Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

New Thieno[2,3-d]pyrimidines as Anticancer VEGFR-2 Inhibitors with Apoptosis Induction: Design, Synthesis, and Biological and In Silico Studies

Author(s): Eman A. Sobh*, Mohammed A. Dahab*, Eslam B. Elkaeed, Bshra A. Alsfouk, Ibrahim M. Ibrahim, Ahmed M. Metwaly and Ibrahim H. Eissa*

Volume 20, Issue 9, 2024

Published on: 24 May, 2024

Page: [876 - 899] Pages: 24

DOI: 10.2174/0115734064285433240513092047

Price: $65

Abstract

Background: Vascular endothelial growth factor receptor-2 (VEGFR-2) is a critical protein involved in tumor progression, making it an attractive target for cancer therapy.

Objective: This study aimed to synthesize and evaluate novel thieno[2,3-d]pyrimidine analogues as potential anticancer VEGFR-2 inhibitors.

Methods: The thieno[2,3-d]pyrimidine analogues were synthesized following the pharmacophoric features of VEGFR-2 inhibitors. The anticancer potential was assessed against PC3 and HepG2 cell lines. The VEGFR-2 inhibition was evaluated through IC50 determination. Cell cycle analysis and apoptosis assays were performed to elucidate the mechanisms of action. Molecular docking, molecular dynamics simulations, MM-GBSA, and PLIP studies were conducted to investigate the binding affinities and interactions with VEGFR-2. Additionally, in silico ADMET studies were performed.

Results: Compound 8b demonstrated significant anti-proliferative activities with IC50 values of 16.35 μM and 8.24 μM against PC3 and HepG2 cell lines, respectively, surpassing sorafenib and exhibiting enhanced selectivity indices. Furthermore, compound 8b showed an IC50 value of 73 nM for VEGFR-2 inhibition. Cell cycle analysis revealed G2-M phase arrest, while apoptosis assays demonstrated increased apoptosis in HepG2 cells. Molecular docking and dynamic simulations confirmed the binding affinity and interaction of compound 8b with VEGFR-2, supported by MMGBSA and PLIP studies. In silico ADMET studies indicated the drug development potential of the synthesized thieno[2,3-d]pyrimidines.

Conclusion: The study highlights compound 8b as a promising VEGFR-2 inhibitor with potent anti-proliferative activities. Its mechanism of action involves cell cycle arrest and induction of apoptosis. Further, molecular docking and dynamic simulations support the strong binding affinity of compound 8b to VEGFR-2.

[1]
Curado, M.P.; Voti, L.; Sortino-Rachou, A.M. Cancer registration data and quality indicators in low and middle income countries: Their interpretation and potential use for the improvement of cancer care. Cancer Causes Control, 2009, 20(5), 751-756.
[http://dx.doi.org/10.1007/s10552-008-9288-5] [PMID: 19112603]
[2]
Cancer, W.H.O. Fact sheet., Available from: http://www.who.int/news-room/fact-sheets/detail/cancer
[3]
Grant, S.K. Therapeutic protein kinase inhibitors. Cell. Mol. Life Sci., 2009, 66(7), 1163-1177.
[http://dx.doi.org/10.1007/s00018-008-8539-7] [PMID: 19011754]
[4]
Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov., 2021, 20(7), 551-569.
[http://dx.doi.org/10.1038/s41573-021-00195-4] [PMID: 34002056]
[5]
Wang, X.; Bove, A.M.; Simone, G.; Ma, B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol., 2020, 8, 599281.
[http://dx.doi.org/10.3389/fcell.2020.599281] [PMID: 33304904]
[6]
Shah, A.A.; Kamal, M.A.; Akhtar, S. Tumor angiogenesis and VEGFR-2: Mechanism, pathways and current biological therapeutic interventions. Curr. Drug Metab., 2021, 22(1), 50-59.
[http://dx.doi.org/10.2174/18755453MTEwxNzQ0x] [PMID: 33076807]
[7]
Liu, X.J.; Zhao, H.C.; Hou, S.J.; Zhang, H.J.; Cheng, L.; Yuan, S.; Zhang, L.R.; Song, J.; Zhang, S.Y.; Chen, S.W. Recent development of multi-target VEGFR-2 inhibitors for the cancer therapy. Bioorg. Chem., 2023, 133, 106425.
[http://dx.doi.org/10.1016/j.bioorg.2023.106425] [PMID: 36801788]
[8]
Gong, T.; Luo, Y.; Wang, Y.; Zheng, C.; Fang, J.; Min, L.; Zhou, Y.; Tu, C. Research, Multiple pulmonary metastases of recurrent Giant cell tumor of bone with expression of VEGFR-2 successfully controlled by Denosumab and Apatinib: a case report and literature review; Cancer Management, 2021, pp. 4447-4454.
[9]
Modi, S.J.; Kulkarni, V.M. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective. Med. Drug Discov., 2019, 2, 100009.
[http://dx.doi.org/10.1016/j.medidd.2019.100009]
[10]
Cheng, K.; Liu, C-F.; Rao, G-W. Anti-angiogenic agents: A review on vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. J. Curr. Med. Chem., 2021, 28(13), 2540-2564.
[http://dx.doi.org/10.2174/1875533XMTA2ENjE9z] [PMID: 32407259]
[11]
Farghaly, T.A.; Al-Hasani, W.A.; Abdulwahab, H.G. An updated patent review of VEGFR-2 inhibitors (2017-present). Expert Opin. Ther. Pat., 2021, 31(11), 989-1007.
[http://dx.doi.org/10.1080/13543776.2021.1935872] [PMID: 34043477]
[12]
Holmes, K.; Roberts, O.L.; Thomas, A.M.; Cross, M.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal., 2007, 19(10), 2003-2012.
[http://dx.doi.org/10.1016/j.cellsig.2007.05.013] [PMID: 17658244]
[13]
Morabito, A.; De Maio, E.; Di Maio, M.; Normanno, N.; Perrone, F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: Current status and future directions. Oncologist, 2006, 11(7), 753-764.
[http://dx.doi.org/10.1634/theoncologist.11-7-753] [PMID: 16880234]
[14]
Jamil, M.O.; Hathaway, A.; Mehta, A. Tivozanib: Status of development. Curr. Oncol. Rep., 2015, 17(6), 24.
[http://dx.doi.org/10.1007/s11912-015-0451-3] [PMID: 25895472]
[15]
Al-Salama, Z.T.; Syed, Y.Y.; Scott, L.J. Lenvatinib: A review in hepatocellular carcinoma. Drugs, 2019, 79(6), 665-674.
[http://dx.doi.org/10.1007/s40265-019-01116-x] [PMID: 30993651]
[16]
Ettrich, T.J.; Seufferlein, T. Regorafenib; Small Molecules in Oncology, 2018, pp. 45-56.
[17]
El-Metwally, S.A.; Abou-El-Regal, M.M.; Eissa, I.H.; Mehany, A.B.M.; Mahdy, H.A.; Elkady, H.; Elwan, A.; Elkaeed, E.B. Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Bioorg. Chem., 2021, 112, 104947.
[http://dx.doi.org/10.1016/j.bioorg.2021.104947] [PMID: 33964580]
[18]
El-Adl, K.; Sakr, H.M.; Yousef, R.G.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Abulkhair, H.S.; Eissa, I.H. Discovery of new quinoxaline-2(1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg. Chem., 2021, 114, 105105.
[http://dx.doi.org/10.1016/j.bioorg.2021.105105] [PMID: 34175720]
[19]
Alanazi, M.M.; Mahdy, H.A.; Alsaif, N.A.; Obaidullah, A.J.; Alkahtani, H.M.; Al-Mehizia, A.A.; Alsubaie, S.M.; Dahab, M.A.; Eissa, I.H. New bis([1,2,4]triazolo)[4,3-a:3′,4′-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorg. Chem., 2021, 112, 104949.
[http://dx.doi.org/10.1016/j.bioorg.2021.104949] [PMID: 34023640]
[20]
Yousef, R.G.; Sakr, H.M.; Eissa, I.H.; Mehany, A.B.M.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Abulkhair, H.S.; El-Adl, K. New quinoxaline-2(1 H) -ones as potential VEGFR-2 inhibitors: Design, synthesis, molecular docking, ADMET profile and anti-proliferative evaluations. New J. Chem., 2021, 45(36), 16949-16964.
[http://dx.doi.org/10.1039/D1NJ02509K]
[21]
Sobh, E.A.; Dahab, M.A.; Elkaeed, E.B.; Alsfouk, A.A.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. Discovery of new thieno[2, 3-d]pyrimidines as EGFR tyrosine kinase inhibitors for cancer treatment. Future Med. Chem., 2023, 15(13), 1167-1184.
[22]
Sobh, E.A.; Dahab, M.A.; Elkaeed, E.B.; Alsfouk, A.A.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. Design, synthesis, docking, MD simulations, and anti-proliferative evaluation of thieno[2,3- d]pyrimidine derivatives as new EGFR inhibitors. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2220579.
[http://dx.doi.org/10.1080/14756366.2023.2220579] [PMID: 37288786]
[23]
Sobh, E.A.; Dahab, M.A.; Elkaeed, E.B.; Alsfouk, B.A.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. A novel thieno[2,3‐ d]pyrimidine derivative inhibiting vascular endothelial growth factor receptor‐2: A story of computer‐aided drug discovery. Drug Dev. Res., 2023, 84(6), 1247-1265.
[http://dx.doi.org/10.1002/ddr.22083] [PMID: 37232504]
[24]
Abdelhaleem, E.F.; Abdelhameid, M.K.; Kassab, A.E.; Kandeel, M.M. Design and synthesis of thienopyrimidine urea derivatives with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7. Eur. J. Med. Chem., 2018, 143, 1807-1825.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.075] [PMID: 29133058]
[25]
Elkaeed, E.B.; Yousef, R.G.; Elkady, H.; Gobaara, I.M.M.; Alsfouk, B.A.; Husein, D.Z.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: In vitro anticancer and VEGFR-2 inhibitory effects. Molecules, 2022, 27(14), 4606.
[http://dx.doi.org/10.3390/molecules27144606] [PMID: 35889478]
[26]
Eissa, I.H.; Yousef, R.G.; Elkady, H.; Elkaeed, E.B.; Alsfouk, A.A.; Husein, D.Z.; Ibrahim, I.M.; Elhendawy, M.A.; Godfrey, M.; Metwaly, A.M. Design, semi-synthesis, anti-cancer assessment, docking, MD simulation, and DFT studies of novel theobromine-based derivatives as VEGFR-2 inhibitors and apoptosis inducers. Comput. Biol. Chem., 2023, 107, 107953.
[http://dx.doi.org/10.1016/j.compbiolchem.2023.107953] [PMID: 37673011]
[27]
Eissa, I.H.; Yousef, R.G.; Sami, M.; Elkaeed, E.B.; Alsfouk, B.A.; Ibrahim, I.M.; Husein, D.Z.; Elkady, H.; Metwaly, A.M. Exploring the anticancer properties of a new nicotinamide analogue: Investigations into in silico analysis, antiproliferative effects, selectivity, VEGFR-2 inhibition, apoptosis induction, and migration suppression. Pathol. Res. Pract., 2023, 252, 154924.
[http://dx.doi.org/10.1016/j.prp.2023.154924] [PMID: 37956639]
[28]
Eissa, I.H.; Yousef, R.G.; Asmaey, M.A.; Elkady, H.; Husein, D.Z.; Alsfouk, A.A.; Ibrahim, I.M.; Elkady, M.A.; Elkaeed, E.B.; Metwaly, A.M. Computer-assisted drug discovery (CADD) of an anti-cancer derivative of the theobromine alkaloid inhibiting VEGFR-2. Saudi Pharm. J., 2023, 101852.
[29]
Eissa, I.H.; Yousef, R.G.; Elkady, H.; Elkaeed, E.B.; Alsfouk, B.A.; Husein, D.Z.; Asmaey, M.A.; Ibrahim, I.M.; Metwaly, A.M. Anti-breast cancer potential of a new xanthine derivative: In silico, antiproliferative, selectivity, VEGFR-2 inhibition, apoptosis induction and migration inhibition studies. Pathol. Res. Pract., 2023, 251, 154894.
[http://dx.doi.org/10.1016/j.prp.2023.154894] [PMID: 37857034]
[30]
Dahab, M.A.; Mahdy, H.A.; Elkady, H.; Taghour, M.S.; Elwan, A.; Elkady, M.A.; Elsakka, E.G.E.; Elkaeed, E.B.; Alsfouk, A.A.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. Semi-synthesized anticancer theobromine derivatives targeting VEGFR-2: in silico and in vitro evaluations. J. Biomol. Struct. Dyn., 2024, 42(8), 4214-4233.
[http://dx.doi.org/10.1080/07391102.2023.2219333] [PMID: 37261471]
[31]
Eissa, I.H.; Mohammad, H.; Qassem, O.A.; Younis, W.; Abdelghany, T.M.; Elshafeey, A.; Abd Rabo Moustafa, M.M.; Seleem, M.N.; Mayhoub, A.S. Diphenylurea derivatives for combating methicillin- and vancomycin-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2017, 130, 73-85.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.044] [PMID: 28249208]
[32]
Sobh, E.A.; Dahab, M.A.; Elkaeed, E.B.; Alsfouk, A.A.; Ibrahim, I.M.; Metwaly, A.M.; Eissa, I.H. Computer aided drug discovery (CADD) of a thieno[2,3-d]pyrimidine derivative as a new EGFR inhibitor targeting the ribose pocket. J. Biomol. Struct. Dyn., 2024, 42(5), 2369-2391.
[PMID: 37129193]
[33]
Golub, A.G.; Bdzhola, V.G.; Briukhovetska, N.V.; Balanda, A.O.; Kukharenko, O.P.; Kotey, I.M.; Ostrynska, O.V.; Yarmoluk, S.M. Synthesis and biological evaluation of substituted (thieno[2,3-d]pyrimidin-4-ylthio)carboxylic acids as inhibitors of human protein kinase CK2. Eur. J. Med. Chem., 2011, 46(3), 870-876.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.025] [PMID: 21276643]
[34]
Abbas, S.E.; Abdel Gawad, N.M.; George, R.F.; Akar, Y.A. Synthesis, antitumor and antibacterial activities of some novel tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem., 2013, 65, 195-204.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.055] [PMID: 23708013]
[35]
Ostrynska, O.V.; Balanda, A.O.; Bdzhola, V.G.; Golub, A.G.; Kotey, I.M.; Kukharenko, O.P.; Gryshchenko, A.A.; Briukhovetska, N.V.; Yarmoluk, S.M. Design and synthesis of novel protein kinase CK2 inhibitors on the base of 4-aminothieno[2,3-d]pyrimidines. Eur. J. Med. Chem., 2016, 115, 148-160.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.004] [PMID: 27017545]
[36]
Elkady, H.; Elwan, A.; El-Mahdy, H.A.; Doghish, A.S.; Ismail, A.; Taghour, M.S.; Elkaeed, E.B.; Eissa, I.H.; Dahab, M.A.; Mahdy, H.A.; Khalifa, M.M. New benzoxazole derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, anti-proliferative evaluation, flowcytometric analysis, and in silico studies. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 403-416.
[http://dx.doi.org/10.1080/14756366.2021.2015343] [PMID: 34961427]
[37]
Wang, J.; Lenardo, M.J. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J. Cell Sci., 2000, 113(5), 753-757.
[http://dx.doi.org/10.1242/jcs.113.5.753] [PMID: 10671365]
[38]
Lo, K.K.W.; Lee, T.K.M.; Lau, J.S.Y.; Poon, W.L.; Cheng, S.H. Luminescent biological probes derived from ruthenium(II) estradiol polypyridine complexes. Inorg. Chem., 2008, 47(1), 200-208.
[http://dx.doi.org/10.1021/ic701735q] [PMID: 18067284]
[39]
Sabt, A.; Abdelhafez, O.M.; El-Haggar, R.S.; Madkour, H.M.F.; Eldehna, W.M.; El-Khrisy, E.E.D.A.M.; Abdel-Rahman, M.A.; Rashed, L.A. Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: Synthesis, in vitro biological evaluation, and QSAR studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1095-1107.
[http://dx.doi.org/10.1080/14756366.2018.1477137] [PMID: 29944015]
[40]
Hagras, M.; Saleh, M.A.; Ezz Eldin, R.R.; Abuelkhir, A.A.; Khidr, E.G.; El-Husseiny, A.A.; El-Mahdy, H.A.; Elkaeed, E.B.; Eissa, I.H. 1,3,4-Oxadiazole-naphthalene hybrids as potential VEGFR-2 inhibitors: Design, synthesis, antiproliferative activity, apoptotic effect, and in silico studies. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 386-402.
[http://dx.doi.org/10.1080/14756366.2021.2015342] [PMID: 34923885]
[41]
Elwan, A.; Abdallah, A.E.; Mahdy, H.A.; Dahab, M.A.; Taghour, M.S.; Elkaeed, E.B.; Mehany, A.B.M.; Nabeeh, A.; Adel, M.; Alsfouk, A.A.; Elkady, H.; Eissa, I.H. Modified benzoxazole-based VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, and anti-proliferative evaluation. Molecules, 2022, 27(15), 5047.
[http://dx.doi.org/10.3390/molecules27155047] [PMID: 35956997]
[42]
Elkaeed, E.B.; Youssef, F.S.; Eissa, I.H.; Elkady, H.; Alsfouk, A.A.; Ashour, M.L.; El Hassab, M.A.; Abou-Seri, S.M.; Metwaly, A.M. Multi-step in silico discovery of natural drugs against COVID-19 targeting main protease. Int. J. Mol. Sci., 2022, 23(13), 6912.
[http://dx.doi.org/10.3390/ijms23136912] [PMID: 35805916]
[43]
Yousef, R.G.; Elwan, A.; Gobaara, I.M.M.; Mehany, A.B.M.; Eldehna, W.M.; El-Metwally, S.A.A.; A Alsfouk, B.; Elkaeed, E.B.; Metwaly, A.M.; Eissa, I.H. Anti-cancer and immunomodulatory evaluation of new nicotinamide derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: In vitro and in silico studies. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 2206-2222.
[http://dx.doi.org/10.1080/14756366.2022.2110868] [PMID: 35980113]
[44]
Tormyshev, V.; Flinn, A.; Trukhin, D.; Rogozhnikova, O.; Mikhalina, T.; Troitskaya, T. Aryl alkyl ketones in a one-pot Gewald synthesis of 2-aminothiophenes. Synlett, 2006, 2006(16), 2559-2564.
[http://dx.doi.org/10.1055/s-2006-951484]
[45]
Kandeel, M.M.; Mounir, A.A.; Refaat, H.M.; Kassab, A.E. Synthesis of thieno[2, 3-d] pyrimidines, thieno[2, 3-d] triazinones and thieno[2, 3-e] diazepinones of anticipated anti-cancer activity. J. Chem. Res., 2012, 36(2), 105-110.
[http://dx.doi.org/10.3184/174751912X13282020691270]
[46]
Singh, B.S.; Lobo, H.R.; Pinjari, D.V.; Jarag, K.J.; Pandit, A.B.; Shankarling, G.S. Comparative material study and synthesis of 4-(4-nitrophenyl)oxazol-2-amine via sonochemical and thermal method. Ultrason. Sonochem., 2013, 20(2), 633-639.
[http://dx.doi.org/10.1016/j.ultsonch.2012.09.002] [PMID: 23062955]
[47]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[48]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods, 1986, 89(2), 271-277.
[http://dx.doi.org/10.1016/0022-1759(86)90368-6] [PMID: 3486233]
[49]
Thabrew, M.I.; Hughes, R.D.; McFarlane, I.G. Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay. J. Pharm. Pharmacol., 2011, 49(11), 1132-1135.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06055.x] [PMID: 9401951]
[50]
Li, M.; Jiang, D.; Barnhart, T.E.; Cao, T.; Engle, J.W.; Chen, W.; Cai, W. Immuno-PET imaging of VEGFR-2 expression in prostate cancer with 89Zr-labeled ramucirumab. Am. J. Cancer Res., 2019, 9(9), 2037-2046.
[PMID: 31598404]
[51]
Chu, J.S.; Ge, F.J.; Zhang, B.; Wang, Y.; Silvestris, N.; Liu, L.J.; Zhao, C.H.; Lin, L.; Brunetti, A.E.; Fu, Y.L.; Wang, J.; Paradiso, A.; Xu, J.M. Expression and prognostic value of VEGFR-2, PDGFR-β, and c-Met in advanced hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2013, 32(1), 16.
[http://dx.doi.org/10.1186/1756-9966-32-16] [PMID: 23552472]
[52]
Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2006, 2(7), 358-364.
[http://dx.doi.org/10.1038/nchembio799] [PMID: 16783341]
[53]
Dietrich, J.; Hulme, C.; Hurley, L.H. The design, synthesis, and evaluation of 8 hybrid DFG-out allosteric kinase inhibitors: A structural analysis of the binding interactions of Gleevec®, Nexavar®, and BIRB-796. Bioorg. Med. Chem., 2010, 18(15), 5738-5748.
[http://dx.doi.org/10.1016/j.bmc.2010.05.063] [PMID: 20621496]
[54]
Ferreira, L.L.G.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today, 2019, 24(5), 1157-1165.
[http://dx.doi.org/10.1016/j.drudis.2019.03.015] [PMID: 30890362]
[55]
Dearden, J.C. In silico prediction of drug toxicity. J. Comput. Aided Mol. Des., 2003, 17(2/4), 119-127.
[http://dx.doi.org/10.1023/A:1025361621494] [PMID: 13677480]
[56]
Idakwo, G.; Luttrell, J.; Chen, M.; Hong, H.; Zhou, Z.; Gong, P.; Zhang, C. A review on machine learning methods for in silico toxicity prediction. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2018, 36(4), 169-191.
[http://dx.doi.org/10.1080/10590501.2018.1537118] [PMID: 30628866]
[57]
Kruhlak, N.L.; Benz, R.D.; Zhou, H.; Colatsky, T.J. (Q)SAR modeling and safety assessment in regulatory review. Clin. Pharmacol. Ther., 2012, 91(3), 529-534.
[http://dx.doi.org/10.1038/clpt.2011.300] [PMID: 22258468]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy