Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Unveiling FDA-Approved Drugs and Formulations in the Management of Bladder Cancer: A Review

In Press, (this is not the final "Version of Record"). Available online 23 May, 2024
Author(s): Keshav Bansal*, Neeraj Chaudhary, Hemant Bhati and Vanshita Singh
Published on: 23 May, 2024

DOI: 10.2174/0113892010314650240514053735

Price: $95

Abstract

Urological cancers are one of the most prevalent malignancies around the globe. Specifically, bladder cancer severely threatens the health of humans because of its heterogeneous and aggressive nature. Extensive studies have been conducted for many years in order to address the limitations associated with the treatment of solid tumors with selective substances. This article aims to provide a summary of the therapeutic drugs that have received FDA approval or are presently in the testing phase for use in the prevention or treatment of bladder cancer. In this review, FDA-approved drugs for bladder cancer treatment have been listed along with their dose protocols, current status, pharmacokinetics, action mechanisms, and marketed products. The article also emphasizes the novel preparations of these drugs that are presently under clinical trials or are in the approval stage. Thus, this review will serve as a single point of reference for scientists involved in the formulation development of these drugs.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Kouznetsova, V.L.; Kim, E.; Romm, E.L.; Zhu, A.; Tsigelny, I.F. Recognition of early and late stages of bladder cancer using metabolites and machine learning. Metabolomics, 2019, 15(7), 94.
[http://dx.doi.org/10.1007/s11306-019-1555-9] [PMID: 31222577]
[3]
Pardo, J.C.; Ruiz de Porras, V.; Plaja, A.; Carrato, C.; Etxaniz, O.; Buisan, O.; Font, A. Moving towards personalized medicine in muscle-invasive bladder cancer: where are we now and where are we going? Int. J. Mol. Sci., 2020, 21(17), 6271.
[http://dx.doi.org/10.3390/ijms21176271] [PMID: 32872531]
[4]
Shariat, S.F.; Sfakianos, J.P.; Droller, M.J.; Karakiewicz, P.I.; Meryn, S.; Bochner, B.H. The effect of age and gender on bladder cancer: a critical review of the literature. BJU Int., 2010, 105(3), 300-308.
[http://dx.doi.org/10.1111/j.1464-410X.2009.09076.x] [PMID: 19912200]
[5]
Andersson, K.E.; Arner, A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev., 2004, 84(3), 935-986.
[http://dx.doi.org/10.1152/physrev.00038.2003] [PMID: 15269341]
[6]
Mushtaq, J.; Thurairaja, R.; Nair, R. Bladder cancer. Renal and Urological Surgery – II, 2019, 37(9), 529-537.
[7]
Mostafa, M.H.; Sheweita, S.A.; O’Connor, P.J. Relationship between schistosomiasis and bladder cancer. Clin. Microbiol. Rev., 1999, 12(1), 97-111.
[http://dx.doi.org/10.1128/CMR.12.1.97] [PMID: 9880476]
[8]
Jamal, A.; Phillips, E.; Gentzke, A.S.; Homa, D.M.; Babb, S.D.; King, B.A.; Neff, L.J. Current cigarette smoking among adults - United States, 2016. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(2), 53-59.
[http://dx.doi.org/10.15585/mmwr.mm6702a1] [PMID: 29346338]
[9]
Freedman, N.D.; Silverman, D.T.; Hollenbeck, A.R.; Schatzkin, A.; Abnet, C.C. Association between smoking and risk of bladder cancer among men and women. JAMA, 2011, 306(7), 737-745.
[http://dx.doi.org/10.1001/jama.2011.1142] [PMID: 21846855]
[10]
Al-Zalabani, A.H.; Stewart, K.F.J.; Wesselius, A.; Schols, A.M.W.J.; Zeegers, M.P. Modifiable risk factors for the prevention of bladder cancer: a systematic review of meta-analyses. Eur. J. Epidemiol., 2016, 31(9), 811-851.
[http://dx.doi.org/10.1007/s10654-016-0138-6] [PMID: 27000312]
[11]
Kirkali, Z.; Chan, T.; Manoharan, M.; Algaba, F.; Busch, C.; Cheng, L.; Kiemeney, L.; Kriegmair, M.; Montironi, R.; Murphy, W.M.; Sesterhenn, I.A.; Tachibana, M.; Weider, J. Bladder cancer: Epidemiology, staging and grading, and diagnosis. Urology, 2005, 66(6)(Suppl. 1), 4-34.
[http://dx.doi.org/10.1016/j.urology.2005.07.062] [PMID: 16399414]
[12]
van den Bosch, S.; Alfred Witjes, J. Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: a systematic review. Eur. Urol., 2011, 60(3), 493-500.
[http://dx.doi.org/10.1016/j.eururo.2011.05.045] [PMID: 21664041]
[13]
Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A.; Barsouk, A. Epidemiology of bladder cancer. Med. Sci. (Basel), 2020, 8(1), 15.
[http://dx.doi.org/10.3390/medsci8010015] [PMID: 32183076]
[14]
Sylvester, R.J.; Oosterlinck, W.; van der Meijden, A.P.M. A single immediate postoperative instillation of chemotherapy decreases the risk of recurrence in patients with stage Ta T1 bladder cancer: a meta-analysis of published results of randomized clinical trials. J. Urol., 2004, 171(6 Pt 1), 2186-2190.
[http://dx.doi.org/10.1097/01.ju.0000125486.92260.b2] [PMID: 15126782]
[15]
Matulewicz, R.S.; Steinberg, G.D. Non-muscle-invasive bladder cancer: overview and contemporary treatment landscape of neoadjuvant chemoablative therapies. Rev. Urol., 2020, 22(2), 43-51.
[PMID: 32760227]
[16]
Tran, L.; Xiao, J.F.; Agarwal, N.; Duex, J.E.; Theodorescu, D. Advances in bladder cancer biology and therapy. Nat. Rev. Cancer, 2021, 21(2), 104-121.
[http://dx.doi.org/10.1038/s41568-020-00313-1] [PMID: 33268841]
[17]
Liu, B.; Gao, X.; Han, B.; Chen, G.; Song, S.; Bo, H. Mouse model to explore the therapeutic effect of nano-doxorubicin drug delivery system on bladder cancer. J. Nanosci. Nanotechnol., 2021, 21(2), 914-920.
[http://dx.doi.org/10.1166/jnn.2021.18651] [PMID: 33183424]
[18]
Lu, Y.; Wang, S.; Wang, Y.; Li, M.; Liu, Y.; Xue, D. Current researches on nanodrug delivery systems in bladder cancer intravesical chemotherapy. Front. Oncol., 2022, 12, 879828.
[http://dx.doi.org/10.3389/fonc.2022.879828] [PMID: 35720013]
[19]
Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Primers, 2017, 3(1), 17022.
[http://dx.doi.org/10.1038/nrdp.2017.22] [PMID: 28406148]
[20]
Burdett, S.; Fisher, D.J.; Vale, C.L.; Sternberg, C.N.; Clarke, N.W.; Parmar, M.K.B.; Bono, A.V.; Cognetti, F.; Collette, L.; Cote, R.J.; Goebell, P.J.; Groshen, S.; Lehmann, J.; Rolevich, A.I.; Sonntag, R.W.; Stockle, M.; Studer, U.E.; Torti, F.M.; Zhegalik, A.G.; Tierney, J.F. Adjuvant chemotherapy for muscle-invasive bladder cancer: a systematic review and meta-analysis of individual participant data from randomized controlled trials. Eur. Urol., 2022, 81(1), 50-61.
[http://dx.doi.org/10.1016/j.eururo.2021.09.028] [PMID: 34802798]
[21]
Hartshorn, C.M.; Russell, L.M.; Grodzinski, P. National Cancer Institute Alliance for nanotechnology in cancer—Catalyzing research and translation toward novel cancer diagnostics and therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(6), e1570.
[http://dx.doi.org/10.1002/wnan.1570] [PMID: 31257722]
[22]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[23]
O’Dwyer, P.J.; Stevenson, J.P.; Johnson, S.W. Clinical pharmacokinetics and administration of established platinum drugs. Drugs, 2000, 59(Suppl. 4), 19-27.
[http://dx.doi.org/10.2165/00003495-200059004-00003] [PMID: 10864227]
[24]
Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Baergen, R. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol., 2003, 21(17), 3194-3200.
[http://dx.doi.org/10.1200/JCO.2003.02.153] [PMID: 12860964]
[25]
Fu, G.; Wu, Y.; Zhao, G.; Chen, X.; Xu, Z.; Sun, J.; Tian, J.; Cheng, Z.; Shi, Y.; Jin, B. Activation of CGAS-STING signal to inhibit the proliferation of bladder cancer: the immune effect of cisplatin. Cells, 2022, 11(19), 3011.
[http://dx.doi.org/10.3390/cells11193011] [PMID: 36230972]
[26]
Leo, C. P.; Leo, C.; Szucs, T. D. Breast cancer drug approvals by the US FDA from 1949 to 2018 Nat Rev Drug Discov., 2020, 19(1), 11.2020, Erratum in: Nat Rev Drug Discov. 2020 Apr;19(4):291.
[http://dx.doi.org/10.1038/d41573-019-00201-w] [PMID: 31907423]
[27]
Nakada, T.; Akiya, T.; Yoshikawa, M.; Koike, H.; Kayayama, T. Intravesical instillation of doxorubicin hydrochloride and its incorporation into bladder tumors. J. Urol., 1985, 134(1), 54-57.
[http://dx.doi.org/10.1016/S0022-5347(17)46977-1] [PMID: 4009823]
[28]
Pinto, I. Systemic therapy in bladder cancer. Indian J. Urol., 2017, 33(2), 118-126.
[http://dx.doi.org/10.4103/iju.IJU_294_16] [PMID: 28469299]
[29]
Pfister, C.; Gravis, G.; Fléchon, A.; Chevreau, C.; Mahammedi, H.; Laguerre, B.; Guillot, A.; Joly, F.; Soulié, M.; Allory, Y.; Harter, V.; Culine, S. Dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin or gemcitabine and cisplatin as perioperative chemotherapy for patients with nonmetastatic muscle-invasive bladder cancer: results of the GETUG-AFU V05 VESPER trial. J. Clin. Oncol., 2022, 40(18), 2013-2022.
[http://dx.doi.org/10.1200/JCO.21.02051] [PMID: 35254888]
[30]
Hu, X.; Li, G.; Wu, S. Advances in diagnosis and therapy for bladder cancer. Cancers (Basel), 2022, 14(13), 3181.
[http://dx.doi.org/10.3390/cancers14133181] [PMID: 35804953]
[31]
Charpentier, X.; Kay, E.; Schneider, D.; Shuman, H.A. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J. Bacteriol., 2011, 193(5), 1114-1121.
[http://dx.doi.org/10.1128/JB.01146-10] [PMID: 21169481]
[32]
Veeratterapillay, R.; Heer, R.; Johnson, M.I.; Persad, R.; Bach, C. High-risk non-muscle-invasive bladder cancer-therapy options during intravesical bcg shortage. Curr. Urol. Rep., 2016, 17(9), 68.
[http://dx.doi.org/10.1007/s11934-016-0625-z] [PMID: 27492610]
[33]
Volpe, A.; Racioppi, M.; D’Agostino, D.; Cappa, E.; Filianoti, A.; Bassi, P.F. Mitomycin C for the treatment of bladder cancer. Minerva Urol. Nefrol., 2010, 62(2), 133-144.
[PMID: 20562793]
[34]
FDA Approves Jelmyto (Mitomycin gel) for Urothelial Cancer. Available from: https://www.cancer.org/cancer/latest-news/fda-approvesjelmyto-mitomycin-gel-for-urothelial-cancer.html
[35]
Cheng, S.Y.; Delgado-Cruzata, L.; Clement, C.C.; Zacarias, O.; Concheiro-Guisan, M.; Towler, N.; Snyder, T.; Zheng, M.; Almodovar, N.; Gonzalez, C.; Romaine, M.; Sapse, A.M.; Champeil, E. Cytotoxicity, crosslinking and biological activity of three mitomycins. Bioorg. Chem., 2022, 123, 105744.
[http://dx.doi.org/10.1016/j.bioorg.2022.105744] [PMID: 35349830]
[36]
Liu, P.C.C.; Koblish, H.; Wu, L.; Bowman, K.; Diamond, S.; DiMatteo, D.; Zhang, Y.; Hansbury, M.; Rupar, M.; Wen, X.; Collier, P.; Feldman, P.; Klabe, R.; Burke, K.A.; Soloviev, M.; Gardiner, C.; He, X.; Volgina, A.; Covington, M.; Ruggeri, B.; Wynn, R.; Burn, T.C.; Scherle, P.; Yeleswaram, S.; Yao, W.; Huber, R.; Hollis, G. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS One, 2020, 15(4), e0231877.
[http://dx.doi.org/10.1371/journal.pone.0231877] [PMID: 32315352]
[37]
Subbiah, V.; Iannotti, N.O.; Gutierrez, M.; Smith, D.C.; Féliz, L.; Lihou, C.F.; Tian, C.; Silverman, I.M.; Ji, T.; Saleh, M. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann. Oncol., 2022, 33(5), 522-533.
[http://dx.doi.org/10.1016/j.annonc.2022.02.001] [PMID: 35176457]
[38]
Necchi, A.; Pouessel, D.; Leibowitz, R.; Gupta, S.; Fléchon, A.; García-Donas, J.; Bilen, M.A.; Debruyne, P.R.; Milowsky, M.I.; Friedlander, T.; Maio, M.; Gilmartin, A.; Li, X.; Veronese, M.L.; Loriot, Y. Pemigatinib for metastatic or surgically unresectable urothelial carcinoma with FGF/FGFR genomic alterations: final results from FIGHT-201. Ann. Oncol., 2024, 35(2), 200-210.
[http://dx.doi.org/10.1016/j.annonc.2023.10.794] [PMID: 37956738]
[39]
Hoy, S.M. Pemigatinib: First Approval. Drugs, 2020, 80(9), 923-929.
[http://dx.doi.org/10.1007/s40265-020-01330-y] [PMID: 32472305]
[40]
Franza, A.; Pirovano, M.; Giannatempo, P.; Cosmai, L. Erdafitinib in locally advanced/metastatic urothelial carcinoma with certain FGFR genetic alterations. Future Oncol., 2022, 18(19), 2455-2464.
[http://dx.doi.org/10.2217/fon-2021-1151] [PMID: 35387485]
[41]
Marandino, L.; Raggi, D.; Giannatempo, P.; Farè, E.; Necchi, A. Erdafitinib for the treatment of urothelial cancer. Expert Rev. Anticancer Ther., 2019, 19(10), 835-846.
[http://dx.doi.org/10.1080/14737140.2019.1671190] [PMID: 31544541]
[42]
Sayegh, N.; Tripathi, N.; Agarwal, N.; Swami, U. Clinical evidence and selecting patients for treatment with erdafitinib in advanced urothelial carcinoma. OncoTargets Ther., 2022, 15, 1047-1055.
[http://dx.doi.org/10.2147/OTT.S318332] [PMID: 36186154]
[43]
Ouyang, Y.; Ou, Z.; Zhong, W.; Yang, J.; Fu, S.; Ouyang, N.; Chen, J.; Xu, L.; Wu, D.; Qian, J.; Lin, Y.; Lin, T.; Huang, J. FGFR3 Alterations in bladder cancer stimulate serine synthesis to induce immune-inert macrophages that suppress t-cell recruitment and activation. Cancer Res., 2023, 83(24), 4030-4046.
[http://dx.doi.org/10.1158/0008-5472.CAN-23-1065] [PMID: 37768887]
[44]
Catto, J.W.F.; Tran, B.; Rouprêt, M.; Gschwend, J.E.; Loriot, Y.; Nishiyama, H.; Redorta, J.P.; Daneshmand, S.; Hussain, S.A.; Cutuli, H.J.; Procopio, G.; Guadalupi, V.; Vasdev, N.; Naini, V.; Crow, L.; Triantos, S.; Baig, M.; Steinberg, G.; Bengio, R.; Cutuli, H.; Salinas, J.; Ameye, F.; Joniau, S.; Rodrigues da Rosa, D.; Martins da Trindade, K.; Luz, M.A.; Bavaresco, M.H.; de Paula, A.; Santiag, J.; Wang, S.; Ye, D.; Boegemann, M.; Roghmann, F.; Heidrich, A.; Hellmis, E.; Faba, Ó.R.; Dominguez, J.L.; Mathieu, R.; Colombel, M.; Bladou, F.; Artignan, X.; Vasdev, N.; Shimpi, R.; Guadalupi, V.; Tambaro, R.; Sirotova, Z.; Spada, M.; Necchi, A.; Nakatsu, H.; Kikuchi, E.; Shimizu, N.; Kanao, K.; Sumitomo, M.; Naito, Y.; Ham, W.S.; Jung, S-I.; Ha, H.; Joo, K.J.; Ku, J.H.; Seo, H.K.; Yun, S.; Kolodziej, A.; Lawinski, J.; Morris, D.; Daneshmand, S.; Mian, B.; Lee, E. Erdafitinib in BCG-treated high-risk non-muscle-invasive bladder cancer. Ann. Oncol., 2024, 35(1), 98-106.
[http://dx.doi.org/10.1016/j.annonc.2023.09.3116] [PMID: 37871701]
[45]
Liu, N.; Rowley, B.R.; Bull, C.O.; Schneider, C.; Haegebarth, A.; Schatz, C.A.; Fracasso, P.R.; Wilkie, D.P.; Hentemann, M.; Wilhelm, S.M.; Scott, W.J.; Mumberg, D.; Ziegelbauer, K. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther., 2013, 12(11), 2319-2330.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0993-T] [PMID: 24170767]
[46]
Krause, G.; Hassenrück, F.; Hallek, M. Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib. Drug Des. Devel. Ther., 2018, 12, 2577-2590.
[http://dx.doi.org/10.2147/DDDT.S142406] [PMID: 30174412]
[47]
Zhu, S.; Ma, A.H.; Zhu, Z.; Adib, E.; Rao, T.; Li, N.; Ni, K.; Chittepu, V.C.S.R.; Prabhala, R.; Garisto Risco, J.; Kwiatkowski, D.; Mouw, K.; Sonpavde, G.; Cheng, F.; Pan, C. Synergistic antitumor activity of pan-PI3K inhibition and immune checkpoint blockade in bladder cancer. J. Immunother. Cancer, 2021, 9(11), e002917.
[http://dx.doi.org/10.1136/jitc-2021-002917] [PMID: 34725212]
[48]
Farrukh, H.; Zhu, Z.; Zhu, S.; Montgomery, R.B.; Meeks, J.J.; VanderWeele, D.J.; Wong, Y.N.; Lew, R.A.; Pan, C. A phase II trial with copanlisib plus avelumab as maintenance therapy for metastatic bladder cancer after platinum-based chemotherapy. J. Clin. Oncol., 2023, 41(16_suppl), TPS4610-TPS4610.
[http://dx.doi.org/10.1200/JCO.2023.41.16_suppl.TPS4610]
[49]
Munoz, J.; Follows, G.A.; Nastoupil, L.J. Copanlisib for the treatment of malignant lymphoma: clinical experience and future perspectives. Target. Oncol., 2021, 16(3), 295-308.
[http://dx.doi.org/10.1007/s11523-021-00802-9] [PMID: 33687623]
[50]
du Rusquec, P.; de Calbiac, O.; Robert, M.; Campone, M.; Frenel, J.S. Clinical utility of pembrolizumab in the management of advanced solid tumors: an evidence-based review on the emerging new data. Cancer Manag. Res., 2019, 11, 4297-4312.
[http://dx.doi.org/10.2147/CMAR.S151023] [PMID: 31190995]
[51]
Pembrolizumab (Keytruda) for the treatment of advanced bladder cancer (urothelial carcinoma): Overview; Available from: https://www.ncbi.nlm.nih.gov/books/NBK481481/
[52]
Crist, M.; Iyer, G.; Hsu, M.; Huang, W.C.; Balar, A.V. Pembrolizumab in the treatment of locally advanced or metastatic urothelial carcinoma: clinical trial evidence and experience. Ther. Adv. Urol., 2019, 11.
[http://dx.doi.org/10.1177/1756287219839285] [PMID: 31057668]
[53]
Nishiyama, H.; Yamamoto, Y.; Sassa, N.; Nishimura, K.; Fujimoto, K.; Fukasawa, S.; Yokoyama, M.; Enokida, H.; Takahashi, K.; Tanaka, Y.; Imai, K.; Shimamoto, T.; Perini, R.; Frenkl, T.; Bajorin, D.; Bellmunt, J. Pembrolizumab versus chemotherapy in recurrent, advanced urothelial cancer in Japanese patients: a subgroup analysis of the phase 3 KEYNOTE-045 trial. Int. J. Clin. Oncol., 2020, 25(1), 165-174.
[http://dx.doi.org/10.1007/s10147-019-01545-4] [PMID: 31729625]
[54]
Vuky, J.; Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Bellmunt, J.; Powles, T.; Bajorin, D.; Hahn, N.M.; Savage, M.J.; Fang, X.; Godwin, J.L.; Frenkl, T.L.; Homet Moreno, B.; de Wit, R.; Plimack, E.R. Long-term outcomes in keynote-052: phase ii study investigating first-line pembrolizumab in cisplatin-ineligible patients with locally advanced or metastatic urothelial cancer. J. Clin. Oncol., 2020, 38(23), 2658-2666.
[http://dx.doi.org/10.1200/JCO.19.01213] [PMID: 32552471]
[55]
Balar, A.V.; Kamat, A.M.; Kulkarni, G.S.; Uchio, E.M.; Boormans, J.L.; Roumiguié, M.; Krieger, L.E.M.; Singer, E.A.; Bajorin, D.F.; Grivas, P.; Seo, H.K.; Nishiyama, H.; Konety, B.R.; Li, H.; Nam, K.; Kapadia, E.; Frenkl, T.; de Wit, R. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study. Lancet Oncol., 2021, 22(7), 919-930.
[http://dx.doi.org/10.1016/S1470-2045(21)00147-9] [PMID: 34051177]
[56]
Hazarika, M.; Chuk, M.K.; Theoret, M.R.; Mushti, S.; He, K.; Weis, S.L.; Putman, A.H.; Helms, W.S.; Cao, X.; Li, H.; Zhao, H.; Zhao, L.; Welch, J.; Graham, L.; Libeg, M.; Sridhara, R.; Keegan, P.; Pazdur, R. FDA approval summary: nivolumab for treatment of unresectable or metastatic melanoma following progression on ipilimumab. Clin. Cancer Res., 2017, 23(14), 3484-3488.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0712] [PMID: 28087644]
[57]
Guo, L.; Zhang, H.; Chen, B. Nivolumab as programmed death-1 (pd-1) inhibitor for targeted immunotherapy in tumor. J. Cancer, 2017, 8(3), 410-416.
[http://dx.doi.org/10.7150/jca.17144] [PMID: 28261342]
[58]
Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; Ye, D.; Agerbaek, M.; Enting, D.; McDermott, R.; Gajate, P.; Peer, A.; Milowsky, M.I.; Nosov, A.; Neif Antonio, J., Jr; Tupikowski, K.; Toms, L.; Fischer, B.S.; Qureshi, A.; Collette, S.; Unsal-Kacmaz, K.; Broughton, E.; Zardavas, D.; Koon, H.B.; Galsky, M.D. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N. Engl. J. Med., 2021, 384(22), 2102-2114.
[http://dx.doi.org/10.1056/NEJMoa2034442] [PMID: 34077643]
[59]
Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov., 2018, 8(9), 1069-1086.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0367] [PMID: 30115704]
[60]
Galsky, M.D.; Saci, A.; Szabo, P.M.; Han, G.C.; Grossfeld, G.; Collette, S.; Siefker-Radtke, A.; Necchi, A.; Sharma, P. Nivolumab in patients with advanced platinum-resistant urothelial carcinoma: efficacy, safety, and biomarker analyses with extended follow-up from checkmate 275. Clin. Cancer Res., 2020, 26(19), 5120-5128.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-4162] [PMID: 32532789]
[61]
Aydin, A.M.; Woldu, S.L.; Hutchinson, R.C.; Boegemann, M.; Bagrodia, A.; Lotan, Y.; Margulis, V.; Krabbe, L.M. Spotlight on atezolizumab and its potential in the treatment of advanced urothelial bladder cancer. OncoTargets Ther., 2017, 10, 1487-1502.
[http://dx.doi.org/10.2147/OTT.S109453] [PMID: 28331342]
[62]
Deng, R.; Bumbaca, D.; Pastuskovas, C.V.; Boswell, C.A.; West, D.; Cowan, K.J.; Chiu, H.; McBride, J.; Johnson, C.; Xin, Y.; Koeppen, H.; Leabman, M.; Iyer, S. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. MAbs, 2016, 8(3), 593-603.
[http://dx.doi.org/10.1080/19420862.2015.1136043] [PMID: 26918260]
[63]
Krishnamurthy, A.; Jimeno, A. Atezolizumab: A novel PD-L1 inhibitor in cancer therapy with a focus in bladder and non-small cell lung cancers. Drugs Today (Barc), 2017, 53(4), 217-237.
[http://dx.doi.org/10.1358/dot.2017.53.4.2589163] [PMID: 28492290]
[64]
Meng, X.; Huang, Z.; Teng, F.; Xing, L.; Yu, J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat. Rev., 2015, 41(10), 868-876.
[http://dx.doi.org/10.1016/j.ctrv.2015.11.001] [PMID: 26589760]
[65]
Chiang, A.C.; Sequist, L.V.D.; Gilbert, J.; Conkling, P.; Thompson, D.; Marcoux, J.P.; Gettinger, S.; Kowanetz, M.; Molinero, L.; O’Hear, C.; Fassò, M.; Lam, S.; Gordon, M.S. Clinical activity and safety of atezolizumab in a phase 1 study of patients with relapsed/refractory small-cell lung cancer. Clin. Lung Cancer, 2020, 21(5), 455-463.e4.
[http://dx.doi.org/10.1016/j.cllc.2020.05.008] [PMID: 32586767]
[66]
Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; Dawson, N.A.; van der Heijden, M.S.; Dreicer, R.; Srinivas, S.; Retz, M.M.; Joseph, R.W.; Drakaki, A.; Vaishampayan, U.N.; Sridhar, S.S.; Quinn, D.I.; Durán, I.; Shaffer, D.R.; Eigl, B.J.; Grivas, P.D.; Yu, E.Y.; Li, S.; Kadel, E.E., III; Boyd, Z.; Bourgon, R.; Hegde, P.S.; Mariathasan, S.; Thåström, A.; Abidoye, O.O.; Fine, G.D.; Bajorin, D.F. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet, 2017, 389(10064), 67-76.
[http://dx.doi.org/10.1016/S0140-6736(16)32455-2] [PMID: 27939400]
[67]
Marciscano, A.E.; Gulley, J.L.; Kaufman, H.L. Avelumab: is it time to get excited? Expert Rev. Anticancer Ther., 2018, 18(9), 815-821.
[http://dx.doi.org/10.1080/14737140.2018.1493380] [PMID: 29939083]
[68]
Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of indications of fda-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers(Basel) , 2020, 12(3), 738.
[http://dx.doi.org/10.3390/cancers12030738] [PMID: 32245016]
[69]
Patel, M.R.; Ellerton, J.; Infante, J.R.; Agrawal, M.; Gordon, M.; Aljumaily, R.; Britten, C.D.; Dirix, L.; Lee, K.W.; Taylor, M.; Schöffski, P.; Wang, D.; Ravaud, A.; Gelb, A.B.; Xiong, J.; Rosen, G.; Gulley, J.L.; Apolo, A.B. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol., 2018, 19(1), 51-64.
[http://dx.doi.org/10.1016/S1470-2045(17)30900-2] [PMID: 29217288]
[70]
Nishimura, C.D.; Pulanco, M.C.; Cui, W.; Lu, L.; Zang, X. PD-L1 and B7-1 cis-interaction: new mechanisms in immune checkpoints and immunotherapies. Trends Mol. Med., 2021, 27(3), 207-219.
[http://dx.doi.org/10.1016/j.molmed.2020.10.004] [PMID: 33199209]
[71]
Zehra, M.; Fatima, T.; Hanif, A.; Raufi, N.; Khan, A. Nadofaragene: A new era of precision medicine for bladder cancer. Ann. Med. Surg. (Lond.), 2012, 86(1), 7-10.
[http://dx.doi.org/10.1097/MS9.0000000000001488]
[72]
Galsky, M.D.; Hoimes, C.J.; Necchi, A.; Shore, N.; Witjes, J.A.; Steinberg, G.; Bedke, J.; Nishiyama, H.; Fang, X.; Kataria, R.; Sbar, E.; Jia, X.; Siefker-Radtke, A. Perioperative pembrolizumab therapy in muscle-invasive bladder cancer: Phase III KEYNOTE-866 and KEYNOTE-905/EV-303. Future Oncol., 2021, 17(24), 3137-3150.
[http://dx.doi.org/10.2217/fon-2021-0273] [PMID: 34008425]
[73]
Lee, A. Nadofaragene firadenovec: first approval. Drugs, 2023, 83(4), 353-357.
[http://dx.doi.org/10.1007/s40265-023-01846-z] [PMID: 36856952]
[74]
Fenn, K.M.; Kalinsky, K. Sacituzumab govitecan: antibody-drug conjugate in triple-negative breast cancer and other solid tumors. Drugs Today (Barc), 2019, 55(9), 575-585.
[http://dx.doi.org/10.1358/dot.2019.55.9.3039669] [PMID: 31584574]
[75]
Cardillo, T.M.; Govindan, S.V.; Sharkey, R.M.; Trisal, P.; Arrojo, R.; Liu, D.; Rossi, E.A.; Chang, C.H.; Goldenberg, D.M. Sacituzumab govitecan (IMMU-132), an anti-trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug. Chem., 2015, 26(5), 919-931.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00223] [PMID: 25915780]
[76]
Iacovelli, R.; Cicala, C.M.; Ciccarese, C.; Sacco, E.; Racioppi, M.; Bassi, P.F.; Tortora, G. Management of metastatic urothelial carcinoma: Current approach, emerging agents, and future perspectives. Urologia, 2023, 90(1), 3-10.
[http://dx.doi.org/10.1177/03915603221139907] [PMID: 36537831]
[77]
Cathomas, R.; Lorch, A.; Bruins, H.M.; Compérat, E.M.; Cowan, N.C.; Efstathiou, J.A.; Fietkau, R.; Gakis, G.; Hernández, V.; Espinós, E.L.; Neuzillet, Y.; Ribal, M.J.; Rouanne, M.; Thalmann, G.N.; van der Heijden, A.G.; Veskimäe, E.; Alfred Witjes, J.; Milowsky, M.I. The 2021 updated european association of urology guidelines on metastatic urothelial carcinoma. Eur. Urol., 2022, 81(1), 95-103.
[http://dx.doi.org/10.1016/j.eururo.2021.09.026] [PMID: 34742583]
[78]
Choi, W.; Lombardo, K.; Patel, S.; Epstein, G.; Feng, M.; Gabrielson, A.; Hahn, N.M.; Hoffman-Censits, J.; McConkey, D.; Bivalacqua, T.J.; Matoso, A.; Kates, M. A molecular inquiry into the role of antibody-drug conjugates in bacillus calmette-guérin-exposed non-muscle-invasive bladder cancer. Eur. Urol., 2022, 81(2), 138-142.
[http://dx.doi.org/10.1016/j.eururo.2021.10.009] [PMID: 34736796]
[79]
Syed, Y.Y. Sacituzumab Govitecan: First approval. Drugs, 2020, 80(10), 1019-1025.
[http://dx.doi.org/10.1007/s40265-020-01337-5] [PMID: 32529410]
[80]
Grivas, P.; Pouessel, D.; Park, C.H.; Barthelemy, P.; Bupathi, M.; Petrylak, D.P.; Agarwal, N.; Gupta, S.; Fléchon, A.; Ramamurthy, C.; Davis, N.B.; Recio-Boiles, A.; Sternberg, C.N.; Bhatia, A.; Pichardo, C.; Sierecki, M.; Tonelli, J.; Zhou, H.; Tagawa, S.T.; Loriot, Y. Sacituzumab govitecan in combination with pembrolizumab for patients with metastatic urothelial cancer that progressed after platinum-based chemotherapy: TROPHY-U-01 cohort 3. J. Clin. Oncol., 2024, 42(12), 1415-1425.
[http://dx.doi.org/10.1200/JCO.22.02835] [PMID: 38261969]
[81]
Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; Capo, L.; Verlinsky, A.; Leavitt, M.; Malik, F.; Aviña, H.; Guevara, C.I.; Dinh, N.; Karki, S.; Anand, B.S.; Pereira, D.S.; Joseph, I.B.J.; Doñate, F.; Morrison, K.; Stover, D.R. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res., 2016, 76(10), 3003-3013.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1313] [PMID: 27013195]
[82]
Li, S.; Shi, Y.; Dong, H.; Guo, H.; Li, Y.; Kadeerbai, H.; Xu, C.; Kim, E.; Lee, S.; Gorla, S.R.; Zhang, J.; Guo, J.; Sheng, X. EV- 203: Phase 2 trial of enfortumab vedotin in patients with previously treated advanced urothelial carcinoma in China. J. Clin. Oncol., 2023, 41(16_suppl), e16574-e16574.
[http://dx.doi.org/10.1200/JCO.2023.41.16_suppl.e16574 ] [PMID: 36626707]
[83]
Maiorano, B.A.; Catalano, M.; Maiello, E.; Roviello, G. Enfortumab vedotin in metastatic urothelial carcinoma: the solution EVentually? Front. Oncol., 2023, 13, 1254906.
[http://dx.doi.org/10.3389/fonc.2023.1254906] [PMID: 37781180]
[84]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[85]
de Haar-Holleman, A.; van Hoogstraten, L.M.C.; Hulshof, M.C.C.M.; Tascilar, M.; Brück, K.; Meijer, R.P.; Alfred Witjes, J.; Kiemeney, L.A.; Aben, K.K.H. Chemoradiation for muscle-invasive bladder cancer using 5-fluorouracil versus capecitabine: A nationwide cohort study. Radiother. Oncol., 2023, 183, 109584.
[http://dx.doi.org/10.1016/j.radonc.2023.109584] [PMID: 36863459]
[86]
Horo, H.; Das, S.; Mandal, B.; Kundu, L.M. Development of a photoresponsive chitosan conjugated prodrug nano-carrier for controlled delivery of antitumor drug 5-fluorouracil. Int. J. Biol. Macromol., 2019, 121, 1070-1076.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.095] [PMID: 30342947]
[87]
Barani, M.; Bilal, M.; Sabir, F.; Rahdar, A.; Kyzas, G.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci., 2021, 266, 118914.
[http://dx.doi.org/10.1016/j.lfs.2020.118914] [PMID: 33340527]
[88]
Barani, M.; Mukhtar, M.; Rahdar, A.; Sargazi, S.; Pandey, S.; Kang, M. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors (Basel), 2021, 11(2), 55.
[http://dx.doi.org/10.3390/bios11020055] [PMID: 33672770]
[89]
Chen, C.H.; Chan, T.M.; Wu, Y.J.; Chen, J.J. Review: application of nanoparticles in urothelial cancer of the urinary bladder. J. Med. Biol. Eng., 2015, 35(4), 419-427.
[http://dx.doi.org/10.1007/s40846-015-0060-5] [PMID: 26339222]
[90]
Yan, W.; Leung, S.S.Y.; To, K.K.W. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond.), 2020, 15(3), 303-318.
[http://dx.doi.org/10.2217/nnm-2019-0308] [PMID: 31802702]
[91]
Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[92]
Mustafa, G.; Ahmad, M.Z.; Aslam, M.; Garg, A.; Ahmad, J. Nanoliposomal system for breast cancer therapy bt - hormone related cancer mechanistic and nanomedicines: challenges and prospects; Alrobaian, M.; Beg, S.; Alharbi, K.S., Eds.; Springer Nature: Singapore, 2022, pp. 199-218.
[http://dx.doi.org/10.1007/978-981-19-5558-7_10]
[93]
Bahadur, S.; Sharma, M. Liposome based drug delivery for the management of psoriasis - a comprehensive review. Curr. Pharm. Biotechnol., 2023, 24(11), 1383-1396.
[http://dx.doi.org/10.2174/1389201024666221213144228] [PMID: 36518042]
[94]
Hsu, J.W.; King, M. Applications of nanotechnology in bladder cancer therapy. J. Healthc. Eng., 2012, 3(4), 535-550.
[http://dx.doi.org/10.1260/2040-2295.3.4.535]
[95]
Li, F.; Qin, Y.; Lee, J.; Liao, H.; Wang, N.; Davis, T.P.; Qiao, R.; Ling, D. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J. Control. Release, 2020, 322, 566-592.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.051] [PMID: 32276006]
[96]
D’Mello, S.R.; Cruz, C.N.; Chen, M.L.; Kapoor, M.; Lee, S.L.; Tyner, K.M. The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol., 2017, 12(6), 523-529.
[http://dx.doi.org/10.1038/nnano.2017.67] [PMID: 28436961]
[97]
Pirollo, K.F.; Rait, A.; Zhou, Q.; Zhang, X.; Zhou, J.; Kim, C.S.; Benedict, W.F.; Chang, E.H. Tumor-targeting nanocomplex delivery of novel tumor suppressor RB94 chemosensitizes bladder carcinoma cells in vitro and in vivo. Clin. Cancer Res., 2008, 14(7), 2190-2198.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1951] [PMID: 18381961]
[98]
Brummelhuis, I.S.G.; Simons, M.; Lindner, L.H.; Kort, S.; de Jong, S.; Hossann, M.; Witjes, J.A.; Oosterwijk, E. DPPG 2 -based thermosensitive liposomes as drug delivery system for effective muscle-invasive bladder cancer treatment in vivo. Int. J. Hyperthermia, 2021, 38(1), 1415-1424.
[http://dx.doi.org/10.1080/02656736.2021.1983038] [PMID: 34581259]
[99]
Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[100]
Talegaonkar, S.; Negi, L.M. Nanoemulsion in drug targeting bt - targeted drug delivery : concepts and design; Springer: Cham, 2015, pp. 433-459.
[http://dx.doi.org/10.1007/978-3-319-11355-5_14]
[101]
Ganta, S.; Talekar, M.; Singh, A.; Coleman, T.P.; Amiji, M.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech, 2014, 15(3), 694-708.
[http://dx.doi.org/10.1208/s12249-014-0088-9] [PMID: 24510526]
[102]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[103]
Rinaldi, F.; Maurizi, L.; Forte, J.; Marazzato, M.; Hanieh, P.; Conte, A.; Ammendolia, M.; Marianecci, C.; Carafa, M.; Longhi, C. Resveratrol-loaded nanoemulsions: In vitro activity on human t24 bladder cancer cells. Nanomaterials (Basel), 2021, 11(6), 1569.
[http://dx.doi.org/10.3390/nano11061569] [PMID: 34203613]
[104]
Jain, S.; Ancheria, R.K.; Shrivastava, S.; Soni, S.L.; Sharma, M. An overview of nanogel –novel drug delivery system. AJPRD, 2019, 7(2), 47-55.
[http://dx.doi.org/10.22270/ajprd.v7i2.482]
[105]
Dalir Abdolahinia, E.; Barati, G.; Ranjbar-Navazi, Z.; Kadkhoda, J.; Islami, M.; Hashemzadeh, N.; Maleki Dizaj, S.; Sharifi, S. Application of nanogels as drug delivery systems in multicellular spheroid tumor model. J. Drug Deliv. Sci. Technol., 2022, 68, 103109.
[http://dx.doi.org/10.1016/j.jddst.2022.103109]
[106]
Lu, S.; Neoh, K.G.; Kang, E.T.; Mahendran, R.; Chiong, E. Mucoadhesive polyacrylamide nanogel as a potential hydrophobic drug carrier for intravesical bladder cancer therapy. Eur. J. Pharm. Sci., 2015, 72, 57-68.
[http://dx.doi.org/10.1016/j.ejps.2015.03.006] [PMID: 25772330]
[107]
Guo, H.; Xu, W.; Chen, J.; Yan, L.; Ding, J.; Hou, Y.; Chen, X. Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. J. Control. Release, 2017, 259, 136-148.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.041] [PMID: 28062300]
[108]
Zhang, Y.; Ren, T.; Gou, J.; Zhang, L.; Tao, X.; Tian, B.; Tian, P.; Yu, D.; Song, J.; Liu, X.; Chao, Y.; Xiao, W.; Tang, X. Strategies for improving the payload of small molecular drugs in polymeric micelles. J. Control. Release, 2017, 261, 352-366.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.047] [PMID: 28163211]
[109]
Almajidi, Y.Q.; Kadhim, M.M.; Alsaikhan, F.; Turki Jalil, A.; Hassan Sayyid, N.; Alexis Ramírez-Coronel, A.; Hassan Jawhar, Z.; Gupta, J.; Nabavi, N.; Yu, W.; Ertas, Y.N. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy. Environ. Res., 2023, 227, 115722.
[http://dx.doi.org/10.1016/j.envres.2023.115722] [PMID: 36948284]
[110]
Luo, L.; Jin, X.; Zhang, P.; Cheng, H.; Li, Y.; Du, T.; Zou, B.; Gou, M. Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies. Int. J. Nanomedicine, 2016, 11, 4535-4544.
[http://dx.doi.org/10.2147/IJN.S103994] [PMID: 27660445]
[111]
Beltz, J.; Pfaff, A.; Abdullahi, I.M.; Cristea, A.; Mochalin, V.N.; Ercal, N. Effect of nanodiamond surface chemistry on adsorption and release of tiopronin. Diamond Related Materials, 2019, 100, 107590.
[http://dx.doi.org/10.1016/j.diamond.2019.107590] [PMID: 31814658]
[112]
Ali, M.S.; Metwally, A.A.; Fahmy, R.H.; Osman, R. Chitosan-coated nanodiamonds: Mucoadhesive platform for intravesical delivery of doxorubicin. Carbohydr. Polym., 2020, 245, 116528.
[http://dx.doi.org/10.1016/j.carbpol.2020.116528] [PMID: 32718632]
[113]
Lu, S.; Xu, L.; Kang, E.T.; Mahendran, R.; Chiong, E.; Neoh, K.G. Co-delivery of peptide-modified cisplatin and doxorubicin via mucoadhesive nanocapsules for potential synergistic intravesical chemotherapy of non-muscle-invasive bladder cancer. Eur. J. Pharm. Sci., 2016, 84, 103-115.
[http://dx.doi.org/10.1016/j.ejps.2016.01.013] [PMID: 26780592]
[114]
Ashrafizadeh, M.; Zarrabi, A.; Karimi-Maleh, H.; Taheriazam, A.; Mirzaei, S.; Hashemi, M.; Hushmandi, K.; Makvandi, P.; Nazarzadeh Zare, E.; Sharifi, E.; Goel, A.; Wang, L.; Ren, J.; Nuri Ertas, Y.; Kumar, A.P.; Wang, Y.; Rabiee, N.; Sethi, G.; Ma, Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng. Transl. Med., 2023, 8(1), e10353.
[http://dx.doi.org/10.1002/btm2.10353] [PMID: 36684065]
[115]
Kim, E.S. Avelumab: first global approval. Drugs, 2017, 77(8), 929-937.
[http://dx.doi.org/10.1007/s40265-017-0749-6] [PMID: 28456944]
[116]
Hoy, S.M. Tazemetostat: First Approval. Drugs, 2020, 80(5), 513-521.
[http://dx.doi.org/10.1007/s40265-020-01288-x] [PMID: 32166598]
[117]
Chang, E.; Weinstock, C.; Zhang, L.; Charlab, R.; Dorff, S.E.; Gong, Y.; Hsu, V.; Li, F.; Ricks, T.K.; Song, P.; Tang, S.; Waldron, P.E.; Yu, J.; Zahalka, E.; Goldberg, K.B.; Pazdur, R.; Theoret, M.R.; Ibrahim, A.; Beaver, J.A. FDA approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res., 2021, 27(4), 922-927.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2275] [PMID: 32962979]
[118]
Markham, A. Erdafitinib: first global approval. Drugs, 2019, 79(9), 1017-1021.
[http://dx.doi.org/10.1007/s40265-019-01142-9] [PMID: 31161538]
[119]
Vyas, M.; Simbo, D.A.; Mursalin, M.; Mishra, V.; Bashary, R.; Khatik, G.L. Drug delivery approaches for doxorubicin in the management of cancers. Curr. Cancer Ther. Rev., 2020, 16(4), 320-331.
[http://dx.doi.org/10.2174/1573394716666191216114950]
[120]
Markham, A. Copanlisib: first global approval. Drugs, 2017, 77(18), 2057-2062.
[http://dx.doi.org/10.1007/s40265-017-0838-6] [PMID: 29127587]
[121]
Inman, B.A.; Longo, T.A.; Ramalingam, S.; Harrison, M.R. Atezolizumab: A PD-L1-blocking antibody for bladder cancer. Clin. Cancer Res., 2017, 23(8), 1886-1890.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1417] [PMID: 27903674]
[122]
Raedler, L.A. Opdivo (Nivolumab): Second PD-1 inhibitor receives fda approval for unresectable or metastatic melanoma. Am. Health Drug Benefits, 2015, 8, 180-183.
[123]
Poole, R.M. Pembrolizumab: first global approval. Drugs, 2014, 74(16), 1973-1981.
[http://dx.doi.org/10.1007/s40265-014-0314-5] [PMID: 25331768]
[124]
Study of erdafitinib intravesical delivery system for localized bladder cancer NCT05316155, 2024.
[125]
A Study of Erdafitinib Intravesical Delivery System in Japanese Participants With Bladder Cancer (TAR-210). NCT05567185, 2024.
[126]
An Efficacy and Safety Study of Erdafitinib (JNJ-42756493) in Participants With Urothelial Cancer. NCT02365597, 2024.
[127]
A study of oral erdafitinib in people with recurrent non-invasive bladder cancer. NCT04917809, 2024.
[128]
PLZ4-coated paclitaxel-loaded micelles for the treatment of patients with recurrent or refractory non-muscle invasive bladder cancer. NCT06173349, 2023.
[129]
Paclitaxel in treating patients with early-stage bladder cancer NCT00002917, 2013.
[130]
Proliposomal intravesical paclitaxel for treatment of low-grade, Stage Ta, non muscle invasive bladder cancer NCT03081858, 2022.
[131]
Pegylated Liposomal Doxorubicin, PD-1 in Treating Muscle Invasive Bladder Cancer NCT04101812, 2019.
[132]
Keyhole limpet hemocyanin compared with doxorubicin in treating patients with bladder cancer. NCT00006034, 2013.
[133]
A study of atezolizumab in participants with locally advanced or metastatic urothelial bladder cancer (cohort 2). NCT02108652, 2024.
[134]
ADSTILADRIN (=INSTILADRIN) in patients with high grade, Bacillus Calmette-Guerin (BCG) unresponsive Non-Muscle Invasive Bladder Cancer (NMIBC). NCT02773849, 2023.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy