Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Utilizing NCP@PO(OH)2 as a Core-Shell Magnetic Nano-Catalyst for the Conversion of β-Hydroxy Nitrile to α,β-Unsaturated Carboxylic Acid

Author(s): Farzaneh Ebrahimzadeh*

Volume 22, Issue 1, 2025

Published on: 29 May, 2024

Page: [70 - 77] Pages: 8

DOI: 10.2174/0115701786307956240522081438

open access plus

Abstract

The synthesis of α,β-unsaturated compounds is crucial in organic chemistry, especially in drug discovery and pharmaceutical development. In this study, NCP@POCl2-x (Fe3O4@SiO2@ chitosan@POCl2-x) has been introduced as a new, environmentally friendly, and highly efficient heterogeneous magnetic nanocatalyst for the synthesis of α,β-unsaturated carboxylic acids. This catalyst facilitates the in situ transformation of POCl

[1]
(a) Patra, S.; Valsamidou, V.; Katayev, D. Chimia (Aarau), 2024, 78(1/2), 32-39.
[http://dx.doi.org/10.2533/chimia.2024.32] [PMID: 38430061];
(b) Smorodina, A.A.; Buev, E.M.; Moshkin, V.S.; Sosnovskikh, V.Y. Tetrahedron Lett., 2024, 135, 154906.
[http://dx.doi.org/10.1016/j.tetlet.2023.154906];
(c) Shan, Y.; Zhang, X.; Liu, G.; Li, J.; Liu, Y.; Wang, J.; Chen, D. Chem. Commun., 2024.
[http://dx.doi.org/10.1039/D3CC05880H];
(d) Kieslich, D.; Christoffers, J. Synthesis, 2021, 53, 3485-3496.
[http://dx.doi.org/10.1055/a-1499-8943];
(e) Juhl, M.; Petersen, A.R.; Lee, J.W. Chemistry, 2021, 27(1), 228-232.
[http://dx.doi.org/10.1002/chem.202003623] [PMID: 32812672]
[2]
(a) Malik, M.S.; Asghar, B.H.; Azeeza, S.; Obaid, R.J.; Thagafi, I.I.; Jassas, R.S.; Altass, H.M.; Morad, M.; Moussa, Z.; Ahmed, S.A. Arab. J. Chem., 2020, 13, 8200-8208.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.053];
(b) Scotti, C.; Barlow, J. W. Nat. Prod. Rep., 2022, 17, 1934578X221099973.
[http://dx.doi.org/10.1177/1934578X221099973];
(c) Elenkov, M.M.; Hauer, B.; Janssen, D.B. Advanced Synthesis & Catalysis, 2006, 348, 579-585.
[http://dx.doi.org/10.1002/adsc.200505333];
(d) Liu, M.; Li, S. Nat. Prod. Rep., 2024.
[http://dx.doi.org/10.1039/D3NP00028A]
[3]
(a) Zhang, S.L.; Deng, Z.Q. Org. Biomol. Chem., 2016, 14(30), 7282-7294.
[http://dx.doi.org/10.1039/C6OB01198E] [PMID: 27397647];
(b) Falcini, C.; Gonzalo, G. Catalysts, 2024, 14(2), 120.
[http://dx.doi.org/10.3390/catal14020120]
[4]
Wang, M.X.; Wu, Y. Org. Biomol. Chem., 2003, 1(3), 535-540.
[http://dx.doi.org/10.1039/b209791e] [PMID: 12926256]
[5]
Roth, S.; Niese, R.; Müller, M.; Hall, M. Angew. Chem. Int. Ed., 2024, e202314740.
[http://dx.doi.org/10.1002/anie.202314740]
[6]
Kiss, L.; Fülöp, F. Chem. Rev., 2014, 114(2), 1116-1169.
[http://dx.doi.org/10.1021/cr300454h] [PMID: 24299148]
[7]
(a) Gupta, P.; Mahajan, N. Chemistry of Biologically Potent Natural Products and Synthetic Compounds, 2021, 93-131.
[http://dx.doi.org/10.1002/9781119640929.ch4];
(b) Srinivas, B.; Kumar, V.P.; Sridhar, R.; Surendra, K.; Nageswar, Y.V.D.; Rao, K.R. J. Mol. Catal. Chem., 2007, 261(1), 1-5.
[http://dx.doi.org/10.1016/j.molcata.2006.07.040];
(c) Nowill, R.W.; Patel, T.J.; Beasley, D.L.; Alvarez, J.A.; Jackson, E., III; Hizer, T.J.; Ghiviriga, I.; Mateer, S.C.; Feske, B.D. Tetrahedron Lett., 2011, 52(19), 2440-2442.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.009];
(d) Guo, B.; Zijlstra, D.S.; de Vries, J.G.; Otten, E. ChemCatChem, 2018, 10(13), 2868-2872.
[http://dx.doi.org/10.1002/cctc.201800509] [PMID: 30263082];
(e) Ebrahimzadeh, F.; Baramakeh, L. ChemistrySelect, 2024, 9(10), e202302524.
[http://dx.doi.org/10.1002/slct.202302524]
[8]
Tian, J.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Org. Lett., 2003, 5(17), 3021-3024.
[http://dx.doi.org/10.1021/ol034944f] [PMID: 12916971]
[9]
(a) Domingo, L.R.; Pérez, P.; Ríos-Gutiérrez, M.; Aurell, M.J. Tetrahedron Chem, 2024, 100064.
[http://dx.doi.org/10.1016/j.tchem.2024.100064];
(b) Khatik, G.L.; Kumar, R.; Chakraborti, A.K. Org. Lett., 2006, 8(11), 2433-2436.
[http://dx.doi.org/10.1021/ol060846t] [PMID: 16706544];
(c) Shao, P.; Wang, S.; Du, G.; Xi, C. RSC Advances, 2017, 7(6), 3534-3539.
[http://dx.doi.org/10.1039/C6RA25003C];
(d) Zhang, S.; Neumann, H.; Beller, M. Chem. Soc. Rev., 2020, 49(10), 3187-3210.
[http://dx.doi.org/10.1039/C9CS00615J] [PMID: 32255444];
(e) Liu, W.; Pu, M.; He, J.; Zhang, T.; Dong, S.; Liu, X.; Wu, Y.D.; Feng, X. J. Am. Chem. Soc., 2021, 143(30), 11856-11863.
[http://dx.doi.org/10.1021/jacs.1c05881] [PMID: 34296601];
(f) Chen, H.; Liu, L.; Huang, T.; Chen, J.; Chen, T. Adv. Synth. Catal., 2020, 362(16), 3332-3346.
[http://dx.doi.org/10.1002/adsc.202000454]
[10]
(a) Mulder, T.; Bobba, S.; Johnson, K.; Grandner, J.M.; Wang, W.; Zhang, C.; Cai, J.; Choo, E.F.; Khojasteh, S.C.; Zhang, D. Drug Metab. Dispos., 2020, 48(9), 819-829.
[http://dx.doi.org/10.1124/dmd.120.000096] [PMID: 32616543];
(b) Du, X.; Xiao, Y.; Huang, J.M.; Zhang, Y.; Duan, Y.N.; Wang, H.; Shi, C.; Chen, G.Q.; Zhang, X. Nat. Commun., 2020, 11(1), 3239.
[http://dx.doi.org/10.1038/s41467-020-17057-z] [PMID: 32591536];
(c) Wang, S.S.; Zhang, Q.L.; Chu, P.; Kong, L.Q.; Li, G.Z.; Li, Y.Q.; Yang, L.; Zhao, W.J.; Guo, X.H.; Tang, Z.Y. Bioorg. Chem., 2020, 101, 104036.
[http://dx.doi.org/10.1016/j.bioorg.2020.104036] [PMID: 32629283];
(d) Egbujor, M.C.; Buttari, B.; Profumo, E.; Telkoparan-Akillilar, P.; Saso, L. Int. J. Mol. Sci., 2022, 23(15), 8466.
[http://dx.doi.org/10.3390/ijms23158466] [PMID: 35955599];
(e) Zhao, W.; Mo, M.; Yu, J.; Cheng, S.; Long, G.; Luo, Z.; Liang, W.; Yan, C.; Luo, H.; Sun, B. 2023.
[http://dx.doi.org/10.1007/s12032-024-02324-6]
[11]
(a) Farrar-Tobar, R.A.; Dell’Acqua, A.; Tin, S.; de Vries, J.G. Green Chem., 2020, 22(11), 3323-3357.
[http://dx.doi.org/10.1039/D0GC00855A];
(b) Aleku, G.A.; Roberts, G.W.; Leys, D. Green Chem., 2020, 22(12), 3927-3939.
[http://dx.doi.org/10.1039/D0GC00867B];
(c) Niwa, T.; Ochiai, H.; Isoda, M.; Hosoya, T. Chem. Lett., 2017, 46(9), 1315-1318.
[http://dx.doi.org/10.1246/cl.170549]
[12]
Mobinikhaledi, A.; Foroughifar, N.; Jirandehi, H.F. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2008, 38(5), 428-430.
[http://dx.doi.org/10.1080/15533170802254602]
[13]
Nomura, E.; Hosoda, A.; Mori, H.; Taniguchi, H. Green Chem., 2005, 7(12), 863-866.
[http://dx.doi.org/10.1039/b510626e]
[14]
(a) Ahmad, M.S.; Pulidindi, I.N.; Li, C. New J. Chem., 2020, 44(40), 17177-17197.
[http://dx.doi.org/10.1039/D0NJ01996H];
(b) El-Seedi, H.R.; Taher, E.A.; Sheikh, B.Y.; Anjum, S.; Saeed, A.; AlAjmi, M.F.; Moustafa, M.S.; Al-Mousawi, S.M.; Farag, M.A.; Hegazy, M-E.F.; Khalifa, S.A.M.; Göransson, U. Studies in Natural Products Chemistry; Atta ur Rehman, Ed.; Elsevier , 2018; 55, pp. 269-292.
[http://dx.doi.org/10.1016/B978-0-444-64068-0.00008-5]
[15]
Mun, S.; Lee, J.E. Yun. J. Org. Lett., 2006, 8(21), 4887-4889.
[http://dx.doi.org/10.1021/ol061955a] [PMID: 17020328]
[16]
Kamila, S.; Zhu, D.; Biehl, E.R.; Hua, L. Org. Lett., 2006, 8(20), 4429-4431.
[http://dx.doi.org/10.1021/ol061542+] [PMID: 16986917]
[17]
Coady, T.M.; Coffey, L.V.; O’Reilly, C.; Owens, E.B.; Lennon, C.M. J. Mol. Catal., B Enzym., 2013, 97, 150-155.
[http://dx.doi.org/10.1016/j.molcatb.2013.08.001]
[18]
Chidambaram, A.; Sundararaju, K.; Chidambaram, R.K.; Subbiah, R.; Jayaraj, J.M.; Muthusamy, K.; Vilwanathan, R. J. Cell. Physiol., 2018, 233(7), 5293-5309.
[http://dx.doi.org/10.1002/jcp.26333] [PMID: 29215703]
[19]
(a) Ebrahimzadeh, F.; Jamalain, A.; Zaree, S. Phosphorus Sulfur Silicon Relat. Elem., 2024, 199(2), 169-177.
[http://dx.doi.org/10.1080/10426507.2023.2279614];
(b) Ebrahimzadeh, F. Journal of Chemical Reactivity and Synthesis, 2023, 13, 240-254. https://doi.org/20.1001.1.27834107.2023.13.3.4.1;
(c) Ebrahimzadeh, F. International Research Journal of Modernization in Engineering Technology and Science, 2023, 5, 2640-2646.
[http://dx.doi.org/10.56726/IRJMETS45483];
(d) Ebrahimzadeh, F. Organic Chemistry Research, 2022, 8, 89-94.
[20]
(a) Gao, G.; Di, J.Q.; Zhang, H.Y.; Mo, L.P.; Zhang, Z.H. J. Catal., 2020, 387, 39-46.
[http://dx.doi.org/10.1016/j.jcat.2020.04.013];
(b) Zhang, M.; Liu, Y.H.; Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Catal. Commun., 2017, 88, 39-44.
[http://dx.doi.org/10.1016/j.catcom.2016.09.028];
(c) Gholinejad, M.; Zareh, F.; Sheibani, H.; Nájera, C.; Yus, M. J. Mol. Liq., 2022, 367, 120395.
[http://dx.doi.org/10.1016/j.molliq.2022.120395];
(d) Rai, P.; Gupta, D. Synth. Commun., 2021, 51(20), 3059-3083.
[http://dx.doi.org/10.1080/00397911.2021.1968910];
(e) Xu, L.; Zhang, S.Z.; Li, W.; Zhang, Z.H. Chemistry, 2021, 27(17), 5483-5491.
[http://dx.doi.org/10.1002/chem.202005138] [PMID: 33403733];
(f) Molanezhad, H.; Ebrahimzadeh, F. Chemical Research and Nanomaterials, 1401, 3, 35-40, ;
(g) Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Acc. Chem. Res., 2013, 46(8), 1825-1837.
[http://dx.doi.org/10.1021/ar300197s] [PMID: 23350747];
(h) Maji, N.; Dosanjh, H.S. Magnetochemistry, 2023, 9(6), 156.
[http://dx.doi.org/10.3390/magnetochemistry9060156]
[21]
(a) Bracco, P.; Busch, H.; von Langermann, J.; Hanefeld, U. Org. Biomol. Chem., 2016, 14(27), 6375-6389.
[http://dx.doi.org/10.1039/C6OB00934D] [PMID: 27282284];
(b) Ebrahimzadeh, F. Journal of Physical Chemistry & Eleectrochemistry, 2016, 4, 119-123.;
(c) Dong, F.; Chen, H.; Malapit, C.A.; Prater, M.B.; Li, M.; Yuan, M.; Lim, K.; Minteer, S.D. J. Am. Chem. Soc., 2020, 142(18), 8374-8382.
[http://dx.doi.org/10.1021/jacs.0c01890] [PMID: 32286819]
[22]
Wenner, W. Org. Synth., 1952, 4, 760.
[23]
(a) Nedelkina, S.; Jupe, S.C.; Blee, K.A.; Schalk, M.; Werck-Reichhart, D.; Bolwell, G.P. Plant Mol. Biol., 1999, 39(6), 1079-1090.
[http://dx.doi.org/10.1023/A:1006156216654] [PMID: 10380796];
(b) Kahn, R.A.; Durst, F. Recent Adv. Phytochem., 2000, 34, 151-189.
[http://dx.doi.org/10.1016/S0079-9920(00)80007-6]

© 2025 Bentham Science Publishers | Privacy Policy