Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Physicochemical Properties of Quinoa (Chenopodium quinoa Willd.) Protein Isolated from Black, Q12, and Titicaca Seed

In Press, (this is not the final "Version of Record"). Available online 30 May, 2024
Author(s): Seyed Saeed Sekhavatizadeh* and Saeid Hosseinzadeh
Published on: 30 May, 2024

DOI: 10.2174/0115734013300153240522065719

Price: $95

Abstract

Background: Quinoa was cultivated in different parts of the world because of the water crisis. On the other view, proteins from plant sources have attracted significant interest. One of the sustainable protein sources is quinoa protein.

Objective: The aimof this study was to isolate quinoa protein and determine physicochemical properties for its use in the food industry.

Methods: Quinoa Protein Isolates (QPIs) were separated from Quinoa Seed (QS) varieties (Black- -QS, Q12-QS, and Titicaca-QS). The particle size, FTIR, SEM, emulsion activity and stability, protein solubility, and gelation properties were assessed.

Results: The Q12-QPI had the highest average particle size, 945 μm. The Black-QPI and Titicaca (T)-QPI had a higher protein content (87.32 ± 1.93, 87.84 ± 1.62% w/w), respectively, and a more condensed structure. The surface morphology of Black-QPI and T-QPI showed regular flat and compact surfaces with some small aggregates. Black-QPI had the most negative zeta potential charge (-38.8 ± 0.03) and stability among the TQPIs. Emulsion capacity was equal among the samples, but emulsion stability was the greatest value (34.48 ± 8.1) in T-QPI. The protein solubility ratio was 70.72, 70.0, and 69.27% in Q12-QPI, T-QPI, and Black-QPI, respectively. The higher elastic performance of Q12-QPI and T-QPI than Black-QPI was seen during the heating steps in the gelation stage.

Conclusion: The suitable nutritional and functional resources of Titicaca quinoa protein make it an appropriate candidate to use as a safe food additive.

[1]
Tarahi M, Abdolalizadeh L, Hedayati S. Mung bean protein isolate: Extraction, structure, physicochemical properties, modifications, and food applications. Food Chem 2024; 444: 138626.
[http://dx.doi.org/10.1016/j.foodchem.2024.138626] [PMID: 38309079]
[2]
Föste M, Elgeti D, Brunner AK, Jekle M, Becker T. Isolation of quinoa protein by milling fractionation and solvent extraction. Food Bioprod Process 2015; 96: 20-6.
[http://dx.doi.org/10.1016/j.fbp.2015.06.003]
[3]
Manuyakorn W, Tanpowpong P. Cow milk protein allergy and other common food allergies and intolerances. Paediatr Int Child Health 2019; 39(1): 32-40.
[http://dx.doi.org/10.1080/20469047.2018.1490099] [PMID: 30014782]
[4]
Sekhavatizadeh SS, Hosseinzadeh S, Mohebbi G. Nutritional, antioxidant properties and polyphenol content of quinoa (chenopodium quinoa willd) cultivated in Iran. Future Food J Food Agric Soc 2021; 9(2): 1-12.
[5]
Shen Y, Tang X, Li Y. Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chem 2021; 339: 127823.
[http://dx.doi.org/10.1016/j.foodchem.2020.127823] [PMID: 32829242]
[6]
Dakhili S, Abdolalizadeh L, Hosseini SM, Shojaee-Aliabadi S, Mirmoghtadaie L. Quinoa protein: Composition, structure and functional properties. Food Chem 2019; 299: 125161.
[http://dx.doi.org/10.1016/j.foodchem.2019.125161] [PMID: 31323439]
[7]
Sekhavatizadeh SS, Karimi A, Hosseinzadeh S, et al. Nutritional and sensory properties of low-fat milk dessert enriched with quinoa ( Chenopodium quinoa Willd) Titicaca protein isolate. Food Sci Nutr 2023; 11(1): 516-26.
[http://dx.doi.org/10.1002/fsn3.3082] [PMID: 36655108]
[8]
Abugoch LE, Romero N, Tapia CA, Silva J, Rivera M. Study of some physicochemical and functional properties of quinoa (chenopodium quinoa willd) protein isolates. J Agric Food Chem 2008; 56(12): 4745-50.
[http://dx.doi.org/10.1021/jf703689u] [PMID: 18489119]
[9]
Miranda M, Vega-Gálvez A, López J, et al. Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Ind Crops Prod 2010; 32(3): 258-63.
[http://dx.doi.org/10.1016/j.indcrop.2010.04.019]
[10]
Elsohaimy SA, Refaay TM, Zaytoun MAM. Physicochemical and functional properties of quinoa protein isolate. Ann Agric Sci 2015; 60(2): 297-305.
[http://dx.doi.org/10.1016/j.aoas.2015.10.007]
[11]
Gupta A, Sharma S, Reddy Surasani VK. Quinoa protein isolate supplemented pasta: Nutritional, physical, textural and morphological characterization. Lebensm Wiss Technol 2021; 135: 110045.
[http://dx.doi.org/10.1016/j.lwt.2020.110045]
[12]
López-Alarcón CA, Cerdán-Leal MA, Beristain CI, Pascual-Pineda LA, Azuara E, Jiménez-Fernández M. The potential use of modified quinoa protein isolates in cupcakes: Physicochemical properties, structure and stability of cupcakes. Food Funct 2019; 10(7): 4432-9.
[http://dx.doi.org/10.1039/C9FO00852G] [PMID: 31287454]
[13]
Abugoch James LE. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res 2009; 58: 1-31.
[http://dx.doi.org/10.1016/S1043-4526(09)58001-1] [PMID: 19878856]
[14]
Liman PB, Mulyana , Yenny , Djuwita R. Mulyana, Yenny, and Djuwita R. Liquid chromatography with tandem mass spectrometry analysis of carboxymethyl lysine in Indonesian foods. Molecules 2024; 29(6): 1304.
[http://dx.doi.org/10.3390/molecules29061304] [PMID: 38542940]
[15]
Li Q, Wang Z, Dai C, et al. Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH. Food Hydrocoll 2019; 88: 50-7.
[http://dx.doi.org/10.1016/j.foodhyd.2018.09.020]
[16]
Moayyedi M, Eskandari MH, Rad AHE, Ziaee E, Khodaparast MHH, Golmakani MT. Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. J Funct Foods 2018; 40: 391-9.
[http://dx.doi.org/10.1016/j.jff.2017.11.016]
[17]
Ai M, Xiao N, Jiang A. Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity. Food Hydrocoll 2021; 111: 106271.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106271]
[18]
Morowvat MH, Ghasemi Y. Rapid determination of lipid accumulation under sulfur starvation in Chlamydomonas reinhardtii microalga using fourier transform infrared (FTIR) spectroscopy. Int J Pharm Clin Res 2016; 8: 1356-60.
[19]
Rahpeyma E, Sekhavatizadeh SS. Effects of encapsulated green coffee extract and canola oil on liquid kashk quality. Foods and Raw Materials 2020; 8(1): 40-51.
[http://dx.doi.org/10.21603/2308-4057-2020-1-40-51]
[20]
Karimi M, Sekhavatizadeh SS, Hosseinzadeh S. Milk dessert containing Lactobacillus reuteri (ATCC 23272) encapsulated with sodium alginate, Ferula assa-foetida and Zedo (Amygdalus scoparia) gum as three layers of wall materials. Food Bioprod Process 2021; 127: 244-54.
[http://dx.doi.org/10.1016/j.fbp.2021.03.003]
[21]
Ravanfar R, Tamaddon AM, Niakousari M, Moein MR. Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket–Burman and Box–Behnken designs. Food Chem 2016; 199: 573-80.
[http://dx.doi.org/10.1016/j.foodchem.2015.12.061] [PMID: 26776010]
[22]
Das D, Mir NA, Chandla NK, Singh S. Combined effect of pH treatment and the extraction pH on the physicochemical, functional and rheological characteristics of amaranth (Amaranthus hypochondriacus) seed protein isolates. Food Chem 2021; 353: 129466.
[http://dx.doi.org/10.1016/j.foodchem.2021.129466] [PMID: 33735770]
[23]
Ganje M, Sekhavatizadeh SS, Hejazi SJ, Mehrpooya R. Effect of encapsulation of Lactobacillus reuteri (ATCC 23272) in sodium alginate and tomato seed mucilage on properties of ketchup sauce. Carbohydrate Polymer Technologies and Applications 2024; 7: 100486.
[http://dx.doi.org/10.1016/j.carpta.2024.100486]
[24]
Kumara B, Jinap S, Man YBC, Yusoff MSA. Note: Comparison of colour techniques to measure chocolate fat bloom. Food Sci Technol Int 2003; 9(4): 295-9.
[http://dx.doi.org/10.1177/108201303036045]
[25]
Sissons M, Cutillo S, Marcotuli I, Gadaleta A. Impact of durum wheat protein content on spaghetti in vitro starch digestion and technological properties. J Cereal Sci 2021; 98: 103156.
[http://dx.doi.org/10.1016/j.jcs.2020.103156]
[26]
Nweke FN. Rate of water absorption and proximate analysis of different varieties of maize cultivated in ikwo local government area of ebonyi state, Nigeria. Afr J Biotechnol 2010; 9(52): 8913-7.
[27]
Benelhadj S, Gharsallaoui A, Degraeve P, Attia H, Ghorbel D. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chem 2016; 194: 1056-63.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.133] [PMID: 26471653]
[28]
Ghumman A, Mudgal S, Singh N, Ranjan B, Kaur A, Rana JC. Physicochemical, functional and structural characteristics of grains, flour and protein isolates of Indian quinoa lines. Food Res Int 2021; 140: 109982.
[http://dx.doi.org/10.1016/j.foodres.2020.109982] [PMID: 33648217]
[29]
Zhang R, Cheng L, Luo L, Hemar Y, Yang Z. Formation and characterisation of high-internal-phase emulsions stabilised by high-pressure homogenised quinoa protein isolate. Colloids Surf A Physicochem Eng Asp 2021; 631: 127688.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127688]
[30]
Mir NA, Riar CS, Singh S. Rheological, structural and thermal characteristics of protein isolates obtained from album (Chenopodium album) and quinoa (Chenopodium quinoa) seeds. Food Hydrocolloids for Health 2021; 1: 100019.
[http://dx.doi.org/10.1016/j.fhfh.2021.100019]
[31]
Goormaghtigh E, Ruysschaert JM, Raussens V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J 2006; 90(8): 2946-57.
[http://dx.doi.org/10.1529/biophysj.105.072017] [PMID: 16428280]
[32]
Feyzi S, Varidi M, Zare F, Varidi MJ. A comparison of chemical, structural and functional properties of fenugreek ( Trigonella foenum graecum) protein isolates produced using different defatting solvents. Int J Biol Macromol 2017; 105(Pt 1): 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.101] [PMID: 28663151]
[33]
Nasir MA, Pasha I, Butt MS, Nawaz H. Biochemical characterization of quinoa with special reference to its protein quality. Pak J Agric Sci 2015; 52(3): 731-7.
[34]
Añón MC, Sorgentini DA, Wagner JR. Relationships between different hydration properties of commercial and laboratory soybean isolates. J Agric Food Chem 2001; 49(10): 4852-8.
[http://dx.doi.org/10.1021/jf010384s] [PMID: 11600034]
[35]
Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu’datt MH. Recent updates on lentil and quinoa protein-based dairy protein alternatives: Nutrition, technologies, and challenges. Food Chem 2022; 383: 132386.
[http://dx.doi.org/10.1016/j.foodchem.2022.132386] [PMID: 35176718]
[36]
López-Castejón ML, Bengoechea C, Díaz-Franco J, Carrera C. Interfacial and emulsifying properties of quinoa protein concentrates. Food Biophys 2020; 15(1): 122-32.
[http://dx.doi.org/10.1007/s11483-019-09603-0]
[37]
Ogungbenle HN. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int J Food Sci Nutr 2003; 54(2): 153-8.
[http://dx.doi.org/10.1080/0963748031000084106] [PMID: 12701372]
[38]
Ruales J, Valencia S, Nair B. Effect of processing on the physico-chemical characteristics of quinoa flour (Chenopodium quinoa, Willd). Stärke 1993; 45(1): 13-9.
[http://dx.doi.org/10.1002/star.19930450105]
[39]
Jiang F, Ren Y, Du C, et al. Effect of pearling on the physicochemical properties and antioxidant capacity of quinoa (Chenopodium quinoa Willd.) flour. J Cereal Sci 2021; 102: 103330.
[http://dx.doi.org/10.1016/j.jcs.2021.103330]
[40]
Shi D, Fidelis M, Ren Y, Stone AK, Ai Y, Nickerson MT. The functional attributes of Peruvian (Kankolla and Blanca juli blend) and Northern quinoa (NQ94PT) flours and protein isolates, and their protein quality. Food Res Int 2020; 128: 108799.
[http://dx.doi.org/10.1016/j.foodres.2019.108799] [PMID: 31955761]
[41]
Vera A, Valenzuela MA, Yazdani-Pedram M, Tapia C, Abugoch L. Conformational and physicochemical properties of quinoa proteins affected by different conditions of high-intensity ultrasound treatments. Ultrason Sonochem 2019; 51: 186-96.
[http://dx.doi.org/10.1016/j.ultsonch.2018.10.026] [PMID: 30377080]
[42]
Sun XD, Arntfield SD. Gelation properties of salt-extracted pea protein induced by heat treatment. Food Res Int 2010; 43(2): 509-15.
[http://dx.doi.org/10.1016/j.foodres.2009.09.039]
[43]
Renard D, van de Velde F, Visschers RW. The gap between food gel structure, texture and perception. Food Hydrocoll 2006; 20(4): 423-31.
[http://dx.doi.org/10.1016/j.foodhyd.2005.10.014]
[44]
Zhang L, Zeng J, Gao H, Zhang K, Wang M. Effects of different frozen storage conditions on the functional properties of wheat gluten protein in nonfermented dough. Food Sci Technol 2022; 42: e97821.
[http://dx.doi.org/10.1590/fst.97821]
[45]
Mäkinen OE, Zannini E, Koehler P, Arendt EK. Heat-denaturation and aggregation of quinoa (Chenopodium quinoa) globulins as affected by the pH value. Food Chem 2016; 196: 17-24.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.069] [PMID: 26593460]
[46]
Lawal OS, Adebowale KO, Adebowale YA. Functional properties of native and chemically modified protein concentrates from bambarra groundnut. Food Res Int 2007; 40(8): 1003-11.
[http://dx.doi.org/10.1016/j.foodres.2007.05.011]
[47]
Mir NA, Riar CS, Singh S. Improvement in the functional properties of quinoa (Chenopodium quinoa) protein isolates after the application of controlled heat-treatment: Effect on structural properties. Food Structure 2021; 28: 100189.
[http://dx.doi.org/10.1016/j.foostr.2021.100189]
[48]
Lestari D, Mulder W, Sanders J. Improving Jatropha curcas seed protein recovery by using counter current multistage extraction. Biochem Eng J 2010; 50(1-2): 16-23.
[http://dx.doi.org/10.1016/j.bej.2010.02.011]
[49]
Steffolani ME, Villacorta P, Morales-Soriano ER, Repo-Carrasco R, León AE, Pérez GT. Physicochemical and functional characterization of protein isolated from different quinoa varieties ( Chenopodium quinoa Willd.). Cereal Chem 2016; 93(3): 275-81.
[http://dx.doi.org/10.1094/CCHEM-04-15-0083-R]
[50]
Salcedo-Chávez B, Osuna-Castro JA, Guevara-Lara F, Domínguez-Domínguez J, Paredes-López O. Optimization of the isoelectric precipitation method to obtain protein isolates from amaranth (Amaranthus cruentus) seeds. J Agric Food Chem 2002; 50(22): 6515-20.
[http://dx.doi.org/10.1021/jf020522t] [PMID: 12381143]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy