Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases

Author(s): Ritchu Babbar*, Arpanpreet Kaur, Vanya, Rashmi Arora, Jeetendra Kumar Gupta, Pranay Wal, Arpan Kumar Tripathi, Akshada Amit Koparde, Pradeep Goyal, Seema Ramniwas, Monica Gulati and Tapan Behl*

Volume 30, Issue 24, 2024

Published on: 30 May, 2024

Page: [1880 - 1893] Pages: 14

DOI: 10.2174/0113816128299615240513174041

Price: $65

Abstract

Inflammation is an individual’s physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.

[1]
Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454(7203): 428-35.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[2]
Rehni AK, Singh TG, Singh N, Arora S. Tramadol-induced seizurogenic effect: A possible role of opioid-dependent histamine (H1) receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol 2010; 381(1): 11-9.
[http://dx.doi.org/10.1007/s00210-009-0476-y] [PMID: 20012267]
[3]
Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 2007; 171(3): 715-27.
[http://dx.doi.org/10.2353/ajpath.2007.070166] [PMID: 17640961]
[4]
Bhattacharya T, Soares GAB, Chopra H, et al. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials 2022; 15(3): 804.
[http://dx.doi.org/10.3390/ma15030804] [PMID: 35160749]
[5]
Tracy RP. The five cardinal signs of inflammation: Calor, dolor, rubor, tumor... and penuria (Apologies to Aulus Cornelius Celsus, De medicina, c. A.D. 25). J Gerontol A Biol Sci Med Sci 2006; 61(10): 1051-2.
[http://dx.doi.org/10.1093/gerona/61.10.1051] [PMID: 17077197]
[6]
Punchard NA, Whelan CJ, Adcock I. The journal of inflammation. J Inflamm 2004; 1(1): 1.
[http://dx.doi.org/10.1186/1476-9255-1-1] [PMID: 15813979]
[7]
Sanches PHG, Silva AAR, Porcari AM. Plasma lipid profiles differ among chronic inflammatory diseases. EBioMedicine 2021; 70: 103526.
[http://dx.doi.org/10.1016/j.ebiom.2021.103526] [PMID: 34391095]
[8]
Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25(12): 1822-32.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[9]
Frostegård J. Immune mechanisms in atherosclerosis, especially in diabetes type 2. Front Endocrinol 2013; 4: 162.
[http://dx.doi.org/10.3389/fendo.2013.00162] [PMID: 24194733]
[10]
Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006; 47(8) (Suppl.): C7-C12.
[http://dx.doi.org/10.1016/j.jacc.2005.09.068] [PMID: 16631513]
[11]
Teo KK, Rafiq T. Cardiovascular risk factors and prevention: A perspective from developing countries. Can J Cardiol 2021; 37(5): 733-43.
[http://dx.doi.org/10.1016/j.cjca.2021.02.009] [PMID: 33610690]
[12]
Tarkin JM, Kaski JC. Pharmacological treatment of chronic stable angina pectoris. Clin Med 2013; 13(1): 63-70.
[http://dx.doi.org/10.7861/clinmedicine.13-1-63] [PMID: 23472498]
[13]
Wenger NK. Angina in women. Curr Cardiol Rep 2010; 12(4): 307-14.
[http://dx.doi.org/10.1007/s11886-010-0111-z] [PMID: 20425162]
[14]
Medalie JH, Goldbourt U. Angina pectoris among 10,000 men. Am J Med 1976; 60(6): 910-21.
[http://dx.doi.org/10.1016/0002-9343(76)90921-9] [PMID: 798490]
[15]
Lei L, Min L. Myocardial infarction: symptoms and treatments. Cell Biochem Biophys 2015; 72: 865-7.
[16]
Jacoby RM, Nesto RW. Acute myocardial infarction in the diabetic patient: Pathophysiology, clinical course and prognosis. J Am Coll Cardiol 1992; 20(3): 736-44.
[http://dx.doi.org/10.1016/0735-1097(92)90033-J] [PMID: 1512357]
[17]
Dąbek B, Dybiec J, Frąk W, et al. Novel therapeutic approaches in the management of chronic kidney disease. Biomedicines 2023; 11(10): 2746.
[http://dx.doi.org/10.3390/biomedicines11102746] [PMID: 37893119]
[18]
Girndt M. Diagnosis and treatment of chronic kidney disease. Internist (Berl) 2017; 58(3): 243-56.
[http://dx.doi.org/10.1007/s00108-017-0195-2] [PMID: 28194476]
[19]
Fardoun M, Al-Shehabi T, El-Yazbi A, et al. Ziziphus nummularia inhibits inflammation-induced atherogenic phenotype of human aortic smooth muscle cells. Oxid Med Cell Longev 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/4134093] [PMID: 28593025]
[20]
Hosseini A, Ghorbani A, Alavi MS, et al. Cardioprotective effect of Sanguisorba minor against isoprenaline-induced myocardial infarction in rats. Front Pharmacol 2023; 14(14): 1305816.
[http://dx.doi.org/10.3389/fphar.2023.1305816] [PMID: 38223198]
[21]
Badran A, Baydoun E, Samaha A, et al. Marjoram relaxes rat thoracic aorta via a PI3-K/eNOS/cGMP pathway. Biomolecules 2019; 9(6): 227.
[http://dx.doi.org/10.3390/biom9060227] [PMID: 31212721]
[22]
Badri W, Miladi K, Nazari QA, Greige-Gerges H, Fessi H, Elaissari A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int J Pharm 2016; 515(1-2): 757-73.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.002] [PMID: 27829170]
[23]
Haley Rebecca M. Localized and targeted delivery of NSAIDs for treatment of inflammation: A review. Exp Biol Med 2019; 244(6): 433-44.
[24]
Litalien C, Jacqz-Aigrain E. Risks and benefits of nonsteroidal anti-inflammatory drugs in children: A comparison with paracetamol. Paediatr Drugs 2001; 3(11): 817-58.
[http://dx.doi.org/10.2165/00128072-200103110-00004] [PMID: 11735667]
[25]
Kokki H. Nonsteroidal anti-inflammatory drugs for postoperative pain: a focus on children. Paediatr Drugs 2003; 5(2): 103-23.
[http://dx.doi.org/10.2165/00128072-200305020-00004] [PMID: 12529163]
[26]
Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond) 1998; 94(6): 557-72.
[http://dx.doi.org/10.1042/cs0940557] [PMID: 9854452]
[27]
Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf 2016; 15(4): 457-65.
[http://dx.doi.org/10.1517/14740338.2016.1140743] [PMID: 26789102]
[28]
Zhang P, Zhang E, Xiao M, Chen C, Xu W. Study of anti-inflammatory activities of α-d-glucosylated eugenol. Arch Pharm Res 2013; 36(1): 109-15.
[http://dx.doi.org/10.1007/s12272-013-0003-z] [PMID: 23325490]
[29]
Yang R, Wang L, Yuan B, Liu Y. The pharmacological activities of licorice. Planta Med 2015; 81(18): 1654-69.
[http://dx.doi.org/10.1055/s-0035-1557893] [PMID: 26366756]
[30]
Sahlmann CO, Ströbel P. Pathophysiologie der Entzündung. Nucl Med (Stuttg) 2016; 55(1): 1-6.
[http://dx.doi.org/10.1055/s-0037-1616468] [PMID: 26875429]
[31]
Rees JC, Rossio JL, Wilson HE, Minton JP, Dodd MC. Cellular imunity in neoplasia: Antigen and mitogen responses in patients with bronchiogenic carcinoma. Cancer 1975; 36(6): 2010-5.
[http://dx.doi.org/10.1002/cncr.2820360613] [PMID: 173458]
[32]
Lee J, Sim JH, Kim IJ. Peripheral immature B cells: Modulators of autoimmunity. Int J Rheum Dis 2015; 18(2): 200-7.
[http://dx.doi.org/10.1111/1756-185X.12432] [PMID: 25292255]
[33]
Ahmed AU. An overview of inflammation: Mechanism and consequences. Front Biol (Beijing) 2011; 6(4): 274-8.
[http://dx.doi.org/10.1007/s11515-011-1123-9]
[34]
Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 2009; 15(2): 425-30.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0149] [PMID: 19147746]
[35]
Guaadaoui A, Benaicha S, Elmajdoub N, Bellaoui M, Hamal A. What is a bioactive compound? A combined definition for a preliminary consensus. Int J Nutr Food Sci 2014; 3(3): 174-9.
[http://dx.doi.org/10.11648/j.ijnfs.20140303.16]
[36]
Igwe EO, Charlton KE. A systematic review on the health effects of plums (Prunus domestica and Prunus salicina). Phytother Res 2016; 30(5): 701-31.
[http://dx.doi.org/10.1002/ptr.5581] [PMID: 26992121]
[37]
Rosa FT, Zulet MÁ, Marchini JS, Martínez JA. Bioactive compounds with effects on inflammation markers in humans. Int J Food Sci Nutr 2012; 63(6): 749-65.
[http://dx.doi.org/10.3109/09637486.2011.649250] [PMID: 22248031]
[38]
Rissanen T, Voutilainen S, Nyyssönen K, Salonen JT. Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (Maywood) 2002; 227(10): 900-7.
[http://dx.doi.org/10.1177/153537020222701010] [PMID: 12424332]
[39]
Amardeep K, Faizan A, Zaidi S. Importance of bioactive compounds present in plant products and their extraction: A review. Agricult Rev 2019; 40(4): 249-60.
[40]
Cha JH, Kim WK, Ha AW, Kim MH, Chang MJ. Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells. Nutr Res Pract 2017; 11(2): 90-6.
[http://dx.doi.org/10.4162/nrp.2017.11.2.90] [PMID: 28386381]
[41]
Ghavidel F, Amiri H, Tabrizi MH, Alidadi S, Hosseini H, Sahebkar A. The combinational effect of inulin and resveratrol on the oxidative stress and inflammation level in a rat model of diabetic nephropathy. Curr Dev Nutr 2023; 10(1): 102059..
[42]
Posadino AM, Giordo R, Cossu A, et al. Flavin oxidase-induced ROS generation modulates PKC biphasic effect of resveratrol on endothelial cell survival. Biomolecules 2019; 9(6): 209.
[http://dx.doi.org/10.3390/biom9060209] [PMID: 31151226]
[43]
Ramli I, Cheriet T, Posadino AM, et al. Potential therapeutic targets of resveratrol in the prevention and treatment of pulmonary fibrosis. Front Biosci-Landmark 2023; 28(9): 198.
[http://dx.doi.org/10.31083/j.fbl2809198] [PMID: 37796708]
[44]
Tshivhase AM, Matsha T, Raghubeer S. Resveratrol attenuates high glucose-induced inflammation and improves glucose metabolism in HepG2 cells. Sci Rep 2024; 14(1): 1106.
[http://dx.doi.org/10.1038/s41598-023-50084-6] [PMID: 38212345]
[45]
Gowd V, Kanika , Jori C, et al. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem 2022; 109: 109101.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109101] [PMID: 35777588]
[46]
Ye X, Li H, Anjum K, et al. Dual role of indoles derived from intestinal microbiota on human health. Front Immunol 2022; 13: 903526.
[http://dx.doi.org/10.3389/fimmu.2022.903526] [PMID: 35784338]
[47]
Jordan MA, Thrower D, Wilson L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 1991; 51(8): 2212-22.
[PMID: 2009540]
[48]
Škubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in combination therapy of cancer: Emerging trends in clinics. Biology (Basel) 2021; 10(9): 849.
[http://dx.doi.org/10.3390/biology10090849] [PMID: 34571726]
[49]
Zhang B, Jiang M, Zhao J, Song Y, Du W, Shi J. The mechanism underlying the influence of indole-3-propionic acid: a relevance to metabolic disorders. Front Endocrinol (Lausanne) 2022; 13: 841703.
[http://dx.doi.org/10.3389/fendo.2022.841703] [PMID: 35370963]
[50]
Selvarajan K, Narasimhulu CA, Bapputty R, Parthasarathy S. Anti-inflammatory and antioxidant activities of the nonlipid (aqueous) components of sesame oil: Potential use in atherosclerosis. J Med Food 2015; 18(4): 393-402.
[http://dx.doi.org/10.1089/jmf.2014.0139] [PMID: 25692333]
[51]
Hendrikx T, Schnabl B. Indoles: Metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J Intern Med 2019; 286(1): 32-40.
[http://dx.doi.org/10.1111/joim.12892] [PMID: 30873652]
[52]
Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 2015; 23(11): 707-18.
[http://dx.doi.org/10.1016/j.tim.2015.08.001] [PMID: 26439294]
[53]
Kim YG, Lee JH, Cho MH, Lee J. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei. BMC Microbiol 2011; 11(1): 119.
[http://dx.doi.org/10.1186/1471-2180-11-119] [PMID: 21619597]
[54]
Ma Q, Zhang X, Qu Y. Biodegradation and biotransformation of indole: Advances and perspectives. Front Microbiol 2018; 9: 2625.
[http://dx.doi.org/10.3389/fmicb.2018.02625] [PMID: 30443243]
[55]
Qu Y, Ma Q, Liu Z, et al. Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain. Mol Microbiol 2017; 106(6): 905-18.
[http://dx.doi.org/10.1111/mmi.13852] [PMID: 28963777]
[56]
Shahidi F, Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int J Mol Sci 2018; 19(6): 1573.
[http://dx.doi.org/10.3390/ijms19061573] [PMID: 29799460]
[57]
Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 2013; 72: 1-20.
[http://dx.doi.org/10.1016/j.plaphy.2013.05.009] [PMID: 23774057]
[58]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[59]
Nardini M, Cirillo E, Natella F, Scaccini C. Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 2002; 50(20): 5735-41.
[http://dx.doi.org/10.1021/jf0257547] [PMID: 12236707]
[60]
Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005; 45(4): 287-306.
[http://dx.doi.org/10.1080/1040869059096] [PMID: 16047496]
[61]
Boudet AM. Evolution and current status of research in phenolic compounds. Phytochemistry 2007; 68(22-24): 2722-35.
[http://dx.doi.org/10.1016/j.phytochem.2007.06.012] [PMID: 17643453]
[62]
Rahman MM, Rahaman MS, Islam MR, et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021; 27(1): 233.
[http://dx.doi.org/10.3390/molecules27010233] [PMID: 35011465]
[63]
Korta A, Kula J, Gomułka K. The role of IL-23 in the pathogenesis and therapy of inflammatory bowel disease. Int J Mol Sci 2023; 24(12): 10172.
[http://dx.doi.org/10.3390/ijms241210172] [PMID: 37373318]
[64]
Yi W, Fischer J, Krewer G, Akoh CC. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J Agric Food Chem 2005; 53(18): 7320-9.
[http://dx.doi.org/10.1021/jf051333o] [PMID: 16131149]
[65]
Kim S, Lee H, Moon H, et al. Epigallocatechin-3-gallate attenuates myocardial dysfunction via inhibition of endothelial-to-mesenchymal transition. Antioxidants 2023; 12(5): 1059.
[http://dx.doi.org/10.3390/antiox12051059] [PMID: 37237925]
[66]
Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int J Mol Sci 2022; 24(1): 340.
[http://dx.doi.org/10.3390/ijms24010340] [PMID: 36613784]
[67]
Surma S, Sahebkar A, Banach M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol Res 2023; 187: 106596.
[http://dx.doi.org/10.1016/j.phrs.2022.106596] [PMID: 36473629]
[68]
Yang Y, Liu M, Zhao T, et al. Epigallocatechin-3-gallate Mo nanoparticles (EGM NPs) efficiently treat liver injury by strongly reducing oxidative stress, inflammation and endoplasmic reticulum stress. Front Pharmacol 2022; 13: 1039558.
[http://dx.doi.org/10.3389/fphar.2022.1039558] [PMID: 36278211]
[69]
Cote B, Elbarbry F, Bui F, et al. Mechanistic basis for the role of phytochemicals in inflammation-associated chronic diseases. Molecules 2022; 27(3): 781.
[http://dx.doi.org/10.3390/molecules27030781] [PMID: 35164043]
[70]
Chen J, Sun N, Li F, et al. Carnosol alleviates collagen-induced arthritis by inhibiting TH17-mediated immunity and favoring suppressive activity of regulatory T cells. BioMed Res Int 2023; 2023: 1-10.
[http://dx.doi.org/10.1155/2023/1179973] [PMID: 37415927]
[71]
Yan Y, Liu Y, Yang Y, Ding Y, Sun X. Carnosol suppresses microglia cell inflammation and apoptosis through PI3K/AKT/mTOR signaling pathway. Immunopharmacol Immunotoxicol 2022; 44(5): 656-62.
[http://dx.doi.org/10.1080/08923973.2022.2074448] [PMID: 35521965]
[72]
Alsamri H, El Hasasna H, Al Dhaheri Y, Eid AH, Attoub S, Iratni R. Carnosol, a natural polyphenol, inhibits migration, metastasis, and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3. Front Oncol 2019; 9: 743.
[http://dx.doi.org/10.3389/fonc.2019.00743] [PMID: 31456939]
[73]
Habtemariam S. Anti-inflammatory therapeutic mechanisms of natural products: Insight from rosemary diterpenes, carnosic acid and carnosol. Biomedicines 2023; 11(2): 545.
[http://dx.doi.org/10.3390/biomedicines11020545] [PMID: 36831081]
[74]
Guo Y, Guan T, Jiao X, et al. Carbon monoxide preconditioning is mediated via activation of mitochondrial-derived vesicles. Brain Res Bull 2023; 195: 99-108.
[http://dx.doi.org/10.1016/j.brainresbull.2023.02.011] [PMID: 36805464]
[75]
Fernando IPS, Nah JW, Jeon YJ. Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol 2016; 48: 22-30.
[http://dx.doi.org/10.1016/j.etap.2016.09.023] [PMID: 27716532]
[76]
Keyzers RA, Davies-Coleman MT. Anti-inflammatory metabolites from marine sponges. Chem Soc Rev 2005; 34(4): 355-65.
[http://dx.doi.org/10.1039/b408600g] [PMID: 15778769]
[77]
Tsubosaka Y, Murata T, Yamada K, Uemura D, Hori M, Ozaki H. Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor-kappaB activation. J Pharmacol Sci 2010; 113(3): 208-13.
[http://dx.doi.org/10.1254/jphs.10065FP] [PMID: 20562517]
[78]
Gomes N, Fernandes F, Madureira-Carvalho Á, et al. Profiling of heterobranchia sea slugs from portuguese coastal waters as producers of anti-cancer and anti-inflammatory agents. Molecules 2018; 23(5): 1027.
[http://dx.doi.org/10.3390/molecules23051027] [PMID: 29702573]
[79]
Sladić D, Gasić M. Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order Dictyoceratida. Molecules 2006; 11(1): 1-33.
[http://dx.doi.org/10.3390/11010001] [PMID: 17962742]
[80]
Cheung RCF, Ng TB, Wong JH, Chen Y, Chan WY. Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol 2016; 100(4): 1645-66.
[http://dx.doi.org/10.1007/s00253-015-7244-3] [PMID: 26711278]
[81]
Joseph S, Sabulal B, George V, Antony K, Janardhanan K. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta Pharm 2011; 61(3): 335-42.
[http://dx.doi.org/10.2478/v10007-011-0030-6] [PMID: 21945912]
[82]
Lai KH, You WJ, Lin CC, El-Shazly M, Liao ZJ, Su JH. Anti-inflammatory cembranoids from the soft coral Lobophytum crassum. Mar Drugs 2017; 15(10): 327.
[http://dx.doi.org/10.3390/md15100327] [PMID: 29065512]
[83]
Naghshbandi MP, Tabatabaei M, Aghbashlo M, Aftab MN, Iqbal I. Metabolic engineering of microalgae for biofuel production. Methods Mol Biol 2019; 1980: 153-72.
[http://dx.doi.org/10.1007/7651_2018_205] [PMID: 30666564]
[84]
de Jesus Raposo MF, de Morais RMSC, de Morais AMMB. Health applications of bioactive compounds from marine microalgae. Life Sci 2013; 93(15): 479-86.
[http://dx.doi.org/10.1016/j.lfs.2013.08.002] [PMID: 23994664]
[85]
Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006; 101(2): 87-96.
[http://dx.doi.org/10.1263/jbb.101.87] [PMID: 16569602]
[86]
Sibi G, Rabina S. Inhibition of Pro-inflammatory mediators and cytokines by Chlorella vulgaris extracts. Pharmacognosy Res 2016; 8(2): 118-22.
[http://dx.doi.org/10.4103/0974-8490.172660] [PMID: 27034602]
[87]
Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016; 90(8): 1817-40.
[http://dx.doi.org/10.1007/s00204-016-1744-5] [PMID: 27259333]
[88]
Kapuścik A, Hrouzek P, Kuzma M, et al. Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent. ChemBioChem 2013; 14(17): 2329-37.
[http://dx.doi.org/10.1002/cbic.201300246] [PMID: 24123716]
[89]
Wollina U, Voicu C, Gianfaldoni S, Lotti T, França K, Tchernev G. Arthrospira platensis – potential in dermatology and beyond. Open Access Maced J Med Sci 2018; 6(1): 176-80.
[http://dx.doi.org/10.3889/oamjms.2018.033] [PMID: 29484021]
[90]
Méresse S, Fodil M, Fleury F, Chénais B. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: A promising bioactive compound for cancer therapy. Int J Mol Sci 2020; 21(23): 9273.
[http://dx.doi.org/10.3390/ijms21239273] [PMID: 33291743]
[91]
Ruocco N, Annunziata C, Ianora A, et al. Toxicity of diatom-derived polyunsaturated aldehyde mixtures on sea urchin Paracentrotus lividus development. Sci Rep 2019; 9(1): 517.
[http://dx.doi.org/10.1038/s41598-018-37546-y] [PMID: 30679744]
[92]
Martínez Andrade K, Lauritano C, Romano G, Ianora A. Marine microalgae with anti-cancer properties. Mar Drugs 2018; 16(5): 165.
[http://dx.doi.org/10.3390/md16050165] [PMID: 29762545]
[93]
MubarakAli D, Gopinath V, Rameshbabu N, Thajuddin N. Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 2012; 74: 8-11.
[http://dx.doi.org/10.1016/j.matlet.2012.01.026]
[94]
Choo WT, Teoh ML, Phang SM, et al. Microalgae as potential anti-inflammatory natural product against human inflammatory skin diseases. Front Pharmacol 2020; 11: 1086.
[http://dx.doi.org/10.3389/fphar.2020.01086] [PMID: 32848730]
[95]
Dyshlovoy S, Honecker F. Marine compounds and cancer: where do we stand? Mar Drugs 2015; 13(9): 5657-65.
[http://dx.doi.org/10.3390/md13095657] [PMID: 26540740]
[96]
Petit K, Biard JF. Marine natural products and related compounds as anticancer agents: An overview of their clinical status. Anti-Cancer Agents Med Chem 2013; 13: 603-31.
[http://dx.doi.org/10.2174/1871520611313040010]
[97]
Simmons TL, Gerwick WH. Anticancer drugs of marine origin.Oceans and human health: risks and remedies from the seas. USA,: Academic Press. 2008.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy