Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Role of Alpha-7 Nicotinic Acetylcholine Receptors in Pain: Potential Therapeutic Implications

In Press, (this is not the final "Version of Record"). Available online 29 May, 2024
Author(s): Yu Tao, Yufang Sun, Xinghong Jiang, Jin Tao* and Yuan Zhang*
Published on: 29 May, 2024

DOI: 10.2174/1570159X22666240528161117

Price: $95

Abstract

Chronic pain represents a prevalent and costly medical challenge globally. Nicotinic acetylcholine receptors (nAChRs), one type of ligand-gated ion channels found extensively in both the central and peripheral nervous systems, have emerged as promising therapeutic targets for chronic pain. Although there are currently no FDA-approved analgesics specifically targeting nAChRs, accumulating preclinical and clinical evidence suggest that selective ligands for alpha 7 (α7) nAChRs show potential for treating chronic pain, boasting a reduced incidence of side effects compared with other nicotinic receptor types. The recent structural resolution of human α7 nAChRs has confirmed their negative association with heightened pain, providing a valuable foundation for the development of targeted medications. This review presents a comprehensive overview, encompassing insights into the roles of α7 nAChRs derived from structural and functional studies, recent advancements in pharmacology, and investigations into their involvement in the pathophysiology of chronic pain. Moreover, the review addresses the variability in analgesic effects based on the type of receptor agonist and highlights the current research limitations. As such, this review offers potential therapeutic approaches for the development of innovative strategies for chronic pain management.

[1]
Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; Song, X.J.; Stevens, B.; Sullivan, M.D.; Tutelman, P.R.; Ushida, T.; Vader, K. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 2020, 161(9), 1976-1982.
[http://dx.doi.org/10.1097/j.pain.0000000000001939] [PMID: 32694387]
[2]
Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; Giamberardino, M.A.; Kaasa, S.; Korwisi, B.; Kosek, E.; Lavand’homme, P.; Nicholas, M.; Perrot, S.; Scholz, J.; Schug, S.; Smith, B.H.; Svensson, P.; Vlaeyen, J.W.S.; Wang, S.J. Chronic pain as a symptom or a disease: The IASP classification of chronic pain for the International Classification of Diseases (ICD-11). Pain, 2019, 160(1), 19-27.
[http://dx.doi.org/10.1097/j.pain.0000000000001384] [PMID: 30586067]
[3]
Cai, H.; Ao, Z.; Tian, C.; Wu, Z.; Kaurich, C.; Chen, Z.; Gu, M.; Hohmann, A.G.; Mackie, K.; Guo, F. Engineering human spinal microphysiological systems to model opioid-induced tolerance. Bioact. Mater., 2023, 22, 482-490.
[http://dx.doi.org/10.1016/j.bioactmat.2022.10.007] [PMID: 36330161]
[4]
Matta, J.A.; Gu, S.; Davini, W.B.; Bredt, D.S. Nicotinic acetylcholine receptor redux: Discovery of accessories opens therapeutic vistas. Science, 2021, 373(6556), eabg6539.
[http://dx.doi.org/10.1126/science.abg6539] [PMID: 34385370]
[5]
van Koppen, C.J.; Kaiser, B. Regulation of muscarinic acetylcholine receptor signaling. Pharmacol. Ther., 2003, 98(2), 197-220.
[http://dx.doi.org/10.1016/S0163-7258(03)00032-9] [PMID: 12725869]
[6]
Dineley, K.T.; Pandya, A.A.; Yakel, J.L. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol. Sci., 2015, 36(2), 96-108.
[http://dx.doi.org/10.1016/j.tips.2014.12.002] [PMID: 25639674]
[7]
Elgoyhen, A.B. The α9α10 acetylcholine receptor: A non-neuronal nicotinic receptor. Pharmacol. Res., 2023, 190, 106735.
[http://dx.doi.org/10.1016/j.phrs.2023.106735] [PMID: 36931539]
[8]
Albuquerque, E.X.; Pereira, E.F.R.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev., 2009, 89(1), 73-120.
[http://dx.doi.org/10.1152/physrev.00015.2008] [PMID: 19126755]
[9]
Marks, M. J. Genetic matters: Thirty years of progress using mouse models in nicotinic research. Biochem. Pharmacol., 2013, 86(8), 1105-1113.
[http://dx.doi.org/10.1016/j.bcp.2013.05.021] [PMID: 23747348]
[10]
Wills, L.; Ables, J.L.; Braunscheidel, K.M.; Caligiuri, S.P.B.; Elayouby, K.S.; Fillinger, C.; Ishikawa, M.; Moen, J.K.; Kenny, P.J. Neurobiological mechanisms of nicotine reward and aversion. Pharmacol. Rev., 2022, 74(1), 271-310.
[http://dx.doi.org/10.1124/pharmrev.121.000299] [PMID: 35017179]
[11]
Bouzat, C.; Lasala, M.; Nielsen, B.E.; Corradi, J.; Esandi, M.C. Molecular function of α7 nicotinic receptors as drug targets. J. Physiol., 2018, 596(10), 1847-1861.
[http://dx.doi.org/10.1113/JP275101] [PMID: 29131336]
[12]
Zoli, M.; Pucci, S.; Vilella, A.; Gotti, C. Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr. Neuropharmacol., 2018, 16(4), 338-349.
[http://dx.doi.org/10.2174/1570159X15666170912110450] [PMID: 28901280]
[13]
Buisson, B.; Bertrand, D. Nicotine addiction: The possible role of functional upregulation. Trends Pharmacol. Sci., 2002, 23(3), 130-136.
[http://dx.doi.org/10.1016/S0165-6147(00)01979-9] [PMID: 11879680]
[14]
Andersson, U.; Tracey, K.J. Reflex principles of immunological homeostasis. Annu. Rev. Immunol., 2012, 30(1), 313-335.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075015] [PMID: 22224768]
[15]
Letsinger, A.C.; Gu, Z.; Yakel, J.L. α7 nicotinic acetylcholine receptors in the hippocampal circuit: Taming complexity. Trends Neurosci., 2022, 45(2), 145-157.
[http://dx.doi.org/10.1016/j.tins.2021.11.006] [PMID: 34916082]
[16]
Bagdas, D.; Gurun, M.S.; Flood, P.; Papke, R.L.; Damaj, M.I. New insights on neuronal nicotinic acetylcholine receptors as targets for pain and inflammation: A focus on α7 nAChRs. Curr. Neuropharmacol., 2018, 16(4), 415-425.
[http://dx.doi.org/10.2174/1570159X15666170818102108] [PMID: 28820052]
[17]
Stokes, C.; Treinin, M.; Papke, R.L. Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol. Sci., 2015, 36(8), 514-523.
