534/wjmh.180040] [PMID: 30209899]
[107]
Kargbo, R.B. PROTAC compounds targeting androgen receptor for cancer therapeutics: Prostate cancer and kennedy’s disease. ACS Med. Chem. Lett., 2020, 11(6), 1092-1093.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00236] [PMID: 32550986]
[108]
Montazeri-Najafabady, N.; Chatrabnous, N.; Arabnezhad, M.R.; Azarpira, N. Anti‐androgenic effect of astaxanthin in LNCaP cells is mediated through the aryl hydrocarbon‐androgen receptors cross talk. J. Food Biochem., 2021, 45(4), e13702.
[http://dx.doi.org/10.1111/jfbc.13702] [PMID: 33694182]
[109]
Snaterse, G.; Mies, R.; van Weerden, W.M.; French, P.J.; Jonker, J.W.; Houtsmuller, A.B. Androgen receptor mutations modulate activation by 11-oxygenated androgens and glucocorticoids. Prostate Cancer Prostatic Dis., 2022, 26, 293-301.
[110]
Gelmann, E.P. Molecular biology of the androgen receptor. J. Clin. Oncol., 2002, 20(13), 3001-3015.
[http://dx.doi.org/10.1200/JCO.2002.10.018] [PMID: 12089231]
[111]
Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schütz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; Evans, R.M. The nuclear receptor superfamily: The second decade. Cell, 1995, 83(6), 835-839.
[http://dx.doi.org/10.1016/0092-8674(95)90199-X] [PMID: 8521507]
[112]
Jenster, G.; van der Korput, H.A.G.M.; van Vroonhoven, C.; van der Kwast, T.H.; Trapman, J.; Brinkmann, A.O. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol. Endocrinol., 1991, 5(10), 1396-1404.
[http://dx.doi.org/10.1210/mend-5-10-1396] [PMID: 1775129]
[113]
Ferraldeschi, R.; Welti, J.; Luo, J.; Attard, G.; de Bono, J.S. Targeting the androgen receptor pathway in castration-resistant prostate cancer: Progresses and prospects. Oncogene, 2015, 34(14), 1745-1757.
[http://dx.doi.org/10.1038/onc.2014.115] [PMID: 24837363]
[114]
Wen, S.; Niu, Y.; Huang, H. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Asian J. Urol., 2020, 7(3), 203-218.
[http://dx.doi.org/10.1016/j.ajur.2019.11.001] [PMID: 33024699]
[115]
Glass, C.K.; Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev., 2000, 14(2), 121-141.
[http://dx.doi.org/10.1101/gad.14.2.121] [PMID: 10652267]
[116]
Berrevoets, C.A.; Doesburg, P.; Steketee, K.; Trapman, J.; Brinkmann, A.O. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Mol. Endocrinol., 1998, 12(8), 1172-1183.
[http://dx.doi.org/10.1210/mend.12.8.0153] [PMID: 9717843]
[117]
Doesburg, P.; Kuil, C.W.; Berrevoets, C.A.; Steketee, K.; Faber, P.W.; Mulder, E.; Brinkmann, A.O.; Trapman, J. Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Biochemistry, 1997, 36(5), 1052-1064.
[http://dx.doi.org/10.1021/bi961775g] [PMID: 9033395]
[118]
Ferrarini, A.; Rupérez, F.J.; Erazo, M.; Martínez, M.P.; Villar-Álvarez, F.; Peces-Barba, G.; González-Mangado, N.; Troncoso, M.F.; Ruiz-Cabello, J.; Barbas, C. Fingerprinting‐based metabolomic approach with LCMS to sleep apnea and hypopnea syndrome: A pilot study. Electrophoresis, 2013, 34(19), 2873-2881.
[http://dx.doi.org/10.1002/elps.201300081] [PMID: 23775633]
[119]
Westaby, D.; La Maza, M.D.L.D.F.D.; Paschalis, A.; Jimenez-Vacas, J.M.; Welti, J.; De Bono, J. A new old target: Androgen receptor signaling and advanced prostate cancer. Annu. Rev. Pharmacol. Toxicol., 2021, 62, 131-153.
[PMID: 34449248]
[120]
Mostaghel, E.A.; Montgomery, B.; Nelson, P.S. Castration-resistant prostate cancer: Targeting androgen metabolic pathways in recurrent disease. Urol. Oncol. Semin. Orig. Investig., 2009, 27, 251-257.
[121]
McEwan, I.J.; Brinkmann, A.O. Molecular mechanisms of androgen action: A historical perspective. Methods. Mol. Biol., 2011, 776, 3-24.
[122]
Heinlein, C.A.; Chang, C. Androgen receptor (AR) coregulators: An overview. Endocr. Rev., 2002, 23(2), 175-200.
[http://dx.doi.org/10.1210/edrv.23.2.0460] [PMID: 11943742]
[123]
Kulaeva, O.I.; Gaykalova, D.A.; Studitsky, V.M. Transcription through chromatin by RNA polymerase II: Histone displacement and exchange. Mutat. Res., 2007, 618(1-2), 116-129.
[http://dx.doi.org/10.1016/j.mrfmmm.2006.05.040] [PMID: 17313961]
[124]
Murawska, M.; Brehm, A. CHD chromatin remodelers and the transcription cycle. Transcription, 2011, 2(6), 244-253.
[http://dx.doi.org/10.4161/trns.2.6.17840] [PMID: 22223048]
[125]
Claessens, F.; Denayer, S.; Van Tilborgh, N.; Kerkhofs, S.; Helsen, C.; Haelens, A. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. Nucl. Recept. Signal., 2008, 6(1), nrs.06008.
[http://dx.doi.org/10.1621/nrs.06008] [PMID: 18612376]
[126]
Grosse, A.; Bartsch, S.; Baniahmad, A. Androgen receptor-mediated gene repression. Mol. Cell. Endocrinol., 2012, 352(1-2), 46-56.
[http://dx.doi.org/10.1016/j.mce.2011.06.032] [PMID: 21784131]
[127]
Gubbels Bupp, M.R.; Jorgensen, T.N. Androgen-Induced Immunosuppression. Front. Immunol., 2018, 9, 794.
[http://dx.doi.org/10.3389/fimmu.2018.00794] [PMID: 29755457]
[128]
Heemers, H.V.; Verhoeven, G.; Swinnen, J.V. Androgen activation of the sterol regulatory element-binding protein pathway: Current insights. Mol. Endocrinol., 2006, 20(10), 2265-2277.
[http://dx.doi.org/10.1210/me.2005-0479] [PMID: 16455816]
[129]
Bellv, A.R.; Zheng, W. Growth factors as autocrine and paracrine modulators of male gonadal functions. In: J. Reprod. Fertil. Ltd; , 1989; 85, pp. (2)771-793.
[130]
Wang, Y.; Bikle, D.D.; Chang, W. Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development. Bone Res., 2013, 1(3), 249-259.
[http://dx.doi.org/10.4248/BR201303003] [PMID: 26273506]
[131]
Swinnen, J.V.; Vanderhoydonc, F.; Elgamal, A.A.; Eelen, M.; Vercaeren, I.; Joniau, S.; Van Poppel, H.; Baert, L.; Goossens, K.; Heyns, W.; Verhoeven, G. Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int. J. Cancer, 2000, 88(2), 176-179.
[http://dx.doi.org/10.1002/1097-0215(20001015)88:2<176::AID-IJC5>3.0.CO;2-3] [PMID: 11004665]
[132]
Wang, Y.; Viscarra, J.; Kim, S.J.; Sul, H.S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol., 2015, 16(11), 678-689.
[http://dx.doi.org/10.1038/nrm4074] [PMID: 26490400]
[133]
Nelson, P.S.; Clegg, N.; Arnold, H.; Ferguson, C.; Bonham, M.; White, J.; Hood, L.; Lin, B. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11890-11895.
[http://dx.doi.org/10.1073/pnas.182376299] [PMID: 12185249]
[134]
Swinnen, J.V.; Esquenet, M.; Goossens, K.; Heyns, W.; Verhoeven, G. Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Res., 1997, 57(6), 1086-1090.
[PMID: 9067276]
[135]
Awad, D.; Pulliam, T.L.; Lin, C.; Wilkenfeld, S.R.; Frigo, D.E. Delineation of the androgen-regulated signaling pathways in prostate cancer facilitates the development of novel therapeutic approaches. Curr. Opin. Pharmacol., 2018, 41, 1-11.
[http://dx.doi.org/10.1016/j.coph.2018.03.002] [PMID: 29609138]
[136]
Zhu, Y.; Dalrymple, S.L.; Coleman, I.; Zheng, S.L.; Xu, J.; Hooper, J.E.; Antonarakis, E.S.; De Marzo, A.M.; Meeker, A.K.; Nelson, P.S.; Isaacs, W.B.; Denmeade, S.R.; Luo, J.; Brennen, W.N.; Isaacs, J.T. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene, 2020, 39(45), 6935-6949.
[http://dx.doi.org/10.1038/s41388-020-01479-6] [PMID: 32989253]
[137]
Mora, L.B.; Buettner, R.; Seigne, J.; Diaz, J.; Ahmad, N.; Garcia, R.; Bowman, T.; Falcone, R.; Fairclough, R.; Cantor, A.; Muro-Cacho, C.; Livingston, S.; Karras, J.; Pow-Sang, J.; Jove, R. Constitutive activation of Stat3 in human prostate tumors and cell lines: Direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res., 2002, 62(22), 6659-6666.
[PMID: 12438264]
[138]
Bru, R; Barcelo, AR; Pedren, MA Class III peroxidases in plant defence reactions. J. Exp. Bot., 2009, 60(2), 377-390.
[139]
Bostwick, D.G. Target populations and strategies for chemoprevention trials of prostate cancer. J. Cell. Biochem. Suppl., 1994, 19, 191-196.
[PMID: 7823591]
[140]
Hatsoukas, J. Department of Chemistry, University of Patras: Patras, Greece, 1989.
[141]
Ye, D.; Mendelsohn, J.; Fan, Z. Androgen and epidermal growth factor down-regulate cyclin-dependent kinase inhibitor p27Kip1 and costimulate proliferation of MDA PCa 2a and MDA PCa 2b prostate cancer cells. Clin. Cancer Res., 1999, 5(8), 2171-2177.
[PMID: 10473102]
[142]
Abreu-Martin, M.T.; Chari, A.; Palladino, A.A.; Craft, N.A.; Sawyers, C.L. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol. Cell. Biol., 1999, 19(7), 5143-5154.
[http://dx.doi.org/10.1128/MCB.19.7.5143] [PMID: 10373563]
[143]
Qiu, Y.; Ravi, L.; Kung, H.J. Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature, 1998, 393(6680), 83-85.
[http://dx.doi.org/10.1038/30012] [PMID: 9590694]
[144]
Bhat, M.A.; Mishra, A.K.; Jan, S.; Bhat, M.A.; Kamal, M.A.; Rahman, S.; Shah, A.A.; Jan, A.T. Plant growth promoting rhizobacteria in plant health: A perspective study of the underground interaction. Plants, 2023, 12(3), 629.
[http://dx.doi.org/10.3390/plants12030629] [PMID: 36771713]
[145]
Smith, B.N.; Mishra, R.; Billet, S.; Placencio-Hickok, V.R.; Kim, M.; Zhang, L.; Duong, F.; Madhav, A.; Scher, K.; Moldawer, N.; Oppenheim, A.; Angara, B.; You, S.; Tighiouart, M.; Posadas, E.M.; Bhowmick, N.A. Antagonizing CD105 and androgen receptor to target stromal-epithelial interactions for clinical benefit. Mol. Ther., 2023, 31(1), 78-89.
[http://dx.doi.org/10.1016/j.ymthe.2022.08.019] [PMID: 36045587]
[146]
Bui, N-N.; Li, C-Y.; Wang, L-Y.; Chen, Y-A.; Kao, W-H.; Chou, L-F. Clostridium scindens metabolites trigger prostate cancer progression through androgen receptor signalling. J. Microbiol. Immunol. Infect., 2023, 56(2), 246-256.
[147]
Tang, D.G. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin. Cancer Biol., 2022, 82, 68-93.
[http://dx.doi.org/10.1016/j.semcancer.2021.11.001] [PMID: 34844845]
[148]
Ghildiyal, R.; Sawant, M.; Renganathan, A.; Mahajan, K.; Kim, E.H.; Luo, J.; Dang, H.X.; Maher, C.A.; Feng, F.Y.; Mahajan, N.P. Loss of long noncoding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance. Cancer Res., 2022, 82(1), 155-168.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3845] [PMID: 34740892]
[149]
Li, L.; Ameri, A.H.; Wang, S.; Jansson, K.H.; Casey, O.M.; Yang, Q.; Beshiri, M.L.; Fang, L.; Lake, R.G.; Agarwal, S.; Alilin, A.N.; Xu, W.; Yin, J.; Kelly, K. EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene, 2019, 38(35), 6241-6255.
[http://dx.doi.org/10.1038/s41388-019-0873-8] [PMID: 31312026]
[150]
Alpsoy, A.; Utturkar, S.M.; Carter, B.C.; Dhiman, A.; Torregrosa-Allen, S.E.; Currie, M.P.; Elzey, B.D.; Dykhuizen, E.C. BRD9 Is a critical regulator of androgen receptor signaling and prostate cancer progression. Cancer Res., 2021, 81(4), 820-833.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1417] [PMID: 33355184]
[151]
Ding, M.; Jiang, C.Y.; Zhang, Y.; Zhao, J.; Han, B.M.; Xia, S.J. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer. J. Exp. Clin. Cancer Res., 2020, 39(1), 28.
[http://dx.doi.org/10.1186/s13046-019-1516-1] [PMID: 32019578]
[152]
Koistinen, H.; Kovanen, R.M.; Hollenberg, M.D.; Dufour, A.; Radisky, E.S.; Stenman, U.H.; Batra, J.; Clements, J.; Hooper, J.D.; Diamandis, E.; Schilling, O.; Rannikko, A.; Mirtti, T. The roles of proteases in prostate cancer. IUBMB Life, 2023, 75(6), 493-513.
[http://dx.doi.org/10.1002/iub.2700] [PMID: 36598826]
[153]
Logan, I.R.; Gaughan, L.; McCracken, S.R.C.; Sapountzi, V.; Leung, H.Y.; Robson, C.N. Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer. Mol. Cell. Biol., 2006, 26(17), 6502-6510.
[http://dx.doi.org/10.1128/MCB.00147-06] [PMID: 16914734]
[154]
Montagnani Marelli, M.; Moretti, R.M.; Procacci, P.; Motta, M.; Limonta, P. Insulin-like growth factor-I promotes migration in human androgen-independent prostate cancer cells via the alphavbeta3 integrin and PI3-K/Akt signaling. Int. J. Oncol., 2006, 28(3), 723-730.
[PMID: 16465378]
[155]
Myers, R.B.; Oelschlager, D.; Manne, U.; Coan, P.N.; Weiss, H.; Grizzle, W.E. Androgenic regulation of growth factor and growth factor receptor expression in the cwr22 model of prostatic adenocarcinoma. Int. J. Cancer, 1999, 82(3), 424-429.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990730)82:3<424::AID-IJC16>3.0.CO;2-B] [PMID: 10399960]
[156]
Liu, X.H.; Wiley, H.S.; Meikle, A.W. Androgens regulate proliferation of human prostate cancer cells in culture by increasing transforming growth factor-alpha (TGF-alpha) and epidermal growth factor (EGF)/TGF-alpha receptor. J. Clin. Endocrinol. Metab., 1993, 77(6), 1472-1478.
[PMID: 8263129]
[157]
Ravenna, L.; Gulino, A.; Lubrano, C.; Sciarra, F.; Di Silverio, F.; D’Eramo, G.; Vacca, A.; Felli, M.P.; Maroder, M.; Frati, L.; Petrangeli, E. Androgenic and antiandrogenic control on epidermal growth factor, epidermal growth factor receptor, and androgen receptor expression in human prostate cancer cell line LNCaP. Prostate, 1995, 26(6), 290-298.
[http://dx.doi.org/10.1002/pros.2990260604] [PMID: 7784269]
[158]
Grasso, A.W.; Wen, D.; Miller, C.M.; Rhim, J.S.; Pretlow, T.G.; Kung, H.J. ErbB kinases and NDF signaling in human prostate cancer cells. Oncogene, 1997, 15(22), 2705-2716.
[http://dx.doi.org/10.1038/sj.onc.1201447] [PMID: 9400997]
[159]
Zhang, Y.; Fondell, J.D.; Wang, Q.; Xia, X.; Cheng, A.; Lu, M.L.; Hamburger, A.W. Repression of androgen receptor mediated transcription by the ErbB-3 binding protein, Ebp1. Oncogene, 2002, 21(36), 5609-5618.
[http://dx.doi.org/10.1038/sj.onc.1205638] [PMID: 12165860]
[160]
Yeh, S.; Lin, H.K.; Kang, H.Y.; Thin, T.H.; Lin, M.F.; Chang, C. From HER2/Neu signal cascade to androgen receptor and its coactivators: A novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl. Acad. Sci. USA, 1999, 96(10), 5458-5463.
[http://dx.doi.org/10.1073/pnas.96.10.5458] [PMID: 10318905]
[161]
Ueda, T.; Mawji, N.R.; Bruchovsky, N.; Sadar, M.D. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J. Biol. Chem., 2002, 277(41), 38087-38094.
[http://dx.doi.org/10.1074/jbc.M203313200] [PMID: 12163482]
[162]
Migliaccio, A.; Castoria, G.; Di Domenico, M.; de Falco, A.; Bilancio, A.; Lombardi, M.; Barone, M.V.; Ametrano, D.; Zannini, M.S.; Abbondanza, C.; Auricchio, F. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J., 2000, 19(20), 5406-5417.
[http://dx.doi.org/10.1093/emboj/19.20.5406] [PMID: 11032808]
[163]
Kousteni, S.; Bellido, T.; Plotkin, L.I.; O’Brien, C.A.; Bodenner, D.L.; Han, L.; Han, K.; DiGregorio, G.B.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S.; Roberson, P.K.; Weinstein, R.S.; Jilka, R.L.; Manolagas, S.C. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: Dissociation from transcriptional activity. Cell, 2001, 104(5), 719-730.
[http://dx.doi.org/10.1016/S0092-8674(02)08100-X] [PMID: 11257226]
[164]
El Sheikh, S.S.; Domin, J.; Abel, P.; Stamp, G.; Lalani, E.N. Androgen-independent prostate cancer: Potential role of androgen and ErbB receptor signal transduction crosstalk. Neoplasia, 2003, 5(2), 99-109.
[http://dx.doi.org/10.1016/S1476-5586(03)80001-5] [PMID: 12659682]
[165]
Lin, H.K.; Yeh, S.; Kang, H.Y.; Chang, C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA, 2001, 98(13), 7200-7205.
[http://dx.doi.org/10.1073/pnas.121173298] [PMID: 11404460]
[166]
Li, J.; Al-Azzawi, F. Mechanism of androgen receptor action. Maturitas, 2009, 63(2), 142-148.
[http://dx.doi.org/10.1016/j.maturitas.2009.03.008] [PMID: 19372015]
[167]
Sharma, M.; Chuang, W.W.; Sun, Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation. J. Biol. Chem., 2002, 277(34), 30935-30941.
[http://dx.doi.org/10.1074/jbc.M201919200] [PMID: 12063252]
[168]
Wen, Y.; Hu, M.C.; Makino, K.; Spohn, B.; Bartholomeusz, G.; Yan, D.H.; Hung, M.C. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res., 2000, 60(24), 6841-6845.
[PMID: 11156376]
[169]
Wilding, G.; Gelmann, E.P.; Freter, C.E. Phosphoinositide metabolism in human prostate cancer cells in vitro. Prostate, 1990, 16(1), 15-27.
[http://dx.doi.org/10.1002/pros.2990160103] [PMID: 2154736]
[170]
Triscott, J.; Reist, M.; Küng, L.; Moselle, F.C.; Lehner, M.; Gallon, J.; Ravi, A.; Arora, G.K.; de Brot, S.; Lundquist, M.; Gallart-Ayala, H.; Ivanisevic, J.; Piscuoglio, S.; Cantley, L.C.; Emerling, B.M.; Rubin, M.A. PI5P4Kα supports prostate cancer metabolism and exposes a survival vulnerability during androgen receptor inhibition. Sci. Adv., 2023, 9(5), eade8641.
[http://dx.doi.org/10.1126/sciadv.ade8641] [PMID: 36724278]
[171]
Thomas, E.; Thankan, R.S.; Purushottamachar, P.; Weber, D.J.; Njar, V.C.O. Targeted degradation of androgen receptor by VNPP433-3β in castration-resistant prostate cancer cells implicates interaction with E3 ligase MDM2 resulting in ubiquitin-proteasomal degradation. Cancers, 2023, 15(4), 1198.
[http://dx.doi.org/10.3390/cancers15041198] [PMID: 36831540]
[172]
Hoffman, A.; Amiel, G.E. The impact of PSMA PET/CT on modern prostate cancer management and decision making—the urological perspective. Cancers, 2023, 15(13), 3402.
[http://dx.doi.org/10.3390/cancers15133402] [PMID: 37444512]
[173]
Li, X.; Chen, Y.; Bai, L.; Zhao, R.; Wu, Y.; Xie, Z-R. Nicardipine is a putative EED inhibitor and has high selectivity and potency against chemoresistant prostate cancer in preclinical models. Br J Cancer, 2023, 129, 884-894.
[http://dx.doi.org/10.1038/s41416-023-02359-y]
[174]
Berenguer, C.V.; Pereira, F.; Câmara, J.S.; Pereira, J.A.M. Underlying features of prostate cancer—statistics, risk factors, and emerging methods for its diagnosis. Curr. Oncol., 2023, 30(2), 2300-2321.
[http://dx.doi.org/10.3390/curroncol30020178] [PMID: 36826139]
[175]
Davoudi, F.; Moradi, A.; Becker, T.M.; Lock, J.G.; Abbey, B.; Fontanarosa, D. Genomic and phenotypic biomarkers for precision medicine guidance in advanced prostate cancer. Curr. Treat. Options Oncol, 2023, 24, 1451-1471.
[http://dx.doi.org/10.1007/s11864-023-01121-z]
[176]
Yu, X.; Liu, R.; Gao, W.; Wang, X.; Zhang, Y. Single-cell omics traces the heterogeneity of prostate cancer cells and the tumor microenvironment. Cell. Mol. Biol. Lett., 2023, 28(1), 38.
[http://dx.doi.org/10.1186/s11658-023-00450-z] [PMID: 37161356]
[177]
Woodman, I.L. Modelling the distinct roles of epithelial and stromal androgen receptor in the regulation of prostate epithelial dynamics. Febs J., 2023, 290(22), 5270-5291.
[http://dx.doi.org/10.1111/febs.16900]
[178]
Blanc, C.; Moktefi, A.; Jolly, A.; de la Grange, P.; Gay, D.; Nicolaiew, N.; Semprez, F.; Maillé, P.; Soyeux, P.; Firlej, V.; Vacherot, F.; Destouches, D.; Amiche, M.; Terry, S.; de la Taille, A.; Londoño-Vallejo, A.; Allory, Y.; Delbé, J.; Hamma-Kourbali, Y. The Neuropilin-1/PKC axis promotes neuroendocrine differentiation and drug resistance of prostate cancer. Br. J. Cancer, 2023, 128(5), 918-927.
[http://dx.doi.org/10.1038/s41416-022-02114-9] [PMID: 36550208]
[179]
Yende, A.S.; Williams, E.C.; Pletcher, A.; Helfand, A.; Ibeawuchi, H.; North, T.M.; Latham, P.S.; Horvath, A.; Shibata, M. TRIM28 promotes luminal cell plasticity in a mouse model of prostate cancer. Oncogene, 2023, 42(17), 1347-1359.
[http://dx.doi.org/10.1038/s41388-023-02655-0] [PMID: 36882525]
[180]
Zhou, Y.; Ye, Z.; Wei, W.; Zhang, M.; Huang, F.; Li, J.; Cai, C. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis. NPJ Regen. Med., 2023, 8(1), 23.
[http://dx.doi.org/10.1038/s41536-023-00296-1] [PMID: 37130846]
[181]
Beshiri, M.; Agarwal, S.; Yin, J.J.; Kelly, K. Prostate organoids: Emerging experimental tools for translational research. J. Clin. Invest., 2023, 133(10), e169616.
[http://dx.doi.org/10.1172/JCI169616] [PMID: 37183816]
[182]
Pitzen, S.P.; Dehm, S.M. Basal epithelial cells in prostate development, tumorigenesis, and cancer progression. Cell Cycle, 2023, 22(11), 1303-1318.
[http://dx.doi.org/10.1080/15384101.2023.2206502] [PMID: 37098827]
[183]
Miller, K.J.; Henry, I.; Maylin, Z.; Smith, C.; Arunachalam, E.; Pandha, H.; Asim, M. A compendium of androgen receptor variant 7 target genes and their role in castration resistant prostate cancer. Front. Oncol., 2023, 13, 1129140.
[http://dx.doi.org/10.3389/fonc.2023.1129140] [PMID: 36937454]
[184]
Manzar, N.; Ganguly, P.; Khan, U.K.; Ateeq, B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin. Cancer Biol., 2023, 89, 76-91.
[http://dx.doi.org/10.1016/j.semcancer.2023.01.004] [PMID: 36702449]
[185]
Pleasance, E.D.; Cheetham, R.K.; Stephens, P.J.; McBride, D.J.; Humphray, S.J.; Greenman, C.D.; Varela, I.; Lin, M.L.; Ordóñez, G.R.; Bignell, G.R.; Ye, K.; Alipaz, J.; Bauer, M.J.; Beare, D.; Butler, A.; Carter, R.J.; Chen, L.; Cox, A.J.; Edkins, S.; Kokko-Gonzales, P.I.; Gormley, N.A.; Grocock, R.J.; Haudenschild, C.D.; Hims, M.M.; James, T.; Jia, M.; Kingsbury, Z.; Leroy, C.; Marshall, J.; Menzies, A.; Mudie, L.J.; Ning, Z.; Royce, T.; Schulz-Trieglaff, O.B.; Spiridou, A.; Stebbings, L.A.; Szajkowski, L.; Teague, J.; Williamson, D.; Chin, L.; Ross, M.T.; Campbell, P.J.; Bentley, D.R.; Futreal, P.A.; Stratton, M.R. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 2010, 463(7278), 191-196.
[http://dx.doi.org/10.1038/nature08658] [PMID: 20016485]
[186]
Mohammadinejad, A.; Mohajeri, T.; Aleyaghoob, G.; Heidarian, F.; Kazemi Oskuee, R. Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies. Biotechnol. Appl. Biochem., 2022, 69(6), 2323-2356.
[http://dx.doi.org/10.1002/bab.2288] [PMID: 34846078]
[187]
Masoudzadeh, N.; Östensson, M.; Persson, J.; Mashayekhi Goyonlo, V.; Agbajogu, C.; Taslimi, Y.; Erfanian Salim, R.; Zahedifard, F.; Mizbani, A.; Malekafzali Ardekani, H.; Gunn, B.M.; Rafati, S.; Harandi, A.M. Molecular signatures of anthroponotic cutaneous leishmaniasis in the lesions of patients infected with Leishmania tropica. Sci. Rep., 2020, 10(1), 16198.
[http://dx.doi.org/10.1038/s41598-020-72671-7] [PMID: 33004861]
[188]
Jafari Karegar, S.; Aryaeian, N.; Hajiluian, G.; Suzuki, K.; Shidfar, F.; Salehi, M.; Ashtiani, B.H.; Farhangnia, P.; Delbandi, A.A. Ellagic acid effects on disease severity, levels of cytokines and T-bet, RORγt, and GATA3 genes expression in multiple sclerosis patients: A multicentral-triple blind randomized clinical trial. Front. Nutr., 2023, 10, 1238846.
[http://dx.doi.org/10.3389/fnut.2023.1238846] [PMID: 37794975]
[189]
Mostafavi Hosseini, F.; Ashourpour, M.; Taheri, S.; Tavakoli Yaraki, M.; Salami, S.; Shahsavari, Z.; Kazerouni, F. Novel Derivatives of Tetrahydrobenzo (g) Imidazo[α-1,2] Quinoline Induce Apoptosis via ROS Production in the Glioblastoma Multiforme Cells, U-87MG. Asian Pac. J. Cancer Prev., 2022, 23(11), 3885-3893.
[http://dx.doi.org/10.31557/APJCP.2022.23.11.3885] [PMID: 36444602]
[190]
Mohamadipoor Saadatabadi, L.; Mohammadabadi, M.; Amiri Ghanatsaman, Z.; Babenko, O.; Stavetska, R.; Kalashnik, O.; Kucher, D.; Kochuk-Yashchenko, O.; Asadollahpour Nanaei, H. Signature selection analysis reveals candidate genes associated with production traits in Iranian sheep breeds. BMC Vet. Res., 2021, 17(1), 369.
[http://dx.doi.org/10.1186/s12917-021-03077-4] [PMID: 34861880]
[191]
Bordbar, M.M.; Samadinia, H.; Sheini, A.; Halabian, R.; Parvin, S.; Ghanei, M.; Bagheri, H. A colorimetric electronic tongue based on bi-functionalized AuNPs for fingerprint detection of cancer markers. Sens. Actuators B Chem., 2022, 368, 132170.
[http://dx.doi.org/10.1016/j.snb.2022.132170]
[192]
Bordbar, F.; Mohammadabadi, M.; Jensen, J.; Xu, L.; Li, J.; Zhang, L. Identification of candidate genes regulating carcass depth and hind leg circumference in simmental beef cattle using illumina bovine beadchip and next-generation sequencing analyses. Animals, 2022, 12(9), 1103.
[http://dx.doi.org/10.3390/ani12091103] [PMID: 35565529]
[193]
Safaei, S.; Sajed, R.; Shariftabrizi, A.; Dorafshan, S.; Saeednejad Zanjani, L.; Dehghan Manshadi, M.; Madjd, Z.; Ghods, R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int., 2023, 23(1), 143.
[http://dx.doi.org/10.1186/s12935-023-02992-w] [PMID: 37468874]
[194]
Saffar, H.; Nili, F.; Sarmadi, S.; Barazandeh, E.; Saffar, H. Evaluation of sirtuin1 overexpression by immunohistochemistry in cervical intraepithelial lesions and invasive squamous cell carcinoma. Appl. Immunohistochem. Mol. Morphol., 2023, 31(2), 128-131.
[http://dx.doi.org/10.1097/PAI.0000000000001088] [PMID: 36730441]
[195]
Faghihkhorasani, A.; Dalvand, A.; Derafsh, E.; Tavakoli, F.; Younis, N.K.; Yasamineh, S.; Gholizadeh, O.; Shokri, P. The role of oncolytic virotherapy and viral oncogenes in the cancer stem cells: A review of virus in cancer stem cells. Cancer Cell Int., 2023, 23(1), 250.
[http://dx.doi.org/10.1186/s12935-023-03099-y] [PMID: 37880659]
[196]
Matoba, Y.; Zarrella, D.T.; Pooladanda, V.; Azimi Mohammadabadi, M.; Kim, E.; Kumar, S.; Xu, M.; Qin, X.; Ray, L.J.; Devins, K.M.; Kumar, R.; Kononenko, A.; Eisenhauer, E.; Veillard, I.E.; Yamagami, W.; Hill, S.J.; Sarosiek, K.A.; Yeku, O.O.; Spriggs, D.R.; Rueda, B.R. Targeting Galectin 3 illuminates its contributions to the pathology of uterine serous carcinoma. Br. J. Cancer, 2024, 130(9), 1463-1476.
[http://dx.doi.org/10.1038/s41416-024-02621-x] [PMID: 38438589]
[197]
Yang, Y.; Tse, A.K-W.; Li, P.; Ma, Q.; Xiang, S.; Nicosia, S.V.; Seto, E.; Zhang, X.; Bai, W. Inhibition of androgen receptor activity by histone deacetylase 4 through receptor SUMOylation. Oncogene, 2011, 30(19), 2207-2218.
[http://dx.doi.org/10.1038/onc.2010.600] [PMID: 21242980]
[198]
Ehsani, M.; David, F.O.; Baniahmad, A. Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers, 2021, 13(7), 1534.
[http://dx.doi.org/10.3390/cancers13071534] [PMID: 33810413]
[199]
Beauchemin, K.A.; Ribeiro, G.O.; Ran, T.; Marami Milani, M.R.; Yang, W.; Khanaki, H.; Gruninger, R.; Tsang, A.; McAllister, T.A. Recombinant fibrolytic feed enzymes and ammonia fibre expansion (AFEX) pretreatment of crop residues to improve fibre degradability in cattle. Anim. Feed Sci. Technol., 2019, 256, 114260.
[http://dx.doi.org/10.1016/j.anifeedsci.2019.114260]
[200]
Vazquez-Urrutia, J.R.; Torres-Bustamante, M.I.; Cerda-Cruz, C.R.; Bravo-Cuellar, A.; Ortiz-Lazareno, P.C. The role of miRNA in prostate cancer diagnosis, prognosis and treatment response: A narrative review. Futur. Oncol., 2023, 19, 77-93.
[http://dx.doi.org/10.2217/fon-2022-0891]
[201]
Lin, J.; Zhuo, Y.; Zhang, Y.; Liu, R.; Zhong, W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev. Mol. Diagn., 2023, 23(3), 199-215.
[http://dx.doi.org/10.1080/14737159.2023.2187289] [PMID: 36860119]
[202]
Somanath, P.R.; Chernoff, J.; Cummings, B.S.; Prasad, S.M.; Homan, H.D. Targeting P21-activated kinase-1 for metastatic prostate cancer. Cancers, 2023, 15(8), 2236.
[http://dx.doi.org/10.3390/cancers15082236] [PMID: 37190165]
[203]
Lu, G.M.; Jiang, L.Y.; Huang, D.L.; Rong, Y.X.; Li, Y.H.; Wei, L.X.; Ning, Y.; Huang, S.F.; Mo, S.; Meng, F.H.; Li, H.M. Advanced platelet-rich fibrin extract treatment promotes the proliferation and differentiation of human adipose-derived mesenchymal stem cells through activation of tryptophan metabolism. Curr. Stem Cell Res. Ther., 2023, 18(1), 127-142.
[http://dx.doi.org/10.2174/1574888X16666211206150934] [PMID: 34872484]
[204]
Vandana, J.J.; Manrique, C.; Lacko, L.A.; Chen, S. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation. Cell Stem Cell, 2023, 30(5), 571-591.
[http://dx.doi.org/10.1016/j.stem.2023.04.011] [PMID: 37146581]
[205]
Moazamiyanfar, R.; Rezaei, S.; AliAshrafzadeh, H.; Rastegar-Pouyani, N.; Jafarzadeh, E.; Mouludi, K.; Khodamoradi, E.; Zhaleh, M.; Taeb, S.; Najafi, M. Nobiletin in cancer therapy; mechanisms and therapy perspectives. Curr. Pharm. Des., 2023, 29(22), 1713-1728.
[http://dx.doi.org/10.2174/1381612829666230426115424] [PMID: 37185325]
[206]
Vava, A.; Paccez, J.D.; Wang, Y.; Gu, X.; Bhasin, M.K.; Myers, M.; Soares, N.C.; Libermann, T.A.; Zerbini, L.F. DCUN1D1 is an essential regulator of prostate cancer proliferation and tumour growth that acts through neddylation of cullin 1, 3, 4A and 5 and deregulation of Wnt/catenin pathway. Cells, 2023, 12(15), 1973.
[http://dx.doi.org/10.3390/cells12151973] [PMID: 37566052]
[207]
Gogola, S.; Rejzer, M.; Bahmad, H.F.; Abou-Kheir, W.; Omarzai, Y.; Poppiti, R. Epithelial-to-mesenchymal transition-related markers in prostate cancer: From bench to bedside. Cancers, 2023, 15(8), 2309.
[http://dx.doi.org/10.3390/cancers15082309] [PMID: 37190236]
[208]
Liu, M.; Zhang, Y.; Zhang, A.; Deng, Y.; Gao, X.; Wang, J.; Wang, Y.; Wang, S.; Liu, J.; Chen, S.; Yao, W.; Liu, X. Compound K is a potential clinical anticancer agent in prostate cancer by arresting cell cycle. Phytomedicine, 2023, 109, 154584.
[http://dx.doi.org/10.1016/j.phymed.2022.154584] [PMID: 36610114]
[209]
Kim, H.Y.; Lee, S.W.; Choi, S.K.; Ashim, J.; Kim, W.; Beak, S.M.; Park, J.K.; Han, J.E.; Cho, G.J.; Ryoo, Z.Y.; Jeong, J.; Lee, Y.H.; Jeong, H.; Yu, W.; Park, S. Veratramine inhibits the cell cycle progression, migration, and invasion via ATM/ATR pathway in androgen-independent prostate cancer. Am. J. Chin. Med., 2023, 51(5), 1309-1333.
[http://dx.doi.org/10.1142/S0192415X2350060X] [PMID: 37385965]
[210]
Grypari, I.M.; Tzelepi, V.; Gyftopoulos, K. DNA damage repair pathways in prostate cancer: A narrative review of molecular mechanisms, emerging biomarkers and therapeutic targets in precision oncology. Int. J. Mol. Sci., 2023, 24(14), 11418.
[http://dx.doi.org/10.3390/ijms241411418] [PMID: 37511177]
[211]
Saha, A.; Zhao, S.; Kindall, A.; Wilder, C.; Friedman, C.A.; Clark, R.; Georgiou, G.; Stone, E.; Kidane, D.; DiGiovanni, J. Cysteine depletion sensitizes prostate cancer cells to agents that enhance DNA damage and to immune checkpoint inhibition. J. Exp. Clin. Cancer Res., 2023, 42(1), 119.
[http://dx.doi.org/10.1186/s13046-023-02677-2] [PMID: 37170264]
[212]
Chang, T.; Lian, Z.; Ma, S.; Liang, Z.; Ma, X.; Wen, X.; Wang, Y.; Liu, R. Combination with vorinostat enhances the antitumor activity of cisplatin in castration‐resistant prostate cancer by inhibiting DNA damage repair pathway and detoxification of GSH. Prostate, 2023, 83(5), 470-486.
[http://dx.doi.org/10.1002/pros.24479] [PMID: 36576015]
[213]
Di Zazzo, E.; Galasso, G.; Giovannelli, P.; Di Donato, M.; Di Santi, A.; Cernera, G.; Rossi, V.; Abbondanza, C.; Moncharmont, B.; Sinisi, A.A.; Castoria, G.; Migliaccio, A. Prostate cancer stem cells: The role of androgen and estrogen receptors. Oncotarget, 2016, 7(1), 193-208.
[http://dx.doi.org/10.18632/oncotarget.6220] [PMID: 26506594]
[214]
Lo Iacono, M.; Buttigliero, C.; Monica, V.; Bollito, E.; Garrou, D.; Cappia, S.; Rapa, I.; Vignani, F.; Bertaglia, V.; Fiori, C.; Papotti, M.; Volante, M.; Scagliotti, G.V.; Porpiglia, F.; Tucci, M. Retrospective study testing next generation sequencing of selected cancer-associated genes in resected prostate cancer. Oncotarget, 2016, 7(12), 14394-14404.
[http://dx.doi.org/10.18632/oncotarget.7343] [PMID: 26887047]
[215]
Al Salhi, Y.; Sequi, M.B.; Valenzi, F.M.; Fuschi, A.; Martoccia, A.; Suraci, P. Cancer stem cells and prostate cancer: A narrative review. Int. J. Mol. Sci., 2023, 24(9), 7746.
[216]
Chen, W.Y.; Thuy Dung, P.V.; Yeh, H.L.; Chen, W.H.; Jiang, K.C.; Li, H.R.; Chen, Z.Q.; Hsiao, M.; Huang, J.; Wen, Y.C.; Liu, Y.N. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer. Redox Biol., 2023, 62, 102686.
[http://dx.doi.org/10.1016/j.redox.2023.102686] [PMID: 36963289]
[217]
Natani, S.; Ramakrishna, M.; Nallavolu, T.; Ummanni, R. MicroRNA‐147b induces neuroendocrine differentiation of prostate cancer cells by targeting ribosomal protein RPS15A. Prostate, 2023, 83(10), 936-949.
[http://dx.doi.org/10.1002/pros.24535] [PMID: 37069746]
[218]
Che, B.; Zhang, W.; Li, W.; Tang, K.; Yin, J.; Liu, M.; Xu, S.; Huang, T.; Yu, Y.; Huang, K.; Peng, Z.; Zha, C. Bacterial lipopolysaccharide-related genes are involved in the invasion and recurrence of prostate cancer and are related to immune escape based on bioinformatics analysis. Front. Oncol., 2023, 13, 1141191.
[http://dx.doi.org/10.3389/fonc.2023.1141191] [PMID: 37188204]
[219]
Sukocheva, O.A.; Li, B.; Due, S.L.; Hussey, D.J.; Watson, D.I. Androgens and esophageal cancer: What do we know? World J. Gastroenterol., 2015, 21(20), 6146-6156.
[http://dx.doi.org/10.3748/wjg.v21.i20.6146] [PMID: 26034350]
[220]
Frame, F.M.; Noble, A.R.; Klein, S.; Walker, H.F.; Suman, R.; Kasprowicz, R.; Mann, V.M.; Simms, M.S.; Maitland, N.J. Tumor heterogeneity and therapy resistance - implications for future treatments of prostate cancer. J. Cancer Metastasis Treat., 2017, 3(12), 302.
[http://dx.doi.org/10.20517/2394-4722.2017.34]
[221]
Karthaus, W.R.; Hofree, M.; Choi, D.; Linton, E.L.; Turkekul, M.; Bejnood, A. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science, 2020, 368(6490), 497-505.
[http://dx.doi.org/10.1126/science.aay0267]
[222]
Chan, J.M.; Zaidi, S.; Love, J.R.; Zhao, J.L.; Setty, M.; Wadosky, K.M. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science, 2022, 377(6611), 1180-1191.
[223]
Patel, R.; Fein, D.; Ramirez, C.B.; Do, K.; Saif, M.W. PARP inhibitors in pancreatic cancer: From phase I to plenary session. Pancreas Open J., 2019, 3(1), e5-e8.
[224]
DeVore, N.M.; Scott, E.E. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature, 2012, 482(7383), 116-119.
[http://dx.doi.org/10.1038/nature10743] [PMID: 22266943]
[225]
Guo, C.; Figueiredo, I.; Gurel, B.; Neeb, A.; Seed, G.; Crespo, M.; Carreira, S.; Rekowski, J.; Buroni, L.; Welti, J.; Bogdan, D.; Gallagher, L.; Sharp, A.; Fenor de la Maza, M.D.; Rescigno, P.; Westaby, D.; Chandran, K.; Riisnaes, R.; Ferreira, A.; Miranda, S.; Calì, B.; Alimonti, A.; Bressan, S.; Nguyen, A.H.T.; Shen, M.M.; Hawley, J.E.; Obradovic, A.; Drake, C.G.; Bertan, C.; Baker, C.; Tunariu, N.; Yuan, W.; de Bono, J.S. B7-H3 as a Therapeutic Target in Advanced Prostate Cancer. Eur. Urol., 2023, 83(3), 224-238.
[http://dx.doi.org/10.1016/j.eururo.2022.09.004] [PMID: 36114082]
[226]
Chen, K.; Kostos, L.; Azad, A.A. Future directions in systemic treatment of metastatic hormone-sensitive prostate cancer. World J. Urol., 2022, 41(8), 2021-2031.
[http://dx.doi.org/10.1007/s00345-022-04135-8] [PMID: 36029329]
[227]
Flippot, R.; Patrikidou, A.; Aldea, M.; Colomba, E.; Lavaud, P.; Albigès, L.; Naoun, N.; Blanchard, P.; Terlizzi, M.; Garcia, C.; Bernard-Tessier, A.; Fuerea, A.; Di Palma, M.; Escudier, B.; Loriot, Y.; Baciarello, G.; Fizazi, K. PARP Inhibition, a new therapeutic avenue in patients with prostate cancer. Drugs, 2022, 82(7), 719-733.
[http://dx.doi.org/10.1007/s40265-022-01703-5] [PMID: 35511402]
[228]
Fizazi, K.; González Mella, P.; Castellano, D.; Minatta, J.N.; Rezazadeh Kalebasty, A.; Shaffer, D.; Vázquez Limón, J.C.; Sánchez López, H.M.; Armstrong, A.J.; Horvath, L.; Bastos, D.A.; Amin, N.P.; Li, J.; Unsal-Kacmaz, K.; Retz, M.; Saad, F.; Petrylak, D.P.; Pachynski, R.K. Nivolumab plus docetaxel in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer: Results from the phase II CheckMate 9KD trial. Eur. J. Cancer, 2022, 160, 61-71.
[http://dx.doi.org/10.1016/j.ejca.2021.09.043] [PMID: 34802864]
[229]
Armstrong, A.J.; Azad, A.A.; Iguchi, T.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Alcaraz, A.; Alekseev, B.; Shore, N.D.; Gomez-Veiga, F.; Rosbrook, B.; Zohren, F.; Yamada, S.; Haas, G.P.; Stenzl, A. Improved survival with enzalutamide in patients with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol., 2022, 40(15), 1616-1622.
[http://dx.doi.org/10.1200/JCO.22.00193] [PMID: 35420921]
[230]
Conde-Estévez, D.; Henríquez, I.; Muñoz-Rodríguez, J.; Rodriguez-Vida, A. Treatment of non-metastatic castration-resistant prostate cancer: Facing age-related comorbidities and drug–drug interactions. Expert Opin. Drug Metab. Toxicol., 2022, 18(9), 601-613.
[http://dx.doi.org/10.1080/17425255.2022.2122812] [PMID: 36111393]
[231]
Nanni, C.; Zanoni, L.; Pultrone, C.; Schiavina, R.; Brunocilla, E.; Lodi, F.; Malizia, C.; Ferrari, M.; Rigatti, P.; Fonti, C.; Martorana, G.; Fanti, S. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: Results of a prospective trial. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(9), 1601-1610.
[http://dx.doi.org/10.1007/s00259-016-3329-1] [PMID: 26960562]
[232]
Ling, S.W.; de Blois, E.; Hooijman, E.; van der Veldt, A.; Brabander, T. Advances in 177Lu-PSMA and 225Ac-PSMA radionuclide therapy for metastatic castration-resistant prostate cancer. Pharmaceutics, 2022, 14(10), 2166.
[http://dx.doi.org/10.3390/pharmaceutics14102166] [PMID: 36297601]
[233]
Hafron, J.M.; Wilfehrt, H.M.; Ferro, C.; Harmon, M.; Flanders, S.C.; McKay, R.R. Real-world effectiveness of sipuleucel-T on overall survival in men with advanced prostate cancer treated with androgen receptor-targeting agents. Adv. Ther., 2022, 39(6), 2515-2532.
[http://dx.doi.org/10.1007/s12325-022-02085-6] [PMID: 35352309]
[234]
Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; Wharton, S.; Yokote, K.; Zeuthen, N.; Kushner, R.F. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med., 2021, 384(11), 989-1002.
[http://dx.doi.org/10.1056/NEJMoa2032183] [PMID: 33567185]
[235]
Alemany, M. The roles of androgens in humans: Biology, metabolic regulation and health. Int. J. Mol. Sci., 2022, 23(19), 11952.
[http://dx.doi.org/10.3390/ijms231911952] [PMID: 36233256]
[236]
Lustofin, S.; Kamińska, A.; Brzoskwinia, M.; Cyran, J.; Kotula-Balak, M.; Bilińska, B.; Hejmej, A. nuclear and membrane receptors for sex steroids are involved in the regulation of delta/serrate/lag-2 proteins in rodent sertoli cells. Int. J. Mol. Sci., 2022, 23(4), 2284.
[http://dx.doi.org/10.3390/ijms23042284] [PMID: 35216398]
[237]
Malinowski, B.; Wiciński, M.; Musiała, N.; Osowska, I.; Szostak, M. Previous, current, and future pharmacotherapy and diagnosis of prostate cancer: A comprehensive review. Diagnostics, 2019, 9(4), 161.
[http://dx.doi.org/10.3390/diagnostics9040161] [PMID: 31731466]
[238]
Han, X.; Zhao, L.; Xiang, W.; Qin, C.; Miao, B.; McEachern, D.; Wang, Y.; Metwally, H.; Wang, L.; Matvekas, A.; Wen, B.; Sun, D.; Wang, S. Strategies toward discovery of potent and orally bioavailable proteolysis targeting chimera degraders of androgen receptor for the treatment of prostate cancer. J. Med. Chem., 2021, 64(17), 12831-12854.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00882] [PMID: 34431670]
[239]
Ji, G.; Huang, C.; He, S.; Gong, Y.; Song, G.; Li, X.; Zhou, L. Comprehensive analysis of m6A regulators prognostic value in prostate cancer. Aging, 2020, 12(14), 14863-14884.
[http://dx.doi.org/10.18632/aging.103549] [PMID: 32710725]
[240]
Walter, B.; Rogenhofer, S.; Vogelhuber, M.; Wilke, J.; Berand, A.; Wieland, W.F. Modular therapy approach in metastatic castration-resistent prostate cancer. In: From Molecular to Modular Tumor Therapy. The Tumor Microenvironment; Springer Netherlands: Dordrecht, 2010; pp. 367-377.
[http://dx.doi.org/10.1007/978-90-481-9531-2_18]
[241]
Choudhury, A.D. PTEN‐PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate, 2022, 82(S1)(Suppl. 1), S60-S72.
[http://dx.doi.org/10.1002/pros.24372] [PMID: 35657152]
[242]
Connelly, Z.M.; Yang, S.; Chen, F.; Yeh, Y.; Khater, N.; Jin, R.; Matusik, R.; Yu, X. Foxa2 activates the transcription of androgen receptor target genes in castrate resistant prostatic tumors. Am. J. Clin. Exp. Urol., 2018, 6(5), 172-181.
[PMID: 30510969]
[243]
Dalin, M.G.; Desrichard, A.; Katabi, N.; Makarov, V.; Walsh, L.A.; Lee, K.W.; Wang, Q.; Armenia, J.; West, L.; Dogan, S.; Wang, L.; Ramaswami, D.; Ho, A.L.; Ganly, I.; Solit, D.B.; Berger, M.F.; Schultz, N.D.; Reis-Filho, J.S.; Chan, T.A.; Morris, L.G.T. Comprehensive molecular characterization of salivary duct carcinoma reveals actionable targets and similarity to apocrine breast cancer. Clin. Cancer Res., 2016, 22(18), 4623-4633.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0637] [PMID: 27103403]
[244]
Hamid, A.R.A.H. Molecular phenotyping of AR signaling for predicting targeted therapy in castration resistant prostate cancer. Front. Oncol., 2021, 11. 7216-59.
[245]
Jamroze, A.; Chatta, G.; Tang, D.G. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett., 2021, 518, 1-9.
[http://dx.doi.org/10.1016/j.canlet.2021.06.006] [PMID: 34118355]
[246]
Kushwaha, P.P.; Verma, S.; Kumar, S.; Gupta, S. Role of prostate cancer stem-like cells in the development of antiandrogen resistance. Cancer Drug Resist., 2022, 5(2), 459-471.
[http://dx.doi.org/10.20517/cdr.2022.07] [PMID: 35800367]
[247]
Mourkioti, I.; Angelopoulou, A.; Belogiannis, K.; Lagopati, N.; Potamianos, S.; Kyrodimos, E.; Gorgoulis, V.; Papaspyropoulos, A. Interplay of developmental hippo–notch signaling pathways with the DNA damage response in prostate cancer. Cells, 2022, 11(15), 2449.
[http://dx.doi.org/10.3390/cells11152449] [PMID: 35954292]
[248]
Nuvola, G.; Santoni, M.; Rizzo, M.; Rosellini, M.; Mollica, V.; Rizzo, A.; Marchetti, A.; Battelli, N.; Massari, F. Adapting to hormone-therapy resistance for adopting the right therapeutic strategy in advanced prostate cancer. Expert Rev. Anticancer Ther., 2023, 23(6), 593-600.
[http://dx.doi.org/10.1080/14737140.2023.2207827] [PMID: 37185042]
[249]
Pinto, F.; Dibitetto, F.; Ragonese, M.; Bassi, P. Mechanisms of resistance to second-generation antiandrogen therapy for prostate cancer: Actual knowledge and perspectives. Med. Sci., 2022, 10(2), 25.
[http://dx.doi.org/10.3390/medsci10020025] [PMID: 35645241]
[250]
Ramalingam, S.; Ramamurthy, V.P.; Njar, V.C.O. Dissecting major signaling pathways in prostate cancer development and progression: Mechanisms and novel therapeutic targets. J. Steroid Biochem. Mol. Biol., 2017, 166, 16-27.
[http://dx.doi.org/10.1016/j.jsbmb.2016.07.006] [PMID: 27481707]
[251]
Yamamoto, Y.; Loriot, Y.; Beraldi, E.; Zhang, F.; Wyatt, A.W.; Nakouzi, N.A.; Mo, F.; Zhou, T.; Kim, Y.; Monia, B.P.; MacLeod, A.R.; Fazli, L.; Wang, Y.; Collins, C.C.; Zoubeidi, A.; Gleave, M. Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide-resistant prostate cancer cell growth. Clin. Cancer Res., 2015, 21(7), 1675-1687.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1108] [PMID: 25634993]
[252]
Barata, P.C.; Sartor, A.O. Metastatic castration‐sensitive prostate cancer: Abiraterone, docetaxel, or…. Cancer, 2019, 125(11), 1777-1788.
[http://dx.doi.org/10.1002/cncr.32039] [PMID: 30933324]
[253]
Daisley, B.A.; Chanyi, R.M.; Abdur-Rashid, K.; Al, K.F.; Gibbons, S.; Chmiel, J.A.; Wilcox, H.; Reid, G.; Anderson, A.; Dewar, M.; Nair, S.M.; Chin, J.; Burton, J.P. Author Correction: Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nat. Commun., 2020, 11(1), 6394.
[http://dx.doi.org/10.1038/s41467-020-20410-x] [PMID: 33298912]
[254]
Fizazi, K.; Foulon, S.; Carles, J.; Roubaud, G.; McDermott, R.; Fléchon, A.; Tombal, B.; Supiot, S.; Berthold, D.; Ronchin, P.; Kacso, G.; Gravis, G.; Calabro, F.; Berdah, J.F.; Hasbini, A.; Silva, M.; Thiery-Vuillemin, A.; Latorzeff, I.; Mourey, L.; Laguerre, B.; Abadie-Lacourtoisie, S.; Martin, E.; El Kouri, C.; Escande, A.; Rosello, A.; Magne, N.; Schlurmann, F.; Priou, F.; Chand-Fouche, M.E.; Freixa, S.V.; Jamaluddin, M.; Rieger, I.; Bossi, A. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): A multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet, 2022, 399(10336), 1695-1707.
[http://dx.doi.org/10.1016/S0140-6736(22)00367-1] [PMID: 35405085]
[255]
Guan, Y.; Xiong, H.; Feng, Y.; Liao, G.; Tong, T.; Pang, J. Revealing the prognostic landscape of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in metastatic castration-resistant prostate cancer patients treated with abiraterone or enzalutamide: A meta-analysis. Prostate. Cancer Prostatic. Dis., 2020, 23(2), 220-231.
[http://dx.doi.org/10.1038/s41391-020-0209-3] [PMID: 32034294]
[256]
Hoyle, A.P.; Ali, A.; James, N.D.; Cook, A.; Parker, C.C.; de Bono, J.S.; Attard, G.; Chowdhury, S.; Cross, W.R.; Dearnaley, D.P.; Brawley, C.D.; Gilson, C.; Ingleby, F.; Gillessen, S.; Aebersold, D.M.; Jones, R.J.; Matheson, D.; Millman, R.; Mason, M.D.; Ritchie, A.W.S.; Russell, M.; Douis, H.; Parmar, M.K.B.; Sydes, M.R.; Clarke, N.W. Abiraterone in “High-” and “Low-risk” Metastatic Hormone-sensitive Prostate Cancer. Eur. Urol., 2019, 76(6), 719-728.
[http://dx.doi.org/10.1016/j.eururo.2019.08.006] [PMID: 31447077]
[257]
Khalaf, D.J.; Annala, M.; Taavitsainen, S.; Finch, D.L.; Oja, C.; Vergidis, J.; Zulfiqar, M.; Sunderland, K.; Azad, A.A.; Kollmannsberger, C.K.; Eigl, B.J.; Noonan, K.; Wadhwa, D.; Attwell, A.; Keith, B.; Ellard, S.L.; Le, L.; Gleave, M.E.; Wyatt, A.W.; Chi, K.N. Optimal sequencing of enzalutamide and abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: A multicentre, randomised, open-label, phase 2, crossover trial. Lancet Oncol., 2019, 20(12), 1730-1739.
[http://dx.doi.org/10.1016/S1470-2045(19)30688-6] [PMID: 31727538]
[258]
Mori, K.; Miura, N.; Mostafaei, H.; Quhal, F.; Sari Motlagh, R.; Pradere, B.; Kimura, S.; Kimura, T.; Egawa, S.; Briganti, A.; Karakiewicz, P.I.; Shariat, S.F. Sequential therapy of abiraterone and enzalutamide in castration-resistant prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis., 2020, 23(4), 539-548.
[http://dx.doi.org/10.1038/s41391-020-0222-6] [PMID: 32152435]
[259]
Parikh, M.; Liu, C.; Wu, C.Y.; Evans, C.P.; Dall’Era, M.; Robles, D.; Lara, P.N.; Agarwal, N.; Gao, A.C.; Pan, C.X. Phase Ib trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer. Sci. Rep., 2021, 11(1), 6377.
[http://dx.doi.org/10.1038/s41598-021-85969-x] [PMID: 33737681]
[260]
Seshacharyulu, P.; Rachagani, S.; Muniyan, S.; Siddiqui, J.A.; Cruz, E.; Sharma, S.; Krishnan, R.; Killips, B.J.; Sheinin, Y.; Lele, S.M.; Smith, L.M.; Talmon, G.A.; Ponnusamy, M.P.; Datta, K.; Batra, S.K. FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis. Oncogene, 2019, 38(26), 5265-5280.
[http://dx.doi.org/10.1038/s41388-019-0791-9] [PMID: 30914801]
[261]
Sternberg, C.N.; Fizazi, K.; Saad, F.; Shore, N.D.; De Giorgi, U.; Penson, D.F.; Ferreira, U.; Efstathiou, E.; Madziarska, K.; Kolinsky, M.P.; Cubero, D.I.G.; Noerby, B.; Zohren, F.; Lin, X.; Modelska, K.; Sugg, J.; Steinberg, J.; Hussain, M. Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med., 2020, 382(23), 2197-2206.
[http://dx.doi.org/10.1056/NEJMoa2003892] [PMID: 32469184]
[262]
Bordini, J.; Morisi, F.; Elia, A.R.; Santambrogio, P.; Pagani, A.; Cucchiara, V.; Ghia, P.; Bellone, M.; Briganti, A.; Camaschella, C.; Campanella, A. Iron induces cell death and strengthens the efficacy of antiandrogen therapy in prostate cancer models. Clin. Cancer Res., 2020, 26(23), 6387-6398.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3182] [PMID: 32928793]
[263]
Dess, R.T.; Sun, Y.; Jackson, W.C.; Jairath, N.K.; Kishan, A.U.; Wallington, D.G.; Mahal, B.A.; Stish, B.J.; Zumsteg, Z.S.; Den, R.B.; Hall, W.A.; Gharzai, L.A.; Jaworski, E.M.; Reichert, Z.R.; Morgan, T.M.; Mehra, R.; Schaeffer, E.M.; Sartor, O.; Nguyen, P.L.; Lee, W.R.; Rosenthal, S.A.; Michalski, J.M.; Schipper, M.J.; Dignam, J.J.; Pisansky, T.M.; Zietman, A.L.; Sandler, H.M.; Efstathiou, J.A.; Feng, F.Y.; Shipley, W.U.; Spratt, D.E. Association of presalvage radiotherapy psa levels after prostatectomy with outcomes of long-term antiandrogen therapy in men with prostate cancer. JAMA Oncol., 2020, 6(5), 735-743.
[http://dx.doi.org/10.1001/jamaoncol.2020.0109] [PMID: 32215583]
[264]
Kregel, S.; Wang, C.; Han, X.; Xiao, L.; Fernandez-Salas, E.; Bawa, P.; McCollum, B.L.; Wilder-Romans, K.; Apel, I.J.; Cao, X.; Speers, C.; Wang, S.; Chinnaiyan, A.M. Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia, 2020, 22(2), 111-119.
[http://dx.doi.org/10.1016/j.neo.2019.12.003] [PMID: 31931431]
[265]
Liao, Y.; Liu, Y.; Xia, X.; Shao, Z.; Huang, C.; He, J.; Jiang, L.; Tang, D.; Liu, J.; Huang, H. Targeting GRP78-dependent AR-V7 protein degradation overcomes castration-resistance in prostate cancer therapy. Theranostics, 2020, 10(8), 3366-3381.
[http://dx.doi.org/10.7150/thno.41849] [PMID: 32206096]
[266]
Liyanage, C.; Malik, A.; Abeysinghe, P.; Clements, J.; Batra, J. SWATH-MS based proteomic profiling of prostate cancer cells reveals adaptive molecular mechanisms in response to anti-androgen therapy. Cancers, 2021, 13(4), 715.
[http://dx.doi.org/10.3390/cancers13040715] [PMID: 33572476]
[267]
Orme, J.J.; Pagliaro, L.C.; Quevedo, J.F.; Park, S.S.; Costello, B.A. Rational second-generation antiandrogen use in prostate cancer. Oncologist, 2022, 27(2), 110-124.
[http://dx.doi.org/10.1093/oncolo/oyab045] [PMID: 35641216]
[268]
Tewari, A.K.; Cheung, A.T.M.; Crowdis, J.; Conway, J.R.; Camp, S.Y.; Wankowicz, S.A.; Livitz, D.G.; Park, J.; Lis, R.T.; Bosma-Moody, A.; He, M.X.; AlDubayan, S.H.; Zhang, Z.; McKay, R.R.; Leshchiner, I.; Brown, M.; Balk, S.P.; Getz, G.; Taplin, M.E.; Van Allen, E.M. Molecular features of exceptional response to neoadjuvant anti-androgen therapy in high-risk localized prostate cancer. Cell Rep., 2021, 36(10), 109665.
[http://dx.doi.org/10.1016/j.celrep.2021.109665] [PMID: 34496240]
[269]
Zhang, Z.; Chen, Y.; Li, B.; Chen, T.; Tian, S. Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Comput. Struct. Biotechnol. J., 2020, 18, 3344-3349.
[http://dx.doi.org/10.1016/j.csbj.2020.10.024] [PMID: 33294130]
[270]
Bai, S.; Cao, S.; Jin, L.; Kobelski, M.; Schouest, B.; Wang, X.; Ungerleider, N.; Baddoo, M.; Zhang, W.; Corey, E.; Vessella, R.L.; Dong, X.; Zhang, K.; Yu, X.; Flemington, E.K.; Dong, Y. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene, 2019, 38(25), 4977-4989.
[http://dx.doi.org/10.1038/s41388-019-0768-8] [PMID: 30820039]
[271]
Kanayama, M.; Lu, C.; Luo, J.; Antonarakis, E.S. AR splicing variants and resistance to AR targeting agents. Cancers, 2021, 13(11), 2563.
[http://dx.doi.org/10.3390/cancers13112563] [PMID: 34071114]
[272]
Thiyagarajan, T.; Ponnusamy, S.; Hwang, D.J.; He, Y.; Asemota, S.; Young, K.L.; Johnson, D.L.; Bocharova, V.; Zhou, W.; Jain, A.K.; Petricoin, E.F.; Yin, Z.; Pfeffer, L.M.; Miller, D.D.; Narayanan, R. Inhibiting androgen receptor splice variants with cysteine-selective irreversible covalent inhibitors to treat prostate cancer. Proc. Natl. Acad. Sci. USA, 2023, 120(1), e2211832120.
[http://dx.doi.org/10.1073/pnas.2211832120] [PMID: 36577061]
[273]
Wang, Z.; Song, Y.; Ye, M.; Dai, X.; Zhu, X.; Wei, W. The diverse roles of SPOP in prostate cancer and kidney cancer. Nat. Rev. Urol., 2020, 17(6), 339-350.
[http://dx.doi.org/10.1038/s41585-020-0314-z] [PMID: 32355326]
[274]
Perlmutter, M.A.; Lepor, H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev. Urol., 2007, 9(Suppl 1), S3-S8.
[PMID: 17387371]
[275]
Hu, J.R.; Duncan, M.S.; Morgans, A.K.; Brown, J.D.; Meijers, W.C.; Freiberg, M.S.; Salem, J.E.; Beckman, J.A.; Moslehi, J.J. Cardiovascular effects of androgen deprivation therapy in prostate cancer: Contemporary meta-analyses. Arterioscler. Thromb. Vasc. Biol., 2020, 40(3), e55-e64.
[http://dx.doi.org/10.1161/ATVBAHA.119.313046] [PMID: 31969015]
[276]
Wang, H.T.; Yao, Y.H.; Li, B.G.; Tang, Y.; Chang, J.W.; Zhang, J. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: Factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J. Clin. Oncol., 2014, 32(30), 3383-3390.
[http://dx.doi.org/10.1200/JCO.2013.54.3553] [PMID: 25225419]
[277]
Ochs, H.G.; Lamberts, B.; Saleh, M.; Heintz, R. Renin secretion in vitro. Comparison of kidney slices and isolated glomeruli. Res. Exp. Med., 1973, 160(3), 206-212.
[http://dx.doi.org/10.1007/BF01856784] [PMID: 4708226]
[278]
Yu, J.; Gritsina, G.; Gao, W-Q. Transcriptional repression by androgen receptor: Roles in castration-resistant prostate cancer. Asian J. Androl., 2019, 21(3), 215-223.
[http://dx.doi.org/10.4103/aja.aja_19_19] [PMID: 30950412]
[279]
Shore, N.D.; Morgans, A.K.; Ryan, C.J. Resetting the bar of castration resistance – Understanding androgen dynamics in therapy resistance and treatment choice in prostate cancer. Clin. Genitourin. Cancer, 2021, 19(3), 199-207.
[http://dx.doi.org/10.1016/j.clgc.2020.08.008] [PMID: 33129718]
[280]
Formaggio, N.; Rubin, M.A.; Theurillat, J.P. Loss and revival of androgen receptor signaling in advanced prostate cancer. Oncogene, 2021, 40(7), 1205-1216.
[http://dx.doi.org/10.1038/s41388-020-01598-0] [PMID: 33420371]
[281]
Obinata, D.; Lawrence, M.G.; Takayama, K.; Choo, N.; Risbridger, G.P.; Takahashi, S.; Inoue, S. Recent discoveries in the androgen receptor pathway in castration-resistant prostate cancer. Front. Oncol., 2020, 10, 581515.
[http://dx.doi.org/10.3389/fonc.2020.581515] [PMID: 33134178]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy