Abstract
Cells grow in response to nutrients or growth factors, whose presence is detected and communicated by elaborate signaling pathways. Protein kinases play crucial roles in processes such as cell cycle progression and gene expression, and misregulation of such pathways has been correlated with various diseased states. Signals intended to promote cell growth converge on ribosome biogenesis, as the ability to produce cellular proteins is intimately tied to cell growth. Part of the response to growth signals is therefore the coordinate expression of genes encoding ribosomal RNA (rRNA) and ribosomal proteins (RP). A key player in regulating cell growth is the Target of Rapamycin (TOR) kinase, one of the gatekeepers that prevent cell cycle progression from G1 to S under conditions of nutritional stress. TOR is structurally and functionally conserved in all eukaryotes. Under favorable growth conditions, TOR is active and cells maintain a robust rate of ribosome biogenesis, translation initiation and nutrient import. Under stress conditions, TOR signaling is suppressed, leading to cell cycle arrest, while the failure of TOR to respond appropriately to environmental or nutritional signals leads to uncontrolled cell growth. Emerging evidence from Saccharomyces cerevisiae indicates that High Mobility Group (HMGB) proteins, non-sequence-specific chromosomal proteins, participate in mediating responses to growth signals. As HMGB proteins are distinguished by their ability to alter DNA topology, they frequently function in the assembly of higher-order nucleoprotein complexes. We review here recent evidence, which suggests that HMGB proteins may function to coordinate TOR-dependent regulation of rRNA and RP gene expression.
Keywords: Rapamycin, TORC1, HMO1, high mobility group, yeast, RP gene, rDNA
Current Genomics
Title: Coordination of Ribosomal Protein and Ribosomal RNA Gene Expression in Response to TOR Signaling
Volume: 10 Issue: 3
Author(s): LiJuan Xiao and Anne Grove
Affiliation:
Keywords: Rapamycin, TORC1, HMO1, high mobility group, yeast, RP gene, rDNA
Abstract: Cells grow in response to nutrients or growth factors, whose presence is detected and communicated by elaborate signaling pathways. Protein kinases play crucial roles in processes such as cell cycle progression and gene expression, and misregulation of such pathways has been correlated with various diseased states. Signals intended to promote cell growth converge on ribosome biogenesis, as the ability to produce cellular proteins is intimately tied to cell growth. Part of the response to growth signals is therefore the coordinate expression of genes encoding ribosomal RNA (rRNA) and ribosomal proteins (RP). A key player in regulating cell growth is the Target of Rapamycin (TOR) kinase, one of the gatekeepers that prevent cell cycle progression from G1 to S under conditions of nutritional stress. TOR is structurally and functionally conserved in all eukaryotes. Under favorable growth conditions, TOR is active and cells maintain a robust rate of ribosome biogenesis, translation initiation and nutrient import. Under stress conditions, TOR signaling is suppressed, leading to cell cycle arrest, while the failure of TOR to respond appropriately to environmental or nutritional signals leads to uncontrolled cell growth. Emerging evidence from Saccharomyces cerevisiae indicates that High Mobility Group (HMGB) proteins, non-sequence-specific chromosomal proteins, participate in mediating responses to growth signals. As HMGB proteins are distinguished by their ability to alter DNA topology, they frequently function in the assembly of higher-order nucleoprotein complexes. We review here recent evidence, which suggests that HMGB proteins may function to coordinate TOR-dependent regulation of rRNA and RP gene expression.
Export Options
About this article
Cite this article as:
Xiao LiJuan and Grove Anne, Coordination of Ribosomal Protein and Ribosomal RNA Gene Expression in Response to TOR Signaling, Current Genomics 2009; 10 (3) . https://dx.doi.org/10.2174/138920209788185261
DOI https://dx.doi.org/10.2174/138920209788185261 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Transforming Cancer Epigenetics Using Nutritive Approaches and Noncoding RNAs
Current Cancer Drug Targets Chitosan Nanoparticles as a Carrier for Indigofera intricata Plant Extract: Preparation, Characterization and Anticancer Activity
Current Cancer Therapy Reviews A Review on Biological Activities and Chemical Synthesis of Hydrazide Derivatives
Current Medicinal Chemistry Synthesis, Characterization and Cholinesterase Inhibition Studies of New Arylidene Aminothiazolylethanone Derivatives
Medicinal Chemistry Preface The Urokinase-type Plasminogen Activator System in Cancer and other Pathological Conditions: Introduction and Perspective [Hot Topic: The Urokinase-type Plasminogen Activator System in Cancer (Executive Editor : S. Rosenberg)].
Current Pharmaceutical Design Novel Rational Drug Design Strategies with Potential to Revolutionize Malaria Chemotherapy
Current Medicinal Chemistry Synergetic Bitherapy in Mice with Xenografts of Human Prostate Cancer Using a Methional Mimic (METLICO) and an Aldehyde Dehydrogenase 3 Inhibitor (MATE): Systemic Intraperitoneal (IP) and Targeted Intra-Tumoral (IT) Administration
Current Medicinal Chemistry The Fabrication and Application of Bio-Functional Microspheres
Current Organic Chemistry The Biological Effects of Diagnostic Cardiac Imaging
Current Pharmaceutical Design The Extent of Hydroxymethylfurfural Formation in Honey by Heating Temperature and Duration
Letters in Organic Chemistry Immunotherapy: A Potential Approach to Targeting Cancer Stem Cells
Current Cancer Drug Targets Computational Study of the Binding Modes of Diverse DPN Analogues on Estrogen Receptors (ER) and the Biological Evaluation of a New Potential Antiestrogenic Ligand
Anti-Cancer Agents in Medicinal Chemistry 3D-QSAR Modeling of Non-peptide Antagonists for the Human Luteinizing Hormone-releasing Hormone Receptor
Medicinal Chemistry Phosphoproteins with Stability Against All Urinary Phosphatases as Potential Biomarkers in Urine
Protein & Peptide Letters Naturally Occurring NF-κB Inhibitors
Mini-Reviews in Medicinal Chemistry Deubiquitinating Enzymes as Promising Drug Targets for Infectious Diseases
Current Pharmaceutical Design Nutlin-3, A p53-Mdm2 Antagonist for Nasopharyngeal Carcinoma Treatment
Mini-Reviews in Medicinal Chemistry Microwave–assisted Synthesis of Chalcones, Flavanones and 2- pyrazolines: Theoretical and Experimental Study
Letters in Organic Chemistry Epigenetic Biomarkers for Risk Assessment of Particulate Matter Associated Lung Cancer
Current Drug Targets Microfluidic Investigation of the Effect of Liposome Surface Charge on Drug Delivery in Microcirculation
Current Drug Delivery