[http://dx.doi.org/10.1016/j.tips.2015.05.002] [PMID: 26067101]
[18]
Andersen, N.; Corradi, J.; Sine, S.M.; Bouzat, C. Stoichiometry for activation of neuronal α7 nicotinic receptors. Proc. Natl. Acad. Sci. USA, 2013, 110(51), 20819-20824.
[http://dx.doi.org/10.1073/pnas.1315775110] [PMID: 24297903]
[19]
Castro, N.G.; Albuquerque, E.X. Brief-lifetime, fast-inactivating ion channels account for the α-bungarotoxin-sensitive nicotinic response in hippocampal neurons. Neurosci. Lett., 1993, 164(1-2), 137-140.
[http://dx.doi.org/10.1016/0304-3940(93)90876-M] [PMID: 7512242]
[20]
Papke, R.L.; Porter, P.J.K. Comparative pharmacology of rat and human α7 nAChR conducted with net charge analysis. Br. J. Pharmacol., 2002, 137(1), 49-61.
[http://dx.doi.org/10.1038/sj.bjp.0704833] [PMID: 12183330]
[21]
Papke, R.L. Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem. Pharmacol., 2014, 89(1), 1-11.
[http://dx.doi.org/10.1016/j.bcp.2014.01.029] [PMID: 24486571]
[22]
Papke, R.L.; Wecker, L.; Stitzel, J.A. Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther., 2010, 333(2), 501-518.
[http://dx.doi.org/10.1124/jpet.109.164566] [PMID: 20100906]
[23]
McCormack, T.J.; Melis, C.; Colón, J.; Gay, E.A.; Mike, A.; Karoly, R.; Lamb, P.W.; Molteni, C.; Yakel, J.L. Rapid desensitization of the rat α7 nAChR is facilitated by the presence of a proline residue in the outer β‐sheet. J. Physiol., 2010, 588(22), 4415-4429.
[http://dx.doi.org/10.1113/jphysiol.2010.195495] [PMID: 20837638]
[24]
Manthey, A.A. Kinetic evidence that desensitized nAChR may promote transitions of active nAChR to desensitized states during sustained exposure to agonists in skeletal muscle. Pflugers Arch., 2006, 452(3), 349-362.
[http://dx.doi.org/10.1007/s00424-006-0043-z] [PMID: 16555103]
[25]
Yang, H.; Sun, Q.; Liang, Y.; Jiang, Y.; Li, R.; Ye, J. Antinociception of the spirocyclopiperazinium salt compound LXM-15 via activating α7 nAChR and M4 mAChR and inhibiting CaMKIIα/] cAMP/CREB/CGRP signalling pathway in mice. Regul. Toxicol. Pharmacol., 2018, 94, 108-114.
[http://dx.doi.org/10.1016/j.yrtph.2018.01.012] [PMID: 29353067]
[26]
Miller, D.R.; Khoshbouei, H.; Garai, S.; Cantwell, L.N.; Stokes, C.; Thakur, G.; Papke, R.L. Allosterically potentiated α 7 nicotinic acetylcholine receptors: Reduced calcium permeability and current-independent control of intracellular calcium. Mol. Pharmacol., 2020, 98(6), 695-709.
[http://dx.doi.org/10.1124/molpharm.120.000012] [PMID: 33020143]
[27]
Saitoh, D.; Kawaguchi, K.; Asano, S.; Inui, T.; Marunaka, Y.; Nakahari, T. Enhancement of airway ciliary beating mediated via voltage-gated Ca2+ channels/α7-nicotinic receptors in mice. Pflugers Arch., 2022, 474(10), 1091-1106.
[http://dx.doi.org/10.1007/s00424-022-02724-5] [PMID: 35819489]
[28]
Alkondon, M.; Braga, M.F.M.; Pereira, E.F.R.; Maelicke, A.; Albuquerque, E.X. α7 Nicotinic acetylcholine receptors and modulation of gabaergic synaptic transmission in the hippocampus. Eur. J. Pharmacol., 2000, 393(1-3), 59-67.
[http://dx.doi.org/10.1016/S0014-2999(00)00006-6] [PMID: 10770998]
[29]
Takeda, D.; Nakatsuka, T.; Papke, R.; Gu, J.G. Modulation of inhibitory synaptic activity by a non-α4β2, non-α7 subtype of nicotinic receptors in the substantia gelatinosa of adult rat spinal cord. Pain, 2003, 101(1), 13-23.
[http://dx.doi.org/10.1016/S0304-3959(02)00074-X] [PMID: 12507696]
[30]
Young, T.; Wittenauer, S.; Parker, R.; Vincler, M. Peripheral nerve injury alters spinal nicotinic acetylcholine receptor pharmacology. Eur. J. Pharmacol., 2008, 590(1-3), 163-169.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.020] [PMID: 18573248]
[31]
Lykhmus, O.; Gergalova, G.; Zouridakis, M.; Tzartos, S.; Komisarenko, S.; Skok, M. Inflammation decreases the level of alpha7 nicotinic acetylcholine receptors in the brain mitochondria and makes them more susceptible to apoptosis induction. Int. Immunopharmacol., 2015, 29(1), 148-151.
[http://dx.doi.org/10.1016/j.intimp.2015.04.007] [PMID: 25887272]
[32]
Wang, X.L.; Deng, Y.X.; Gao, Y.M.; Dong, Y.T.; Wang, F.; Guan, Z.Z.; Hong, W.; Qi, X.L. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY), 2020, 12(1), 543-570.
[http://dx.doi.org/10.18632/aging.102640] [PMID: 31905173]
[33]
Criscuolo, C.; Accorroni, A.; Domenici, L.; Origlia, N. Impaired synaptic plasticity in the visual cortex of mice lacking α7-nicotinic receptor subunit. Neuroscience, 2015, 294, 166-171.
[http://dx.doi.org/10.1016/j.neuroscience.2015.03.022] [PMID: 25797465]
[34]
Yang, Y.; Paspalas, C.D.; Jin, L.E.; Picciotto, M.R.; Arnsten, A.F.T.; Wang, M. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc. Natl. Acad. Sci. USA, 2013, 110(29), 12078-12083.
[http://dx.doi.org/10.1073/pnas.1307849110] [PMID: 23818597]
[35]
Shorey-Kendrick, L.E.; Ford, M.M.; Allen, D.C.; Kuryatov, A.; Lindstrom, J.; Wilhelm, L.; Grant, K.A.; Spindel, E.R. Nicotinic receptors in non-human primates: Analysis of genetic and functional conservation with humans. Neuropharmacology, 2015, 96(Pt B), 263-273.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.023] [PMID: 25661700]
[36]
Courties, A.; Olmer, M.; Myers, K.; Ordoukhanian, P.; Head, S.R.; Natarajan, P.; Berenbaum, F.; Sellam, J.; Lotz, M.K. Human-specific duplicate CHRFAM7A gene is associated with more severe osteoarthritis and amplifies pain behaviours. Ann. Rheum. Dis., 2023, 82(5), 710-718.
[http://dx.doi.org/10.1136/ard-2022-223470] [PMID: 36627169]
[37]
Xiao, H.S.; Huang, Q.H.; Zhang, F.X.; Bao, L.; Lu, Y.J.; Guo, C.; Yang, L.; Huang, W.J.; Fu, G.; Xu, S.H.; Cheng, X.P.; Yan, Q.; Zhu, Z.D.; Zhang, X.; Chen, Z.; Han, Z.G.; Zhang, X. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc. Natl. Acad. Sci. USA, 2002, 99(12), 8360-8365.
[http://dx.doi.org/10.1073/pnas.122231899] [PMID: 12060780]
[38]
Yang, T.; Zhou, Y.; Zhang, W.; Zhang, L.; Chen, S.; Chen, C.; Gao, F.; Yang, H.; Manyande, A.; Wang, J.; Tian, Y.; Tian, X. The spinal α7-Nicotinic acetylcholine receptor contributes to the maintenance of cancer-induced bone pain. J. Pain Res., 2021, 14, 441-452.
[http://dx.doi.org/10.2147/JPR.S286321] [PMID: 33623426]
[39]
Els, C.; Jackson, T.D.; Hagtvedt, R.; Kunyk, D.; Sonnenberg, B.; Lappi, V.G.; Straube, S. High-dose opioids for chronic non-cancer pain: An overview of Cochrane Reviews. Cochrane Database Syst. Rev., 2023, 3(3), CD012299.
[PMID: 36961252]
[40]
Woolf, C.J. A new strategy for the treatment of inflammatory pain. Prevention or elimination of central sensitization. Drugs, 1994, 47(Suppl. 5), 1-9.
[http://dx.doi.org/10.2165/00003495-199400475-00003] [PMID: 7525180]
[41]
Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000, 405(6785), 458-462.
[http://dx.doi.org/10.1038/35013070] [PMID: 10839541]
[42]
Liu, H.; Zhang, X.; Shi, P.; Yuan, J.; Jia, Q.; Pi, C.; Chen, T.; Xiong, L.; Chen, J.; Tang, J.; Yue, R.; Liu, Z.; Shen, H.; Zuo, Y.; Wei, Y.; Zhao, L. α7 Nicotinic acetylcholine receptor: A key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J. Neuroinflammation, 2023, 20(1), 84.
[http://dx.doi.org/10.1186/s12974-023-02768-z] [PMID: 36973813]
[43]
Lin, Y.; Wongkrajang, K.; Shen, X.; Wang, P.; Zhou, Z.; Chuprajob, T.; Sornkaew, N.; Yang, N.; Yang, L.; Lu, X.; Chokchaisiri, R.; Suksamrarn, A.; Zhang, G.; Wang, F. Discovery of diarylheptanoids that activate α7 nAchR-JAK2-STAT3 signaling in macrophages with anti-inflammatory activity in vitro and in vivo. Bioorg. Med. Chem., 2022, 66, 116811.
[http://dx.doi.org/10.1016/j.bmc.2022.116811] [PMID: 35576655]
[44]
Zhou, Y.; Leung-Pitt, Y.; Deng, H.; Ren, Y.; You, Z.; Kem, W.R.; Shen, S.; Zhang, W.; Mao, J.; Martyn, J.A.J. Nonopioid GTS-21 mitigates burn injury pain in rats by decreasing spinal cord inflammatory responses. Anesth. Analg., 2021, 132(1), 240-252.
[http://dx.doi.org/10.1213/ANE.0000000000005274] [PMID: 33264122]
[45]
Gao, Z.; Li, L.; Huang, Y.; Zhao, C.; Xue, S.; Chen, J.; Yang, Z.; Xu, J.; Su, X. Vagal-α7nAChR signaling is required for lung anti-inflammatory responses and arginase 1 expression during an influenza infection. Acta Pharmacol. Sin., 2021, 42(10), 1642-1652.
[http://dx.doi.org/10.1038/s41401-020-00579-z] [PMID: 33414508]
[46]
Rowley, T.J.; McKinstry, A.; Greenidge, E.; Smith, W.; Flood, P. Antinociceptive and anti-inflammatory effects of choline in a mouse model of postoperative pain. Br. J. Anaesth., 2010, 105(2), 201-207.
[http://dx.doi.org/10.1093/bja/aeq113] [PMID: 20511332]
[47]
Rowley, T.J.; Payappilly, J.; Lu, J.; Flood, P. The antinociceptive response to nicotinic agonists in a mouse model of postoperative pain. Anesth. Analg., 2008, 107(3), 1052-1057.
[http://dx.doi.org/10.1213/ane.0b013e318165e0c0] [PMID: 18713928]
[48]
Conaghan, P.G.; Cook, A.D.; Hamilton, J.A.; Tak, P.P. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol., 2019, 15(6), 355-363.
[http://dx.doi.org/10.1038/s41584-019-0221-y] [PMID: 31068673]
[49]
Lee, S.E. Choline, an alpha7 nicotinic acetylcholine receptor agonist, alleviates hyperalgesia in a rat osteoarthritis model. Neurosci. Lett., 2013, 548, 291-295.
[http://dx.doi.org/10.1016/j.neulet.2013.05.073] [PMID: 23769729]
[50]
Courties, A.; Sellam, J.; Berenbaum, F. Role of the autonomic nervous system in osteoarthritis. Best Pract. Res. Clin. Rheumatol., 2017, 31(5), 661-675.
[http://dx.doi.org/10.1016/j.berh.2018.04.001] [PMID: 30509412]
[51]
Teng, P.; Liu, Y.; Dai, Y.; Zhang, H.; Liu, W.T.; Hu, J. Nicotine attenuates osteoarthritis pain and matrix metalloproteinase-9 expression via the α7 nicotinic acetylcholine receptor. J. Immunol., 2019, 203(2), 485-492.
[http://dx.doi.org/10.4049/jimmunol.1801513] [PMID: 31152077]
[52]
Kusuda, R.; Carreira, E.U.; Ulloa, L.; Cunha, F.Q.; Kanashiro, A.; Cunha, T.M. Choline attenuates inflammatory hyperalgesia activating nitric oxide/cGMP/ATP-sensitive potassium channels pathway. Brain Res., 2020, 1727, 146567.
[http://dx.doi.org/10.1016/j.brainres.2019.146567] [PMID: 31783002]
[53]
Liu, Y.; Lin, H.; Zou, R.; Wu, J.; Han, R.; Raymond, L.N.; Reid, P.F.; Qin, Z. Suppression of complete Freund’s adjuvant-induced adjuvant arthritis by cobratoxin. Acta Pharmacol. Sin., 2009, 30(2), 219-227.
[http://dx.doi.org/10.1038/aps.2008.20] [PMID: 19169271]
[54]
Konstantakaki, M.; Changeux, J.P.; Taly, A. Docking of α-cobratoxin suggests a basal conformation of the nicotinic receptor. Biochem. Biophys. Res. Commun., 2007, 359(3), 413-418.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.126] [PMID: 17555709]
[55]
Mordvintsev, D.Y.; Polyak, Y.L.; Rodionov, D.I.; Jakubik, J.; Dolezal, V.; Karlsson, E.; Tsetlin, V.I.; Utkin, Y.N. Weak toxin WTX from Naja kaouthia cobra venom interacts with both nicotinic and muscarinic acetylcholine receptors. FEBS J., 2009, 276(18), 5065-5075.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07203.x] [PMID: 19682302]
[56]
Zhang, L.; Zhang, Y.; Jiang, D.; Reid, P.F.; Jiang, X.; Qin, Z.; Tao, J. Alpha-cobratoxin inhibits T-type calcium currents through muscarinic M4 receptor and Go-protein βγ subunits-dependent protein kinase A pathway in dorsal root ganglion neurons. Neuropharmacology, 2012, 62(2), 1062-1072.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.017] [PMID: 22074645]
[57]
Zhang, Y.; Zhang, L.; Wang, F.; Zhang, Y.; Wang, J.; Qin, Z.; Jiang, X.; Tao, J. Activation of M3 muscarinic receptors inhibits T-type Ca2+ channel currents via pertussis toxin-sensitive novel protein kinase C pathway in small dorsal root ganglion neurons. Cell. Signal., 2011, 23(6), 1057-1067.
[http://dx.doi.org/10.1016/j.cellsig.2011.02.001] [PMID: 21329754]
[58]
Costa, R.; Motta, E.M.; Manjavachi, M.N.; Cola, M.; Calixto, J.B. Activation of the alpha-7 nicotinic acetylcholine receptor (α7 nAchR) reverses referred mechanical hyperalgesia induced by colonic inflammation in mice. Neuropharmacology, 2012, 63(5), 798-805.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.004] [PMID: 22722030]
[59]
AlSharari, S.D.; Bagdas, D.; Akbarali, H.I.; Lichtman, P.A.; Raborn, E.S.; Cabral, G.A.; Carroll, F.I.; McGee, E.A.; Damaj, M.I. Sex differences and drug dose influence the role of the α7 nicotinic acetylcholine receptor in the mouse dextran sodium sulfate-induced colitis model. Nicotine Tob. Res., 2017, 19(4), 460-468.
[http://dx.doi.org/10.1093/ntr/ntw245] [PMID: 27639096]
[60]
Abdrakhmanova, G.R.; AlSharari, S.; Kang, M.; Damaj, M.I.; Akbarali, H.I. α7-nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(3), G761-G768.
[http://dx.doi.org/10.1152/ajpgi.00175.2010] [PMID: 20595621]
[61]
Sanders, V.R.; Millar, N.S. Potentiation and allosteric agonist activation of α7 nicotinic acetylcholine receptors: Binding sites and hypotheses. Pharmacol. Res., 2023, 191, 106759.
[http://dx.doi.org/10.1016/j.phrs.2023.106759] [PMID: 37023990]
[62]
Bagdas, D.; Wilkerson, J.L.; Kulkarni, A.; Toma, W.; AlSharari, S.; Gul, Z.; Lichtman, A.H.; Papke, R.L.; Thakur, G.A.; Damaj, M.I. The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain. Br. J. Pharmacol., 2016, 173(16), 2506-2520.
[http://dx.doi.org/10.1111/bph.13528] [PMID: 27243753]
[63]
Bagdas, D.; Meade, J.A.; Alkhlaif, Y.; Muldoon, P.P.; Carroll, F.I.; Damaj, M.I. Effect of nicotine and alpha‐7 nicotinic modulators on visceral pain‐induced conditioned place aversion in mice. Eur. J. Pain, 2018, 22(8), 1419-1427.
[http://dx.doi.org/10.1002/ejp.1231] [PMID: 29633429]
[64]
Lopes, F.; Graepel, R.; Reyes, J.L.; Wang, A.; Petri, B.; McDougall, J.J.; Sharkey, K.A.; McKay, D.M. Involvement of mast cells in α7 nicotinic receptor agonist exacerbation of Freund’s Complete Adjuvant–Induced monoarthritis in mice. Arthritis Rheumatol., 2016, 68(2), 542-552.
[http://dx.doi.org/10.1002/art.39411] [PMID: 26314943]
[65]
Xue, R.; Wan, Y.; Sun, X.; Zhang, X.; Gao, W.; Wu, W. Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation. Front. Immunol., 2019, 10, 2546.
[http://dx.doi.org/10.3389/fimmu.2019.02546] [PMID: 31736967]
[66]
Loram, L.C.; Harrison, J.A.; Chao, L.; Taylor, F.R.; Reddy, A.; Travis, C.L.; Giffard, R.; Al-Abed, Y.; Tracey, K.; Maier, S.F.; Watkins, L.R. Intrathecal injection of an alpha seven nicotinic acetylcholine receptor agonist attenuates gp120-induced mechanical allodynia and spinal pro-inflammatory cytokine profiles in rats. Brain Behav. Immun., 2010, 24(6), 959-967.
[http://dx.doi.org/10.1016/j.bbi.2010.03.008] [PMID: 20353818]
[67]
Abbas, M.; Alzarea, S.; Papke, R.L.; Rahman, S. The α7 nicotinic acetylcholine receptor positive allosteric modulator attenuates lipopolysaccharide-induced activation of hippocampal IκB and CD11b gene expression in mice. Drug Discov. Ther., 2017, 11(4), 206-211.
[http://dx.doi.org/10.5582/ddt.2017.01038] [PMID: 28867753]
[68]
Abbas, M.; Alzarea, S.; Papke, R.L.; Rahman, S. The α7 nicotinic acetylcholine receptor positive allosteric modulator prevents lipopolysaccharide-induced allodynia, hyperalgesia and TNF-α in the hippocampus in mice. Pharmacol. Rep., 2019, 71(6), 1168-1176.
[http://dx.doi.org/10.1016/j.pharep.2019.07.001] [PMID: 31655281]
[69]
Namgung, U.; Kim, K.J.; Jo, B.G.; Park, J.M. Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats. J. Neuroinflammation, 2022, 19(1), 33.
[http://dx.doi.org/10.1186/s12974-022-02396-z] [PMID: 35109857]
[70]
Sun, R.; Liu, Y.; Hou, B.; Lei, Y.; Bo, J.; Zhang, W.; Sun, Y.E.; Zhang, Y.; Zhang, Z.; Liu, Z.; Huo, W.; Mao, Y.; Ma, Z.; Gu, X. Perioperative activation of spinal α7 nAChR promotes recovery from preoperative stress-induced prolongation of postsurgical pain. Brain Behav. Immun., 2019, 79, 294-308.
[http://dx.doi.org/10.1016/j.bbi.2019.02.017] [PMID: 30797046]
[71]
Fontana, I.C.; Kumar, A.; Nordberg, A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat. Rev. Neurol., 2023, 19(5), 278-288.
[http://dx.doi.org/10.1038/s41582-023-00792-4] [PMID: 36977843]
[72]
Patel, H.; McIntire, J.; Ryan, S.; Dunah, A.; Loring, R. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway. J. Neuroinflammation, 2017, 14(1), 192.
[http://dx.doi.org/10.1186/s12974-017-0967-6] [PMID: 28950908]
[73]
Godin, J.R.; Roy, P.; Quadri, M.; Bagdas, D.; Toma, W.; Narendrula-Kotha, R.; Kishta, O.A.; Damaj, M.I.; Horenstein, N.A.; Papke, R.L.; Simard, A.R. A silent agonist of α7 nicotinic acetylcholine receptors modulates inflammation ex vivo and attenuates EAE. Brain Behav. Immun., 2020, 87, 286-300.
[http://dx.doi.org/10.1016/j.bbi.2019.12.014] [PMID: 31874200]
[74]
Scholz, J.; Finnerup, N.B.; Attal, N.; Aziz, Q.; Baron, R.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Cruccu, G.; Davis, K.D.; Evers, S.; First, M.; Giamberardino, M.A.; Hansson, P.; Kaasa, S.; Korwisi, B.; Kosek, E.; Lavand’homme, P.; Nicholas, M.; Nurmikko, T.; Perrot, S.; Raja, S.N.; Rice, A.S.C.; Rowbotham, M.C.; Schug, S.; Simpson, D.M.; Smith, B.H.; Svensson, P.; Vlaeyen, J.W.S.; Wang, S.J.; Barke, A.; Rief, W.; Treede, R.D. The IASP classification of chronic pain for ICD-11: Chronic neuropathic pain. Pain, 2019, 160(1), 53-59.
[http://dx.doi.org/10.1097/j.pain.0000000000001365] [PMID: 30586071]
[75]
Cohen, S.P.; Mao, J. Neuropathic pain: Mechanisms and their clinical implications. BMJ, 2014, 348(6), f7656.
[http://dx.doi.org/10.1136/bmj.f7656] [PMID: 24500412]
[76]
AlSharari, S.D.; Freitas, K.; Damaj, M.I. Functional role of alpha7 nicotinic receptor in chronic neuropathic and inflammatory pain: Studies in transgenic mice. Biochem. Pharmacol., 2013, 86(8), 1201-1207.
[http://dx.doi.org/10.1016/j.bcp.2013.06.018] [PMID: 23811428]
[77]
Loram, L.C.; Taylor, F.R.; Strand, K.A.; Maier, S.F.; Speake, J.D.; Jordan, K.G.; James, J.W.; Wene, S.P.; Pritchard, R.C.; Green, H.; Van Dyke, K.; Mazarov, A.; Letchworth, S.R.; Watkins, L.R. Systemic administration of an alpha-7 nicotinic acetylcholine agonist reverses neuropathic pain in male sprague dawley rats. J. Pain, 2012, 13(12), 1162-1171.
[http://dx.doi.org/10.1016/j.jpain.2012.08.009] [PMID: 23182225]
[78]
Jacobson, K.A.; Giancotti, L.A.; Lauro, F.; Mufti, F.; Salvemini, D. Treatment of chronic neuropathic pain: Purine receptor modulation. Pain, 2020, 161(7), 1425-1441.
[http://dx.doi.org/10.1097/j.pain.0000000000001857] [PMID: 32187120]
[79]
Horváth, G.; Gölöncsér, F.; Csölle, C.; Király, K.; Andó, R.D.; Baranyi, M.; Koványi, B.; Máté, Z.; Hoffmann, K.; Algaier, I.; Baqi, Y.; Müller, C.E.; Von Kügelgen, I.; Sperlágh, B. Central P2Y12 receptor blockade alleviates inflammatory and neuropathic pain and cytokine production in rodents. Neurobiol. Dis., 2014, 70, 162-178.
[http://dx.doi.org/10.1016/j.nbd.2014.06.011] [PMID: 24971933]
[80]
Khasabov, S.G.; Rogness, V.M.; Beeson, M.B.; Vulchanova, L.; Yuan, L.L.; Simone, D.A.; Tran, P.V. The nAChR Chaperone TMEM35a (NACHO) contributes to the development of hyperalgesia in mice. Neuroscience, 2021, 457, 74-87.
[http://dx.doi.org/10.1016/j.neuroscience.2020.12.027] [PMID: 33422618]
[81]
Liu, Q.; Liu, C.; Jiang, L.; Li, M.; Long, T.; He, W.; Qin, G.; Chen, L.; Zhou, J. α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. J. Pain Res., 2018, 11, 1129-1140.
[http://dx.doi.org/10.2147/JPR.S159146] [PMID: 29942148]
[82]
Gonçalves, A.L.; Martini Ferreira, A.; Ribeiro, R.T.; Zukerman, E.; Cipolla-Neto, J.; Peres, M.F.P. Randomised clinical trial comparing melatonin 3 mg, amitriptyline 25 mg and placebo for migraine prevention. J. Neurol. Neurosurg. Psychiatry, 2016, 87(10), 1127-1132.
[http://dx.doi.org/10.1136/jnnp-2016-313458] [PMID: 27165014]
[83]
Zhang, Y.; Ji, H.; Wang, J.; Sun, Y.; Qian, Z.; Jiang, X.; Snutch, T.P.; Sun, Y.; Tao, J. Melatonin‐mediated inhibition of Cav3.2 T‐type Ca2+ channels induces sensory neuronal hypoexcitability through the novel protein kinase C‐eta isoform. J. Pineal Res., 2018, 64(4), e12476.
[http://dx.doi.org/10.1111/jpi.12476] [PMID: 29437250]
[84]
Niranjan, R.; Nath, C.; Shukla, R. Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic. Res., 2012, 46(9), 1167-1177.
[http://dx.doi.org/10.3109/10715762.2012.697626] [PMID: 22656125]
[85]
Asefy, Z.; Khusro, A.; Mammadova, S.; Hoseinnejhad, S.; Eftekhari, A.; Alghamdi, S.; Dablool, A.S.; Almehmadi, M.; Kazemi, E.; Sahibzada, M.U.K. Melatonin hormone as a therapeutic weapon against neurodegenerative diseases. Cell. Mol. Biol., 2021, 67(3), 99-106.
[http://dx.doi.org/10.14715/cmb/2021.67.3.13] [PMID: 34933727]
[86]
Nakagawa, Y.; Chiba, K. Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol. Ther., 2015, 154, 21-35.
[http://dx.doi.org/10.1016/j.pharmthera.2015.06.010] [PMID: 26129625]
[87]
Li, X.; Guo, Q.; Ye, Z.; Wang, E.; Zou, W.; Sun, Z.; He, Z.; Zhong, T.; Weng, Y.; Pan, Y. PPAR γ prevents neuropathic pain by down-regulating CX3CR1 and attenuating M1 activation of microglia in the spinal cord of rats using a sciatic chronic constriction injury model. Front. Neurosci., 2021, 15, 620525.
[http://dx.doi.org/10.3389/fnins.2021.620525] [PMID: 33841075]
[88]
Ji, L.; Chen, Y.; Wei, H.; Feng, H.; Chang, R.; Yu, D.; Wang, X.; Gong, X.; Zhang, M. Activation of alpha7 acetylcholine receptors reduces neuropathic pain by decreasing dynorphin A release from microglia. Brain Res., 2019, 1715, 57-65.
[http://dx.doi.org/10.1016/j.brainres.2019.03.016] [PMID: 30898676]
[89]
Han, Q.Q.; Yin, M.; Wang, Z.Y.; Liu, H.; Ao, J.P.; Wang, Y.X.; Cynandione, A. Cynandione A alleviates neuropathic pain through α7-nAChR-Dependent IL-10/β-Endorphin signaling complexes. Front. Pharmacol., 2021, 11, 614450.
[http://dx.doi.org/10.3389/fphar.2020.614450] [PMID: 33584292]
[90]
Belo, T.C.A.; Santos, G.X.; da Silva, B.E.G.; Rocha, B.L.G.; Abdala, D.W.; Freire, L.A.M.; Rocha, F.S.; Galdino, G. IL-10/β-Endorphin-Mediated Neuroimmune Modulation on Microglia during Antinociception. Brain Sci., 2023, 13(5), 789.
[http://dx.doi.org/10.3390/brainsci13050789] [PMID: 37239261]
[91]
Shi, S.; Liang, D.; Bao, M.; Xie, Y.; Xu, W.; Wang, L.; Wang, Z.; Qiao, Z. Gx-50 inhibits neuroinflammation via α7 nAChR activation of the JAK2/STAT3 and PI3K/AKT pathways. J. Alzheimers Dis., 2016, 50(3), 859-871.
[http://dx.doi.org/10.3233/JAD-150963] [PMID: 26836188]
[92]
Wang, Z.Y.; Han, Q.Q.; Deng, M.Y.; Zhao, M.J.; Apryani, E.; Shoaib, R.M.; Wei, D.Q.; Wang, Y.X. Lemairamin, isolated from the Zanthoxylum plants, alleviates pain hypersensitivity via spinal α7 nicotinic acetylcholine receptors. Biochem. Biophys. Res. Commun., 2020, 525(4), 1087-1094.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.023] [PMID: 32184015]
[93]
Grando, S.A. Connections of nicotine to cancer. Nat. Rev. Cancer, 2014, 14(6), 419-429.
[http://dx.doi.org/10.1038/nrc3725] [PMID: 24827506]
[94]
Fei, R.; Zhang, Y.; Wang, S.; Xiang, T.; Chen, W. α7 nicotinic acetylcholine receptor in tumor-associated macrophages inhibits colorectal cancer metastasis through the JAK2/STAT3 signaling pathway. Oncol. Rep., 2017, 38(5), 2619-2628.
[http://dx.doi.org/10.3892/or.2017.5935] [PMID: 28901507]
[95]
Xiang, T.; Yu, F.; Fei, R.; Qian, J.; Chen, W. CHRNA7 inhibits cell invasion and metastasis of LoVo human colorectal cancer cells through PI3K/Akt signaling. Oncol. Rep., 2016, 35(2), 999-1005.
[http://dx.doi.org/10.3892/or.2015.4462] [PMID: 26719016]
[96]
Dai, C.L.; Zhang, R.; An, P.; Deng, Y.Q.; Rahman, K.; Zhang, H. Cinobufagin: a promising therapeutic agent for cancer. J. Pharm. Pharmacol., 2023, 75(9), 1141-1153.
[http://dx.doi.org/10.1093/jpp/rgad059] [PMID: 37390473]
[97]
Apryani, E.; Ali, U.; Wang, Z.Y.; Wu, H.Y.; Mao, X.F.; Ahmad, K.A.; Li, X.Y.; Wang, Y.X. The spinal microglial IL-10/β-endorphin pathway accounts for cinobufagin-induced mechanical antiallodynia in bone cancer pain following activation of α7-nicotinic acetylcholine receptors. J. Neuroinflammation, 2020, 17(1), 75.
[http://dx.doi.org/10.1186/s12974-019-1616-z] [PMID: 32113469]
[98]
Yang, Y.; Zhao, B.; Gao, X.; Sun, J.; Ye, J.; Li, J.; Cao, P. Targeting strategies for oxaliplatin-induced peripheral neuropathy: clinical syndrome, molecular basis, and drug development. J. Exp. Clin. Cancer Res., 2021, 40(1), 331.
[http://dx.doi.org/10.1186/s13046-021-02141-z] [PMID: 34686205]
[99]
Di Cesare Mannelli, L.; Pacini, A.; Matera, C.; Zanardelli, M.; Mello, T.; De Amici, M.; Dallanoce, C.; Ghelardini, C. Involvement of α7 nAChR subtype in rat oxaliplatin-induced neuropathy: Effects of selective activation. Neuropharmacology, 2014, 79, 37-48.
[http://dx.doi.org/10.1016/j.neuropharm.2013.10.034] [PMID: 24225197]
[100]
Betti, M.; Catarzi, D.; Varano, F.; Falsini, M.; Varani, K.; Vincenzi, F.; Pasquini, S.; di Cesare Mannelli, L.; Ghelardini, C.; Lucarini, E.; Dal Ben, D.; Spinaci, A.; Bartolucci, G.; Menicatti, M.; Colotta, V. Modifications on the amino-3,5-dicyanopyridine core to obtain multifaceted adenosine receptor ligands with antineuropathic activity. J. Med. Chem., 2019, 62(15), 6894-6912.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00106] [PMID: 31306001]
[101]
Di Cesare Mannelli, L.; Tenci, B.; Zanardelli, M.; Failli, P.; Ghelardini, C. α 7 nicotinic receptor promotes the neuroprotective functions of astrocytes against oxaliplatin neurotoxicity. Neural Plast., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/396908] [PMID: 26146570]
[102]
Hamurtekin, E.; Bagdas, D.; Gurun, M.S. Possible involvement of supraspinal opioid and GABA receptors in CDP-choline-induced antinociception in acute pain models in rats. Neurosci. Lett., 2007, 420(2), 116-121.
[http://dx.doi.org/10.1016/j.neulet.2007.04.058] [PMID: 17531379]
[103]
Kanat, O.; Bagdas, D.; Ozboluk, H.Y.; Gurun, M.S. Preclinical evidence for the antihyperalgesic activity of CDP-choline in oxaliplatin-induced neuropathic pain. J. BUON, 2013, 18(4), 1012-1018.
[PMID: 24344031]
[104]
Benjamin, D.; Colombi, M.; Moroni, C.; Hall, M.N. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov., 2011, 10(11), 868-880.
[http://dx.doi.org/10.1038/nrd3531] [PMID: 22037041]
[105]
Li, S.; Guan, S.; Wang, Y.; Cheng, L.; Yang, Q.; Tian, Z.; Zhao, M.; Wang, X.; Feng, B. Nicotine inhibits rapamycin-induced pain through activating mTORC1/S6K/IRS-1-related feedback inhibition loop. Brain Res. Bull., 2019, 149, 75-85.
[http://dx.doi.org/10.1016/j.brainresbull.2019.04.016] [PMID: 31005665]
[106]
Kolodny, A.; Courtwright, D.T.; Hwang, C.S.; Kreiner, P.; Eadie, J.L.; Clark, T.W.; Alexander, G.C. The prescription opioid and heroin crisis: A public health approach to an epidemic of addiction. Annu. Rev. Public Health, 2015, 36(1), 559-574.
[http://dx.doi.org/10.1146/annurev-publhealth-031914-122957] [PMID: 25581144]
[107]
Colvin, L.A.; Bull, F.; Hales, T.G. Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet, 2019, 393(10180), 1558-1568.
[http://dx.doi.org/10.1016/S0140-6736(19)30430-1] [PMID: 30983591]
[108]
Ren, J.; Ding, X.; Greer, J.J. Activating α4β2 nicotinic acetylcholine receptors alleviates fentanyl-induced respiratory depression in rats. Anesthesiology, 2019, 130(6), 1017-1031.
[http://dx.doi.org/10.1097/ALN.0000000000002676] [PMID: 31008764]
[109]
Zhang, W.; Liu, Y.; Hou, B.; Gu, X.; Ma, Z. Activation of spinal alpha-7 nicotinic acetylcholine receptor attenuates remifentanil-induced postoperative hyperalgesia. Int. J. Clin. Exp. Med., 2015, 8(2), 1871-1879.
[PMID: 25932115]
[110]
Gu, W.; Zhang, W.; Lei, Y.; Cui, Y.; Chu, S.; Gu, X.; Ma, Z. Activation of spinal alpha-7 nicotinic acetylcholine receptor shortens the duration of remifentanil-induced postoperative hyperalgesia by upregulating KCC2 in the spinal dorsal horn in rats. Mol. Pain, 2017, 13.
[http://dx.doi.org/10.1177/1744806917704769] [PMID: 28425312]
[111]
Jia, D.; Liu, G.; Sun, Y.; Hu, Z.; Huang, Z.; Huang, C. Trifluoro-icaritin ameliorates spared nerve injury-induced neuropathic pain by inhibiting microglial activation through α7nAChR-mediated blockade of BDNF/TrkB/KCC2 signaling in the spinal cord of rats. Biomed. Pharmacother., 2023, 157, 114001.
[http://dx.doi.org/10.1016/j.biopha.2022.114001] [PMID: 36375307]
[112]
Ren, Y.; Zhou, Y.; You, Z.; Deng, H.; Kem, W.R.; Mao, J.; Zhang, W.; Martyn, J.A.J. The nonopioid cholinergic agonist GTS-21 mitigates morphine-induced aggravation of burn injury pain together with inhibition of spinal microglia activation in young rats. Br. J. Anaesth., 2022, 129(6), 959-969.
[http://dx.doi.org/10.1016/j.bja.2022.07.055] [PMID: 36243579]
[113]
Papke, R.L.; Lindstrom, J.M. Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology, 2020, 168, 108021.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108021] [PMID: 32146229]
[114]
Yang, T.; Xiao, T.; Sun, Q.; Wang, K. The current agonists and positive allosteric modulators of α 7 nAChR for CNS indications in clinical trials. Acta Pharm. Sin. B, 2017, 7(6), 611-622.
[http://dx.doi.org/10.1016/j.apsb.2017.09.001] [PMID: 29159020]
[115]
Pandya, A.A.; Yakel, J.L. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem. Pharmacol., 2013, 86(8), 1054-1062.
[http://dx.doi.org/10.1016/j.bcp.2013.05.018] [PMID: 23732296]
[116]
Camacho-Hernandez, G.A.; Stokes, C.; Duggan, B.M.; Kaczanowska, K.; Brandao-Araiza, S.; Doan, L.; Papke, R.L.; Taylor, P. Synthesis, pharmacological characterization, and structure-activity relationships of noncanonical selective agonists for α7 nAChRs. J. Med. Chem., 2019, 62(22), 10376-10390.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01467] [PMID: 31675224]
[117]
Freitas, K.; Ghosh, S.; Ivy Carroll, F.; Lichtman, A.H.; Imad Damaj, M. Effects of α 7 positive allosteric modulators in murine inflammatory and chronic neuropathic pain models. Neuropharmacology, 2013, 65, 156-164.
[http://dx.doi.org/10.1016/j.neuropharm.2012.08.022] [PMID: 23079470]
[118]
Caillaud, M.; Thompson, D.; Toma, W.; White, A.; Mann, J.; Roberts, J.L.; Bigbee, J.W.; Gewirtz, D.A.; Damaj, M.I. Formulated curcumin prevents paclitaxel-induced peripheral neuropathy through reduction in neuroinflammation by modulation of α7 nicotinic acetylcholine receptors. Pharmaceutics, 2022, 14(6), 1296.
[http://dx.doi.org/10.3390/pharmaceutics14061296] [PMID: 35745868]
[119]
El Nebrisi, E.G.; Bagdas, D.; Toma, W.; Al Samri, H.; Brodzik, A.; Alkhlaif, Y.; Yang, K.H.S.; Howarth, F.C.; Damaj, I.M.; Oz, M. Curcumin acts as a positive allosteric modulator of α7-nicotinic acetylcholine receptors and reverses nociception in mouse models of inflammatory pain. J. Pharmacol. Exp. Ther., 2018, 365(1), 190-200.
[http://dx.doi.org/10.1124/jpet.117.245068] [PMID: 29339457]
[120]
Papke, R.L.; Bagdas, D.; Kulkarni, A.R.; Gould, T.; AlSharari, S.D.; Thakur, G.A.; Damaj, M.I. The analgesic-like properties of the alpha7 nAChR silent agonist NS6740 is associated with non-conducting conformations of the receptor. Neuropharmacology, 2015, 91, 34-42.
[http://dx.doi.org/10.1016/j.neuropharm.2014.12.002] [PMID: 25497451]
[121]
Papke, R.L.; Quadri, M.; Gulsevin, A. Silent agonists for α7 nicotinic acetylcholine receptors. Pharmacol. Res., 2023, 190, 106736.
[http://dx.doi.org/10.1016/j.phrs.2023.106736] [PMID: 36940890]
[122]
Chojnacka, K.; Papke, R.L.; Horenstein, N.A. Synthesis and evaluation of a conditionally-silent agonist for the α7 nicotinic acetylcholine receptor. Bioorg. Med. Chem. Lett., 2013, 23(14), 4145-4149.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.039] [PMID: 23746476]
[123]
Toma, W.; Kyte, S.L.; Bagdas, D.; Jackson, A.; Meade, J.A.; Rahman, F.; Chen, Z.J.; Del Fabbro, E.; Cantwell, L.; Kulkarni, A.; Thakur, G.A.; Papke, R.L.; Bigbee, J.W.; Gewirtz, D.A.; Damaj, M.I. The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. Exp. Neurol., 2019, 320, 113010.
[http://dx.doi.org/10.1016/j.expneurol.2019.113010] [PMID: 31299179]
[124]
Shi, Y-P.; Wang, J-D.; Wang, R-H.; Zhao, X-D.; Yu, H-T.; Wang, H. Pharmacological action of choline and aspirin coadministration on acute inflammatory pain. Eur. J. Pain, 2011, 15(8), 858-865.
[http://dx.doi.org/10.1016/j.ejpain.2011.02.001] [PMID: 21388846]
[125]
Pan, Z.Y.; Wang, H. Synergistic interaction between choline and aspirin against acute inflammation induced by carrageenan and lipopolysaccharide. Int. Immunopharmacol., 2014, 20(1), 229-237.
[http://dx.doi.org/10.1016/j.intimp.2014.03.004] [PMID: 24656779]
[126]
Sidhu, N.; Davies, S.; Nadarajah, A.; Rivera, J.; Whittington, R.; Mercier, R.J.; Virag, L.; Wang, S.; Flood, P. Oral choline supplementation for postoperative pain. Br. J. Anaesth., 2013, 111(2), 249-255.
[http://dx.doi.org/10.1093/bja/aet031] [PMID: 23568851]
[127]
Bagdas, D.; Sonat, F.A.; Hamurtekin, E.; Sonal, S.; Gurun, M.S. The antihyperalgesic effect of cytidine-5′-diphosphate-choline in neuropathic and inflammatory pain models. Behav. Pharmacol., 2011, 22(5 and 6), 589-598.
[http://dx.doi.org/10.1097/FBP.0b013e32834a1efb] [PMID: 21836465]
[128]
Gurun, M.S.; Parker, R.; Eisenach, J.C.; Vincler, M. The effect of peripherally administered CDP-choline in an acute inflammatory pain model: the role of alpha7 nicotinic acetylcholine receptor. Anesth. Analg., 2009, 108(5), 1680-1687.
[http://dx.doi.org/10.1213/ane.0b013e31819dcd08] [PMID: 19372354]
[129]
Iarkov, A.; Mendoza, C.; Echeverria, V. Cholinergic receptor modulation as a target for preventing dementia in Parkinson’s disease. Front. Neurosci., 2021, 15, 665820.
[http://dx.doi.org/10.3389/fnins.2021.665820] [PMID: 34616271]
[130]
Hone, A.J.; McIntosh, J.M. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett., 2018, 592(7), 1045-1062.
[http://dx.doi.org/10.1002/1873-3468.12884] [PMID: 29030971]
[131]
Wu, J.; Liu, Q.; Tang, P.; Mikkelsen, J.D.; Shen, J.; Whiteaker, P.; Yakel, J.L. Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol. Sci., 2016, 37(7), 562-574.
[http://dx.doi.org/10.1016/j.tips.2016.03.005] [PMID: 27179601]
[132]
Mowrey, D.D.; Liu, Q.; Bondarenko, V.; Chen, Q.; Seyoum, E.; Xu, Y.; Wu, J.; Tang, P. Insights into distinct modulation of α7 and α7β2 nicotinic acetylcholine receptors by the volatile anesthetic isoflurane. J. Biol. Chem., 2013, 288(50), 35793-35800.
[http://dx.doi.org/10.1074/jbc.M113.508333] [PMID: 24194515]
[133]
Knowland, D.; Gu, S.; Eckert, W.A., III; Dawe, G.B.; Matta, J.A.; Limberis, J.; Wickenden, A.D.; Bhattacharya, A.; Bredt, D.S. Functional α6β4 acetylcholine receptor expression enables pharmacological testing of nicotinic agonists with analgesic properties. J. Clin. Invest., 2020, 130(11), 6158-6170.
[http://dx.doi.org/10.1172/JCI140311] [PMID: 33074244]
[134]
Romero, H.K.; Christensen, S.B.; Di Cesare, M.L.; Gajewiak, J.; Ramachandra, R.; Elmslie, K.S.; Vetter, D.E.; Ghelardini, C.; Iadonato, S.P.; Mercado, J.L.; Olivera, B.M.; McIntosh, J.M. Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain. Proc. Natl. Acad. Sci. USA, 2017, 114(10), E1825-E1832.
[http://dx.doi.org/10.1073/pnas.1621433114] [PMID: 28223528]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy