Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Avapritinib Carries the Risk of Drug Interaction via Inhibition of UDP-Glucuronyltransferase (UGT) 1A1

Author(s): Xin Lv, Zhen Wang, Zhe Wang, Hang Yin, Yangliu Xia, Lili Jiang* and Yong Liu*

Volume 25, Issue 3, 2024

Published on: 27 May, 2024

Page: [197 - 204] Pages: 8

DOI: 10.2174/0113892002288312240521092054

Price: $65

Abstract

Background: Avapritinib is the only drug for adult patients with PDGFRA exon 18 mutated unresectable or metastatic gastrointestinal stromal tumor (GIST). Although avapritinib has been approved by the FDA for four years, little is known about the risk of drug-drug interac-tions (DDIs) via UDP-glucuronyltransferases (UGTs) inhibition.

Objective: The aim of the present study was to systematically evaluate the inhibitory effects of avapritinib against UGTs and to quantitatively estimate its potential DDIs risk in vivo.

Methods: Recombinant human UGTs were employed to catalyze the glucuronidation of sub-strates in a range of concentrations of avapritinib. The kinetics analysis was performed to evaluate the inhibition types of avapritinib against UGTs. The quantitative prediction of DDIs was done using in vitro-in vivo extrapolation (IVIVE).

Results: Avapritinib had a potent competitive inhibitory effect on UGT1A1. Quantitative predic-tion results showed that avapritinib administered at clinical doses might result in a 14.85% in-crease in area under the curve (AUC) of drugs primarily cleared by UGT1A1. Moreover, the Rgut value was calculated to be 18.44.

Conclusion: Avapritinib has the potential to cause intestinal DDIs via the inhibition of UGT1A1. Additional attention should be paid when avapritinib is coadministered with UGT1A1 substrates.

[1]
Wu, C.P.; Lusvarghi, S.; Wang, J.C.; Hsiao, S.H.; Huang, Y.H.; Hung, T.H.; Ambudkar, S.V. Avapritinib: A selective inhibitor of KIT and PDGFRα that reverses ABCB1 and ABCG2-mediated multidrug resistance in cancer cell lines. Mol. Pharm., 2019, 16(7), 3040-3052.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00274] [PMID: 31117741]
[2]
Dhillon, S. Avapritinib: First approval. Drugs, 2020, 80(4), 433-439.
[http://dx.doi.org/10.1007/s40265-020-01275-2] [PMID: 32100250]
[3]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463.
[http://dx.doi.org/10.1016/j.phrs.2021.105463] [PMID: 33513356]
[4]
Alzofon, N.; Jimeno, A. Avapritinib for metastatic or unresectable gastrointestinal stromal tumors. Drugs Today (Barc), 2020, 56(9), 561-571.
[http://dx.doi.org/10.1358/dot.2020.56.9.3170808] [PMID: 33025950]
[5]
USFDA. 2020-TKI-Avapritinib. 2020. Available From: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212608s000lbl.pdf
[6]
George, S.; Jones, R.L.; Bauer, S.; Kang, Y.K.; Schöffski, P.; Eskens, F.; Mir, O.; Cassier, P.A.; Serrano, C.; Tap, W.D.; Trent, J.; Rutkowski, P.; Patel, S.; Chawla, S.P.; Meiri, E.; Gordon, M.; Zhou, T.; Roche, M.; Heinrich, M.C.; Mehren, M. Avapritinib in patients with advanced gastrointestinal stromal tumors following at least three prior lines of therapy. Oncologist, 2021, 26(4), e639-e649.
[http://dx.doi.org/10.1002/onco.13674] [PMID: 33453089]
[7]
Joseph, C.P.; Abaricia, S.N.; Angelis, M.A.; Polson, K.; Jones, R.L.; Kang, Y.K.; Riedel, R.F.; Schöffski, P.; Serrano, C.; Trent, J.; Tetzlaff, E.D.; Si, T.D.; Zhou, T.; Doyle, A.; Bauer, S.; Roche, M.; Havnaer, T. Optimal avapritinib treatment strategies for patients with metastatic or unresectable gastrointestinal stromal tumors. Oncologist, 2021, 26(4), e622-e631.
[http://dx.doi.org/10.1002/onco.13632]
[8]
Below, S.; Michaelis, L.C. Avapritinib in the Treatment of systemic mastocytosis: An update. Curr. Hematol. Malig. Rep., 2021, 16(5), 464-472.
[http://dx.doi.org/10.1007/s11899-021-00650-4] [PMID: 34580817]
[9]
Reiter, A.; Gotlib, J.; Álvarez-Twose, I.; Radia, D.H.; Lübke, J.; Bobbili, P.J.; Wang, A.; Norregaard, C.; Dimitrijevic, S.; Sullivan, E.; Louie-Gao, M.; Schwaab, J.; Galinsky, I.A.; Perkins, C.; Sperr, W.R.; Sriskandarajah, P.; Chin, A.; Sendhil, S.R.; Duh, M.S.; Valent, P.; DeAngelo, D.J. Efficacy of avapritinib versus best available therapy in the treatment of advanced systemic mastocytosis. Leukemia, 2022, 36(8), 2108-2120.
[http://dx.doi.org/10.1038/s41375-022-01615-z] [PMID: 35790816]
[10]
Sumbly, V.; Landry, I.; Iqbal, S.; Bhatti, Z.; Alshamam, M.S.; Ashfaq, S.; Rizzo, V. The role of Avapritinib for the treatment of systemic mastocytosis. Cureus, 2021, 13(9), e18385.
[http://dx.doi.org/10.7759/cureus.18385]
[11]
Malki, M.A.; Pearson, E.R. Drug–drug–gene interactions and adverse drug reactions. Pharmacogenomics J., 2020, 20(3), 355-366.
[http://dx.doi.org/10.1038/s41397-019-0122-0] [PMID: 31792369]
[12]
Kontsioti, E.; Maskell, S.; Dutta, B.; Pirmohamed, M. A reference set of clinically relevant adverse drug-drug interactions. Sci. Data, 2022, 9(1), 72.
[http://dx.doi.org/10.1038/s41597-022-01159-y] [PMID: 35246559]
[13]
Leal Rodríguez, C.; Kaas-Hansen, B.S.; Eriksson, R.; Biel, J.H.; Belling, K.G.; Andersen, S.E.; Brunak, S. Drug interactions in hospital prescriptions in Denmark: Prevalence and associations with adverse outcomes. Pharmacoepidemiol. Drug Saf., 2022, 31(6), 632-642.
[http://dx.doi.org/10.1002/pds.5415] [PMID: 35124852]
[14]
Magro, L.; Arzenton, E.; Leone, R.; Stano, M.G.; Vezzaro, M.; Rudolph, A.; Castagna, I.; Moretti, U. Identifying and characterizing serious adverse drug reactions associated with drug-drug interactions in a spontaneous reporting database. Front. Pharmacol., 2021, 11, 622862.
[http://dx.doi.org/10.3389/fphar.2020.622862] [PMID: 33536925]
[15]
Hammar, T.; Hamqvist, S.; Zetterholm, M.; Jokela, P.; Ferati, M. Current knowledge about providing drug–drug interaction services for patients-a scoping review. Pharmacy (Basel), 2021, 9(2), 69.
[http://dx.doi.org/10.3390/pharmacy9020069] [PMID: 33805205]
[16]
Rong, L.; Xie, M.; Jiang, M.; Qiu, H.; Kong, L. A post‐marketing pharmacovigilance study of avapritinib: Adverse event data mining and analysis based on the United States Food and Drug Administration ADVERSE EVENT REPORTING SYSTEM database. Br. J. Clin. Pharmacol., 2023, bcp.15673.
[http://dx.doi.org/10.1111/bcp.15673] [PMID: 36702463]
[17]
Yu, J.; Wang, Y.; Ragueneau-Majlessi, I. Pharmacokinetic drug-drug interactions with drugs approved by the US Food and Drug Administration in 2020: Mechanistic understanding and clinical recommendations. Drug Metab. Dispos., 2022, 50(1), 1-7.
[http://dx.doi.org/10.1124/dmd.121.000401] [PMID: 34620694]
[18]
Dumic, I.; Nordin, T.; Jecmenica, M.; Stojkovic Lalosevic, M.; Milosavljevic, T.; Milovanovic, T. Gastrointestinal tract disorders in older age. Can. J. Gastroenterol. Hepatol., 2019, 2019, 6757524.
[http://dx.doi.org/10.1155/2019/6757524]
[19]
Adio, B. A severe case of acidosis with concomitant use of avapritinib and metformin requiring emergent hemodialysis. Edorium J, 2023, 9, 2020.
[20]
DrugsBank. Avapritinib. 2023. Available From: https://go.drugbank.com/drugs/DB15233
[21]
ChemicalBook.com. Blu-285; Avapritinib. 2016. Available From: https://www.chemicalbook.com/ProductList_en.aspx?kwd=avapritinib
[22]
Mano, E.C.C.; Scott, A.L.; Honorio, K.M. UDP-glucuronosyltransferases: Structure, function and drug design studies. Curr. Med. Chem., 2018, 25(27), 3247-3255.
[http://dx.doi.org/10.2174/0929867325666180226111311 ] [PMID: 29484974]
[23]
Guillemette, C.; Lévesque, É.; Rouleau, M. Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin. Pharmacol. Ther., 2014, 96(3), 324-339.
[http://dx.doi.org/10.1038/clpt.2014.126] [PMID: 24922307]
[24]
Allain, E.P.; Rouleau, M.; Lévesque, E.; Guillemette, C. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br. J. Cancer, 2020, 122(9), 1277-1287.
[http://dx.doi.org/10.1038/s41416-019-0722-0] [PMID: 32047295]
[25]
Miners, J.O.; Rowland, A.; Novak, J.J.; Lapham, K.; Goosen, T.C. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol. Ther., 2021, 218, 107689.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107689 ] [PMID: 32980440]
[26]
Oda, S.; Fukami, T.; Yokoi, T.; Nakajima, M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab. Pharmacokinet., 2015, 30(1), 30-51.
[http://dx.doi.org/10.1016/j.dmpk.2014.12.001] [PMID: 25760529]
[27]
Tukey, R.H.; Strassburg, C.P. Human UDP-glucuronosyltransferases: Metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol., 2000, 40(1), 581-616.
[http://dx.doi.org/10.1146/annurev.pharmtox.40.1.581 ] [PMID: 10836148]
[28]
Miners, J.O.; Chau, N.; Rowland, A.; Burns, K.; McKinnon, R.A.; Mackenzie, P.I.; Tucker, G.T.; Knights, K.M.; Kichenadasse, G. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia. Biochem. Pharmacol., 2017, 129, 85-95.
[http://dx.doi.org/10.1016/j.bcp.2017.01.002] [PMID: 28065859]
[29]
Wang, Z.; Wang, X.; Wang, Z.; Fan, X.; Yan, M.; Jiang, L.; Xia, Y.; Cao, J.; Liu, Y. Prediction of drug–drug interaction between dabrafenib and irinotecan via UGT1A1-mediated glucuronidation. Eur. J. Drug Metab. Pharmacokinet., 2022, 47(3), 353-361.
[http://dx.doi.org/10.1007/s13318-021-00740-x] [PMID: 35147853]
[30]
Wang, Z.; Jiang, L.; Wang, X.; Yin, H.; Wang, Z.; Lv, X.; Liu, Y. Cabozantinib carries the risk of drug-drug interactions via inhibition of UDP-glucuronosyltransferase (UGT) 1A9. Curr. Drug Metab., 2022, 23(11), 912-919.
[http://dx.doi.org/10.2174/1389200224666221028140652 ] [PMID: 36306450]
[31]
Yin, H.; Wang, Z.; Wang, X.; Lv, X.; Fan, X.; Yan, M.; Jia, Y.; Jiang, L.; Cao, J.; Liu, Y. Inhibition of human UDP‐glucuronosyltransferase enzyme by Dabrafenib: Implications for drug–drug interactions. Biomed. Chromatogr., 2021, 35(11), e5205.
[http://dx.doi.org/10.1002/bmc.5205] [PMID: 34192355]
[32]
Wang, Z.; Wang, X.; Wang, Z.; Jia, Y.; Feng, Y.; Jiang, L.; Xia, Y.; Cao, J.; Liu, Y. In vitro inhibition of human UDP-glucuronosyltransferase (UGT) 1A1 by osimertinib, and prediction of in vivo drug-drug interactions. Toxicol. Lett., 2021, 348, 10-17.
[http://dx.doi.org/10.1016/j.toxlet.2021.05.004] [PMID: 34044055]
[33]
Wang, Z.; Wang, X.; Jia, Y.; Yin, H.; Feng, Y.; Jiang, L.; Cao, J.; Liu, Y. Inhibition of human UDP‐glucuronosyltransferase enzymes by midostaurin and ruxolitinib: Implications for drug–drug interactions. Biopharm. Drug Dispos., 2020, 41(6), 231-238.
[http://dx.doi.org/10.1002/bdd.2241] [PMID: 32436276]
[34]
Wang, X.; Wang, Z.; Fan, X.; Yan, M.; Jiang, L.; Xia, Y.; Cao, J.; Liu, Y. Comparison of the drug-drug interactions potential of ibrutinib and acalabrutinib via inhibition of UDP-glucuronosyltransferase. Toxicol. Appl. Pharmacol., 2021, 424, 115595.
[http://dx.doi.org/10.1016/j.taap.2021.115595] [PMID: 34038714]
[35]
Zhang, N.; Liu, Y.; Jeong, H. Drug-drug interaction potentials of tyrosine kinase inhibitors via inhibition of UDP-glucuronosyltransferases. Sci. Rep., 2015, 5(1), 17778.
[http://dx.doi.org/10.1038/srep17778] [PMID: 26642944]
[36]
Liu, Y.; Ramírez, J.; House, L.; Ratain, M.J. Comparison of the drug-drug interactions potential of erlotinib and gefitinib via inhibition of UDP-glucuronosyltransferases. Drug Metab. Dispos., 2010, 38(1), 32-39.
[http://dx.doi.org/10.1124/dmd.109.029660] [PMID: 19850672]
[37]
Ai, L.; Zhu, L.; Yang, L.; Ge, G.; Cao, Y.; Liu, Y.; Fang, Z.; Zhang, Y. Selectivity for inhibition of nilotinib on the catalytic activity of human UDP-glucuronosyltransferases. Xenobiotica, 2014, 44(4), 320-325.
[http://dx.doi.org/10.3109/00498254.2013.840750] [PMID: 24066723]
[38]
Liu, Y.; Ramírez, J.; Ratain, M.J. Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors. Br. J. Clin. Pharmacol., 2011, 71(6), 917-920.
[http://dx.doi.org/10.1111/j.1365-2125.2011.03911.x] [PMID: 21235620]
[39]
Karbownik, A.; Miedziaszczyk, M.; Grabowski, T.; Stanisławiak-Rudowicz, J.; Jaźwiec, R.; Wolc, A.; Grześkowiak, E.; Szałek, E. In vivo assessment of potential for UGT-inhibition-based drug-drug interaction between sorafenib and tapentadol. Biomed. Pharmacother., 2020, 130, 110530.
[http://dx.doi.org/10.1016/j.biopha.2020.110530] [PMID: 32712531]
[40]
Verma, S.; Reddy, R.; Chandrashekhara, S.H.; Shamim, S.A.; Tripathy, S.; Rastogi, S. Avapritinib in advanced gastrointestinal stromal tumor: Case series and review of the literature from a tertiary care center in India. Future Sci. OA, 2021, 7(4), FSO676.
[http://dx.doi.org/10.2144/fsoa-2020-0178] [PMID: 33815822]
[41]
Lv, X.; Wang, Z.; Wang, Z.; Yin, H.; Xia, Y.; Jiang, L.; Liu, Y. Inhibition of human UDP-glucuronosyltransferase enzyme by ripretinib: Implications for drug-drug interactions. Toxicol. Appl. Pharmacol., 2023, 466, 116490.
[http://dx.doi.org/10.1016/j.taap.2023.116490] [PMID: 36963523]
[42]
Uchaipichat, V.; Mackenzie, P.I.; Elliot, D.J.; Miners, J.O. Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human udp-glucuronosyltransferases. Drug Metab. Dispos., 2006, 34(3), 449-456.
[http://dx.doi.org/10.1124/dmd.105.007369] [PMID: 16381668]
[43]
Lv, X.; Wang, Z.; Wang, Z.; Yin, H.; Xia, Y.; Jiang, L.; Liu, Y. Drug-drug interaction potentials of tucatinib inhibition of human UDP-glucuronosyltransferases. Chem. Biol. Interact., 2023, 381, 110574.
[http://dx.doi.org/10.1016/j.cbi.2023.110574] [PMID: 37263554]
[44]
Korprasertthaworn, P.; Chau, N.; Nair, P.C.; Rowland, A.; Miners, J.O. Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by kinase inhibitors: Effects of dabrafenib, ibrutinib, nintedanib, trametinib and BIBF 1202. Biochem. Pharmacol., 2019, 169, 113616.
[http://dx.doi.org/10.1016/j.bcp.2019.08.018] [PMID: 31445021]
[45]
Cao, Y.F.; He, R.R.; Cao, J.; Chen, J.X.; Huang, T.; Liu, Y. Drug-Drug interactions potential of icariin and its intestinal metabolites via inhibition of intestinal UDP-Glucuronosyltransferases. Evid. Based Complement. Alternat. Med., 2012, 2019, 395912.
[http://dx.doi.org/10.1155/2012/395912]
[46]
Seo, K.A.; Kim, H.J.; Jeong, E.S.; Abdalla, N.; Choi, C.S.; Kim, D.H.; Shin, J.G. In vitro assay of six UDP-glucuronosyltransferase isoforms in human liver microsomes, using cocktails of probe substrates and liquid chromatography-tandem mass spectrometry. Drug Metab. Dispos., 2014, 42(11), 1803-1810.
[http://dx.doi.org/10.1124/dmd.114.058818] [PMID: 25122565]
[47]
Jiang, L.; Wang, L.; Zhang, Z.; Wang, Z.; Wang, X.; Wang, S.; Luan, X.; Xia, Y.; Liu, Y. The pharmacokinetic interaction between irinotecan and sunitinib. Cancer Chemother. Pharmacol., 2020, 85(2), 443-448.
[http://dx.doi.org/10.1007/s00280-019-03985-1] [PMID: 31691077]
[48]
Wang, X.; Wang, Z.; Wang, Z.; Chen, X.; Yin, H.; Jiang, L.; Cao, J.; Liu, Y. Inhibition of human UDP-glucuronosyltransferase enzyme by belinostat: Implications for drug-drug interactions. Toxicol. Lett., 2021, 338, 51-57.
[http://dx.doi.org/10.1016/j.toxlet.2020.12.001] [PMID: 33290829]
[49]
Jiang, L.; Wang, Z.; Wang, X.; Wang, S.; Wang, Z.; Liu, Y. Piceatannol exhibits potential food-drug interactions through the inhibition of human UDP-glucuronosyltransferase (UGT) in vitro. Toxicol. In vitro, 2020, 67, 104890.
[http://dx.doi.org/10.1016/j.tiv.2020.104890] [PMID: 32446839]
[50]
Wang, Z.; Wang, Z.; Wang, X.; Lv, X.; Yin, H.; Fan, X.; Yan, M.; Jia, Y.; Jiang, L.; Xia, Y.; Li, W.; Liu, Y. In vitro effects of opicapone on activity of human UDP-glucuronosyltransferases isoforms. Toxicol. Lett., 2022, 367, 3-8.
[http://dx.doi.org/10.1016/j.toxlet.2022.07.003] [PMID: 35810997]
[51]
Austin, R.P.; Barton, P.; Cockroft, S.L.; Wenlock, M.C.; Riley, R.J. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab. Dispos., 2002, 30(12), 1497-1503.
[http://dx.doi.org/10.1124/dmd.30.12.1497] [PMID: 12433825]
[52]
Wang, Z.; Wang, Z.; Wang, X.; Lv, X.; Yin, H.; Jiang, L.; Xia, Y.; Li, W.; Li, W.; Liu, Y. Potential food-drug interaction risk of thymoquinone with warfarin. Chem. Biol. Interact., 2022, 365, 110070.
[http://dx.doi.org/10.1016/j.cbi.2022.110070] [PMID: 35921950]
[53]
Ito, K.; Brown, H.S.; Houston, J.B. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br. J. Clin. Pharmacol., 2004, 57(4), 473-486.
[http://dx.doi.org/10.1111/j.1365-2125.2003.02041.x] [PMID: 15025746]
[54]
Jiang, L.; Zhang, Z.; Xia, Y.; Wang, Z.; Wang, X.; Wang, S.; Wang, Z.; Liu, Y. Pterostilbene supplements carry the risk of drug interaction via inhibition of UDP-glucuronosyltransferases (UGT) 1A9 enzymes. Toxicol. Lett., 2020, 320, 46-51.
[http://dx.doi.org/10.1016/j.toxlet.2019.12.008] [PMID: 31812603]
[55]
FDA. In vitro drug interaction studies - cytochrome P450 Enzymeand Transporter-Mediated Drug Interactions Guidance for Industry. 2020. Available From: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/in-vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions
[56]
Steele, N.L.; Plumb, J.A.; Vidal, L.; Tjørnelund, J.; Knoblauch, P.; Buhl-Jensen, P.; Molife, R.; Brown, R.; de Bono, J.S.; Evans, T.R.J. Pharmacokinetic and pharmacodynamic properties of an oral formulation of the histone deacetylase inhibitor Belinostat (PXD101). Cancer Chemother. Pharmacol., 2011, 67(6), 1273-1279.
[http://dx.doi.org/10.1007/s00280-010-1419-5] [PMID: 20706839]
[57]
Miners, J.O.; Mackenzie, P.I.; Knights, K.M. The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitroin vivo extrapolation of drug clearance and drug-drug interaction potential. Drug Metab. Rev., 2010, 42(1), 196-208.
[http://dx.doi.org/10.3109/03602530903210716] [PMID: 19795925]
[58]
Oda, S.; Fujiwara, R.; Kutsuno, Y.; Fukami, T.; Itoh, T.; Yokoi, T.; Nakajima, M. Targeted screen for human UDP-glucuronosyltransferases inhibitors and the evaluation of potential drug-drug interactions with zafirlukast. Drug Metab. Dispos., 2015, 43(6), 812-818.
[http://dx.doi.org/10.1124/dmd.114.062141] [PMID: 25834030]
[59]
Fujiwara, R.; Nguyen, N.; Chen, S.; Tukey, R.H. Developmental hyperbilirubinemia and CNS toxicity in mice humanized with the UDP glucuronosyltransferase 1 (UGT1) locus. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 5024-5029.
[http://dx.doi.org/10.1073/pnas.0913290107] [PMID: 20194756]
[60]
Meech, R.; Hu, D.G.; McKinnon, R.A.; Mubarokah, S.N.; Haines, A.Z.; Nair, P.C.; Rowland, A.; Mackenzie, P.I. The UDP-Glycosyltransferase (UGT) superfamily: New members, new functions, and novel paradigms. Physiol. Rev., 2019, 99(2), 1153-1222.
[http://dx.doi.org/10.1152/physrev.00058.2017] [PMID: 30724669]
[61]
Reddy, M.B.; Bolger, M.B.; Fraczkiewicz, G.; Del Frari, L.; Luo, L.; Lukacova, V.; Mitra, A.; Macwan, J.S.; Mullin, J.M.; Parrott, N.; Heikkinen, A.T. PBPK modeling as a tool for predicting and understanding intestinal metabolism of uridine 5′-diphospho-glucuronosyltransferase substrates. Pharmaceutics, 2021, 13(9), 1325.
[http://dx.doi.org/10.3390/pharmaceutics13091325] [PMID: 34575401]
[62]
Lv, X.; Xia, Y.; Finel, M.; Wu, J.; Ge, G.; Yang, L. Recent progress and challenges in screening and characterization of UGT1A1 inhibitors. Acta Pharm. Sin. B, 2019, 9(2), 258-278.
[http://dx.doi.org/10.1016/j.apsb.2018.09.005] [PMID: 30972276]
[63]
Feng, L.; Wang, Y.; Qin, J.; Fu, Y.; Guo, Z.; Zhang, J.; He, G.; Jiang, Z.; Xu, X.; Zhou, C.; Gao, Y. UGT1A gene family members serve as potential targets and prognostic biomarkers for pancreatic cancer. BioMed Res. Int., 2021, 202112, 6673125.
[http://dx.doi.org/10.1155/2021/6673125]
[64]
Liu, D.; Yu, Q.; Ning, Q.; Liu, Z.; Song, J. The relationship between UGT1A1 gene & various diseases and prevention strategies. Drug Metab. Rev., 2022, 54(1), 1-21.
[http://dx.doi.org/10.1080/03602532.2021.2001493] [PMID: 34807779]
[65]
Qosa, H.; Avaritt, B.R.; Hartman, N.R.; Volpe, D.A. In vitro UGT1A1 inhibition by tyrosine kinase inhibitors and association with drug-induced hyperbilirubinemia. Cancer Chemother. Pharmacol., 2018, 82(5), 795-802.
[http://dx.doi.org/10.1007/s00280-018-3665-x] [PMID: 30105461]
[66]
Shah, R.R.; Morganroth, J.; Shah, D.R. Hepatotoxicity of tyrosine kinase inhibitors: Clinical and regulatory perspectives. Drug Saf., 2013, 36(7), 491-503.
[http://dx.doi.org/10.1007/s40264-013-0048-4] [PMID: 23620168]
[67]
Teo, Y.L.; Ho, H.K.; Chan, A. Risk of tyrosine kinase inhibitors-induced hepatotoxicity in cancer patients: A meta-analysis. Cancer Treat. Rev., 2013, 39(2), 199-206.
[http://dx.doi.org/10.1016/j.ctrv.2012.09.004] [PMID: 23099278]
[68]
Iacovelli, R.; Palazzo, A.; Procopio, G.; Santoni, M.; Trenta, P.; De Benedetto, A.; Mezi, S.; Cortesi, E. Incidence and relative risk of hepatic toxicity in patients treated with anti-angiogenic tyrosine kinase inhibitors for malignancy. Br. J. Clin. Pharmacol., 2014, 77(6), 929-938.
[http://dx.doi.org/10.1111/bcp.12231] [PMID: 23981115]
[69]
Mennillo, E.; Yang, X.; Weber, A.A.; Maruo, Y.; Verreault, M.; Barbier, O.; Chen, S.; Tukey, R.H. Intestinal UDP-Glucuronosyltransferase 1A1 and protection against irinotecan-induced toxicity in a Novel UDP-Glucuronosyltransferase 1A1 tissue-specific humanized mouse model. Drug Metab. Dispos., 2022, 50(1), 33-42.
[http://dx.doi.org/10.1124/dmd.121.000644] [PMID: 34697081]
[70]
Wen, Z.; Tallman, M.N.; Ali, S.Y.; Smith, P.C. UDP-glucuronosyltransferase 1A1 is the principal enzyme responsible for etoposide glucuronidation in human liver and intestinal microsomes: Structural characterization of phenolic and alcoholic glucuronides of etoposide and estimation of enzyme kinetics. Drug Metab. Dispos., 2007, 35(3), 371-380.
[http://dx.doi.org/10.1124/dmd.106.012732] [PMID: 17151191]
[71]
Fujita, K.; Sugiyama, M.; Akiyama, Y.; Ando, Y.; Sasaki, Y. The small-molecule tyrosine kinase inhibitor nilotinib is a potent noncompetitive inhibitor of the SN-38 glucuronidation by human UGT1A1. Cancer Chemother. Pharmacol., 2011, 67(1), 237-241.
[http://dx.doi.org/10.1007/s00280-010-1445-3] [PMID: 20814789]
[72]
Nelson, R.S.; Seligson, N.D.; Bottiglieri, S.; Carballido, E.; Cueto, A.D.; Imanirad, I.; Levine, R.; Parker, A.S.; Swain, S.M.; Tillman, E.M.; Hicks, J.K. UGT1A1 guided cancer therapy: Review of the evidence and considerations for clinical implementation. Cancers (Basel), 2021, 13(7), 1566.
[http://dx.doi.org/10.3390/cancers13071566] [PMID: 33805415]
[73]
Li, W.; Xing, Y.; Liu, Y. Inhibition of SN-38 glucuronidation by gefitinib and its metabolite. Cancer Chemother. Pharmacol., 2015, 75(6), 1253-1260.
[http://dx.doi.org/10.1007/s00280-015-2753-4] [PMID: 25917289]
[74]
Marques, S.C.; Ikediobi, O.N. The clinical application of UGT1A1pharmacogenetic testing: Gene-environment interactions. Hum. Genomics, 2010, 4(4), 238-249.
[http://dx.doi.org/10.1186/1479-7364-4-4-238 ] [PMID: 20511137]
[75]
Li, W.; Chen, Y.N.; Chen, Y.Y.; Wang, Z.; Wang, Z.; Jiang, L.L.; Shi, H.C.; Liu, Y. Inhibition of UGT1A1*1 and UGT1A1*6 catalyzed glucuronidation of SN-38 by silybins. Chem. Biol. Interact., 2022, 368, 110248.
[http://dx.doi.org/10.1016/j.cbi.2022.110248 ] [PMID: 36343684]
[76]
Liu, Y.; Ramírez, J.; House, L.; Ratain, M.J. The UGT1A1*28 polymorphism correlates with erlotinib’s effect on SN-38 glucuronidation. Eur. J. Cancer, 2010, 46(11), 2097-2103.
[http://dx.doi.org/10.1016/j.ejca.2010.04.022] [PMID: 20580994]
[77]
Kobayashi, H.; Mitsufuji, H.; Kubota, M.; Inaoka, H.; Hirose, M.; Iwabuchi, K.; Masuda, N.; Kobayashi, H. Prevalence of topoisomerase I genetic mutations and UGT1A1 polymorphisms associated with irinotecan in individuals of Asian descent. Oncol. Lett., 2011, 2(5), 923-928.
[http://dx.doi.org/10.3892/ol.2011.346 ] [PMID: 22866151]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy