Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Revolutionizing Infertility Management through Novel Peptide-based Targets

Author(s): Vijay Kumar and Gaurav Doshi*

Volume 25, Issue 9, 2024

Published on: 21 May, 2024

Page: [738 - 752] Pages: 15

DOI: 10.2174/0113892037304433240430144106

Price: $65

Abstract

Around 48 million couples and 186 million people worldwide have infertility; of these, approximately 85% have an identifiable cause, the most common being ovulatory dysfunctions, male infertility, polycystic ovary syndrome, and tubule disease. The remaining 15% have infertility for unknown reasons, including lifestyle and environmental factors. The regulation of the hypothalamic- pituitary-adrenal axis (HPA) is crucial for the secretion of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH), which are essential for female reproductive functions. GnRH is the primary reproductive axis regulator. The pattern of GnRH, FSH, and LH release is determined by its pulsatile secretion, which in turn controls endocrine function and gamete maturation in the gonads. Peptides called Kisspeptin (KP), Neurokinin-B (NKB), and Orexin influence both positive and negative feedback modulation of GnRH, FSH, and LH secretion in reproduction. This review article mainly focuses on the historical perspective, isoform, and signaling pathways of KP, NKB, and Orexin novel peptide-based targets including clinical and preclinical studies and having a promising effect in the management of infertility.

« Previous
Graphical Abstract

[1]
Szamatowicz, M.; Szamatowicz, J. Proven and unproven methods for diagnosis and treatment of infertility. Adv. Med. Sci., 2020, 65(1), 93-96.
[http://dx.doi.org/10.1016/j.advms.2019.12.008] [PMID: 31923772]
[2]
Larsen, U. Research on infertility: Which definition should we use? Fertil. Steril., 2005, 83(4), 846-852.
[http://dx.doi.org/10.1016/j.fertnstert.2004.11.033] [PMID: 15820788]
[3]
Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem., 2018, 62, 2-10.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.03.012] [PMID: 29555319]
[4]
Steptoe, P.C.; Edwards, R.G. Birth after the reimplantation of a human embryo. Lancet, 1978, 312(8085), 366.
[http://dx.doi.org/10.1016/S0140-6736(78)92957-4] [PMID: 79723]
[5]
Skirbekk, V.; Blekesaune, M. Personality traits increasingly important for male fertility: Evidence from Norway. Eur. J. Pers., 2014, 28(6), 521-529.
[http://dx.doi.org/10.1002/per.1936]
[6]
Manouchehri, A.; Shokri, S.; Pirhadi, M.; Karimi, M.; Abbaszadeh, S.; Mirzaei, G.; Bahmani, M. The effects of toxic heavy metals lead, cadmium and copper on the epidemiology of male and female infertility. JBRA Assist. Reprod., 2022, 26(4), 627-630.
[http://dx.doi.org/10.5935/1518-0557.20220013] [PMID: 35916450]
[7]
Sun, H.; Gong, T.T.; Jiang, Y.T.; Zhang, S.; Zhao, Y.H.; Wu, Q.J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging, 2019, 11(23), 10952-10991.
[http://dx.doi.org/10.18632/aging.102497] [PMID: 31790362]
[8]
Gruzieva, O.; Merid, S.K.; Chen, S.; Mukherjee, N.; Hedman, A.M.; Almqvist, C.; Andolf, E.; Jiang, Y.; Kere, J.; Scheynius, A.; Söderhäll, C.; Ullemar, V.; Karmaus, W.; Melén, E.; Arshad, S.H.; Pershagen, G. DNA methylation trajectories during pregnancy. Epigenet. Insights, 2019, 12.
[http://dx.doi.org/10.1177/2516865719867090] [PMID: 31453433]
[9]
Hernáez, Á.; Rogne, T.; Skåra, K.H.; Håberg, S.E.; Page, C.M.; Fraser, A.; Burgess, S.; Lawlor, D.A.; Magnus, M.C. Body mass index and subfertility: Multivariable regression and mendelian randomization analyses in the norwegian mother, father and child cohort study. Hum. Reprod., 2021, 36(12), 3141-3151.
[http://dx.doi.org/10.1093/humrep/deab224] [PMID: 34668019]
[10]
Boedt, T.; Vanhove, A.C.; Vercoe, M.A.; Matthys, C.; Dancet, E.; Lie Fong, S. Preconception lifestyle advice for people with infertility. Cochrane Libr., 2021, 2021(4), CD008189.
[http://dx.doi.org/10.1002/14651858.CD008189.pub3] [PMID: 33914901]
[11]
Starc, A.; Trampuš, M.; Pavan Jukić, D.; Rotim, C.; Jukić, T.; Polona Mivšek, A. Infertility and sexual dysfunctions: A systematic literature review. Acta Clin. Croat., 2019, 58(3), 508-515.
[http://dx.doi.org/10.20471/acc.2019.58.03.15] [PMID: 31969764]
[12]
Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol., 2013, 11(1), 66.
[http://dx.doi.org/10.1186/1477-7827-11-66] [PMID: 23870423]
[13]
Huijben, M.; Huijsmans, R.L.N.; Lock, M.T.W.T.; de Kemp, V.F.; de Kort, L.M.O.; van Breda, J.H.M.K. Clomiphene citrate for male infertility: A systematic review and meta-analysis. Andrology, 2023, 11(6), 987-996.
[http://dx.doi.org/10.1111/andr.13388] [PMID: 36680549]
[14]
Franik, S.; Le, Q.K.; Kremer, J.A.M.; Kiesel, L.; Farquhar, C. Aromatase inhibitors (letrozole) for ovulation induction in infertile women with polycystic ovary syndrome. Cochrane Libr., 2022, 2022(9), CD010287.
[http://dx.doi.org/10.1002/14651858.CD010287.pub4] [PMID: 36165742]
[15]
Santi, D.; Spaggiari, G.; Granata, A.R.M.; Simoni, M. Real-world evidence analysis of the follicle-stimulating hormone use in male idiopathic infertility. Best Pract. Res. Clin. Obstet. Gynaecol., 2022, 85(Pt B), 121-133.
[http://dx.doi.org/10.1016/j.bpobgyn.2022.04.004] [PMID: 35618626]
[16]
Esteves, S.C.; Achermann, A.P.P.; Simoni, M.; Santi, D.; Casarini, L. Male infertility and gonadotropin treatment: What can we learn from real-world data? Best Pract. Res. Clin. Obstet. Gynaecol., 2023, 86, 102310.
[http://dx.doi.org/10.1016/j.bpobgyn.2022.102310] [PMID: 36682942]
[17]
Witwit, S.J. Improving pregnancy rate in infertile patients with polycystic ovarian syndrome receiving clomiphene citrate and cabergoline in euprolactinomic women in single cycle treatment. Ginekol. Pol., 2022, 94(6), 456-462.
[http://dx.doi.org/10.5603/GP.a2022.0070] [PMID: 35984341]
[18]
Carson, S.A.; Kallen, A.N. Diagnosis and management of infertility. JAMA, 2021, 326(1), 65-76.
[http://dx.doi.org/10.1001/jama.2021.4788] [PMID: 34228062]
[19]
Dennett, C.C.; Simon, J. The role of polycystic ovary syndrome in reproductive and metabolic health: Overview and approaches for treatment. Diabetes Spectr., 2015, 28(2), 116-120.
[http://dx.doi.org/10.2337/diaspect.28.2.116] [PMID: 25987810]
[20]
Ambildhuke, K.; Pajai, S.; Chimegave, A.; Mundhada, R.; Kabra, P. A review of tubal factors affecting fertility and its management. Cureus, 2022, 14(11), e30990.
[http://dx.doi.org/10.7759/cureus.30990] [PMID: 36475176]
[21]
Bulletti, C.; Coccia, M.E.; Battistoni, S.; Borini, A. Endometriosis and infertility. J. Assist. Reprod. Genet., 2010, 27(8), 441-447.
[http://dx.doi.org/10.1007/s10815-010-9436-1] [PMID: 20574791]
[22]
Garrido, N.; Navarro, J.; García-Velasco, J.; Remoh, J.; Pellice, A.; Simón, C. The endometrium versus embryonic quality in endometriosis-related infertility. Hum. Reprod. Update, 2002, 8(1), 95-103.
[http://dx.doi.org/10.1093/humupd/8.1.95] [PMID: 11866246]
[23]
Bosteels, J.; van Wessel, S.; Weyers, S.; Broekmans, F.J.; D’Hooghe, T.M.; Bongers, M.Y.; Mol, B.W.J. Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities. Cochrane Libr., 2018, 2018(12), CD009461.
[http://dx.doi.org/10.1002/14651858.CD009461.pub4] [PMID: 30521679]
[24]
Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, challenges, and guiding treatment. J. Clin. Endocrinol. Metab., 2021, 106(3), e1071-e1083.
[http://dx.doi.org/10.1210/clinem/dgaa839] [PMID: 33211867]
[25]
Gnanadass, S.A.; Prabhu, Y.D.; Gopalakrishnan, A.V. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): An update. Arch. Gynecol. Obstet., 2021, 303(3), 631-643.
[http://dx.doi.org/10.1007/s00404-020-05951-2] [PMID: 33439300]
[26]
Mohamed-Hussein, Z.A.; Harun, S. Construction of a polycystic ovarian syndrome (PCOS) pathway based on the interactions of PCOS-related proteins retrieved from bibliomic data. Theor. Biol. Med. Model., 2009, 6(1), 18.
[http://dx.doi.org/10.1186/1742-4682-6-18] [PMID: 19723303]
[27]
Lin, L.H.; Baracat, M.C.P.; Maciel, G.A.R.; Soares, J.M., Jr; Baracat, E.C. Androgen receptor gene polymorphism and polycystic ovary syndrome. Int. J. Gynaecol. Obstet., 2013, 120(2), 115-118.
[http://dx.doi.org/10.1016/j.ijgo.2012.08.016] [PMID: 23182796]
[28]
Shannon, M.; Wang, Y. Polycystic ovary syndrome: A common but often unrecognized condition. J. Midwifery Womens Health, 2012, 57(3), 221-230.
[http://dx.doi.org/10.1111/j.1542-2011.2012.00161.x] [PMID: 22594862]
[29]
Sadeghi, H.M.; Adeli, I.; Calina, D.; Docea, A.O.; Mousavi, T.; Daniali, M.; Nikfar, S.; Tsatsakis, A.; Abdollahi, M. Polycystic ovary syndrome: A comprehensive review of pathogenesis, management, and drug repurposing. Int. J. Mol. Sci., 2022, 23(2), 583.
[http://dx.doi.org/10.3390/ijms23020583] [PMID: 35054768]
[30]
Xie, Q.; Kang, Y.; Zhang, C.; Xie, Y.; Wang, C.; Liu, J.; Yu, C.; Zhao, H.; Huang, D. The role of kisspeptin in the control of the hypothalamic-pituitary-gonadal axis and reproduction. Front. Endocrinol., 2022, 13, 925206.
[http://dx.doi.org/10.3389/fendo.2022.925206] [PMID: 35837314]
[31]
Mills, E.G.; Dhillo, W.S. Invited review: Translating kisspeptin and neurokinin B biology into new therapies for reproductive health. J. Neuroendocrinol., 2022, 34(10), e13201.
[http://dx.doi.org/10.1111/jne.13201] [PMID: 36262016]
[32]
Lee, D.K.; Nguyen, T.; O’Neill, G.P.; Cheng, R.; Liu, Y.; Howard, A.D.; Coulombe, N.; Tan, C.P.; Tang-Nguyen, A.T.; George, S.R.; O’Dowd, B.F. Discovery of a receptor related to the galanin receptors. FEBS Lett., 1999, 446(1), 103-107.
[http://dx.doi.org/10.1016/S0014-5793(99)00009-5] [PMID: 10100623]
[33]
Ohtaki, T.; Shintani, Y.; Honda, S.; Matsumoto, H.; Hori, A.; Kanehashi, K.; Terao, Y.; Kumano, S.; Takatsu, Y.; Masuda, Y.; Ishibashi, Y.; Watanabe, T.; Asada, M.; Yamada, T.; Suenaga, M.; Kitada, C.; Usuki, S.; Kurokawa, T.; Onda, H.; Nishimura, O.; Fujino, M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 2001, 411(6837), 613-617.
[http://dx.doi.org/10.1038/35079135] [PMID: 11385580]
[34]
Muir, A.I.; Chamberlain, L.; Elshourbagy, N.A.; Michalovich, D.; Moore, D.J.; Calamari, A.; Szekeres, P.G.; Sarau, H.M.; Chambers, J.K.; Murdock, P.; Steplewski, K.; Shabon, U.; Miller, J.E.; Middleton, S.E.; Darker, J.G.; Larminie, C.G.C.; Wilson, S.; Bergsma, D.J.; Emson, P.; Faull, R.; Philpott, K.L.; Harrison, D.C. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J. Biol. Chem., 2001, 276(31), 28969-28975.
[http://dx.doi.org/10.1074/jbc.M102743200] [PMID: 11387329]
[35]
Kotani, M.; Detheux, M.; Vandenbogaerde, A.; Communi, D.; Vanderwinden, J.M.; Le Poul, E.; Brézillon, S.; Tyldesley, R.; Suarez-Huerta, N.; Vandeput, F.; Blanpain, C.; Schiffmann, S.N.; Vassart, G.; Parmentier, M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem., 2001, 276(37), 34631-34636.
[http://dx.doi.org/10.1074/jbc.M104847200] [PMID: 11457843]
[36]
de Roux, N.; Genin, E.; Carel, J.C.; Matsuda, F.; Chaussain, J.L.; Milgrom, E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 10972-10976.
[http://dx.doi.org/10.1073/pnas.1834399100] [PMID: 12944565]
[37]
Silveira, L.G.; Noel, S.D.; Silveira-Neto, A.P.; Abreu, A.P.; Brito, V.N.; Santos, M.G.; Bianco, S.D.C.; Kuohung, W.; Xu, S.; Gryngarten, M.; Escobar, M.E.; Arnhold, I.J.P.; Mendonca, B.B.; Kaiser, U.B.; Latronico, A.C. Mutations of the KISS1 gene in disorders of puberty. J. Clin. Endocrinol. Metab., 2010, 95(5), 2276-2280.
[http://dx.doi.org/10.1210/jc.2009-2421] [PMID: 20237166]
[38]
Babiker, A.; Al Shaikh, A. The role of kisspeptin signalling in control of reproduction in genetically similar species. Sudan. J. Paediatr., 2016, 16(1), 9-16.
[PMID: 27651548]
[39]
Uenoyama, Y.; Nagae, M.; Tsuchida, H.; Inoue, N.; Tsukamura, H. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front. Endocrinol., 2021, 12, 724632.
[http://dx.doi.org/10.3389/fendo.2021.724632] [PMID: 34566891]
[40]
Rance, N.; Young, W.S., III Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalami of postmenopausal women. Endocrinology, 1991, 128(5), 2239-2247.
[http://dx.doi.org/10.1210/endo-128-5-2239] [PMID: 1708331]
[41]
Topaloglu, A.K.; Reimann, F.; Guclu, M.; Yalin, A.S.; Kotan, L.D.; Porter, K.M.; Serin, A.; Mungan, N.O.; Cook, J.R.; Ozbek, M.N.; Imamoglu, S.; Akalin, N.S.; Yuksel, B.; O’Rahilly, S.; Semple, R.K. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat. Genet., 2009, 41(3), 354-358.
[http://dx.doi.org/10.1038/ng.306] [PMID: 19079066]
[42]
Patel, B.; Koysombat, K.; Mills, E.G.; Tsoutsouki, J.; Comninos, A.N.; Abbara, A. The emerging therapeutic potential of kisspeptin and neurokinin B. Endocr. Rev., 2024, 45(1), 30-68.
[http://dx.doi.org/10.1210/endrev/bnad023] [PMID: 37467734]
[43]
Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; Arch, J.R.S.; Buckingham, R.E.; Haynes, A.C.; Carr, S.A.; Annan, R.S.; McNulty, D.E.; Liu, W.S.; Terrett, J.A.; Elshourbagy, N.A.; Bergsma, D.J.; Yanagisawa, M. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998, 92(4), 573-585.
[http://dx.doi.org/10.1016/S0092-8674(00)80949-6] [PMID: 9491897]
[44]
Russell, S.H.; Small, C.J.; Dakin, C.L.; Abbott, C.R.; Morgan, D.G.A.; Ghatei, M.A.; Bloom, S.R. The central effects of orexin-A in the hypothalamic-pituitary-adrenal axis in vivo and in vitro in male rats. J. Neuroendocrinol., 2001, 13(6), 561-566.
[http://dx.doi.org/10.1046/j.1365-2826.2001.00672.x] [PMID: 11412343]
[45]
Porkka-Heiskanen, T.; Kalinchuk, A.; Alanko, L.; Huhtaniemi, I.; Stenberg, D. Orexin A and B levels in the hypothalamus of female rats: the effects of the estrous cycle and age. Eur. J. Endocrinol., 2004, 150(5), 737-742.
[http://dx.doi.org/10.1530/eje.0.1500737] [PMID: 15132733]
[46]
Gottsch, M.L.; Clifton, D.K.; Steiner, R.A. From KISS1 to kisspeptins: An historical perspective and suggested nomenclature. Peptides, 2009, 30(1), 4-9.
[http://dx.doi.org/10.1016/j.peptides.2008.06.016] [PMID: 18644415]
[47]
Lee, J.H.; Miele, M.E.; Hicks, D.J.; Phillips, K.K.; Trent, J.M.; Weissman, B.E.; Welch, D.R. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst., 1996, 88(23), 1731-1737.
[http://dx.doi.org/10.1093/jnci/88.23.1731] [PMID: 8944003]
[48]
West, A.; Vojta, P.J.; Welch, D.R.; Weissman, B.E. Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1). Genomics, 1998, 54(1), 145-148.
[http://dx.doi.org/10.1006/geno.1998.5566] [PMID: 9806840]
[49]
Stafford, L.J.; Xia, C.; Ma, W.; Cai, Y.; Liu, M. Identification and characterization of mouse metastasis-suppressor KiSS1 and its G-protein-coupled receptor. Cancer Res., 2002, 62(19), 5399-5404.
[PMID: 12359743]
[50]
Lehman, M.N.; Hileman, S.M.; Goodman, R.L. Neuroanatomy of the kisspeptin signaling system in mammals: Comparative and developmental aspects. Adv. Exp. Med. Biol., 2013, 784, 27-62.
[http://dx.doi.org/10.1007/978-1-4614-6199-9_3] [PMID: 23550001]
[51]
Parhar, I.S.; Ogawa, S.; Sakuma, Y. Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology, 2004, 145(8), 3613-3618.
[http://dx.doi.org/10.1210/en.2004-0395] [PMID: 15155576]
[52]
Page, N.M.; Morrish, D.W.; Weston-Bell, N.J. Differential mRNA splicing and precursor processing of neurokinin B in neuroendocrine tissues. Peptides, 2009, 30(8), 1508-1513.
[http://dx.doi.org/10.1016/j.peptides.2009.04.023] [PMID: 19433124]
[53]
Almeida, T.A.; Rojo, J.; Nieto, P.M.; Pinto, F.M.; Hernandez, M.; Martín, J.D.; Candenas, M.L. Tachykinins and tachykinin receptors: Structure and activity relationships. Curr. Med. Chem., 2004, 11(15), 2045-2081.
[http://dx.doi.org/10.2174/0929867043364748] [PMID: 15279567]
[54]
Schwyzer, R. Membrane-assisted molecular mechanism of neurokinin receptor subtype selection. EMBO J., 1987, 6(8), 2255-2259.
[http://dx.doi.org/10.1002/j.1460-2075.1987.tb02498.x] [PMID: 2822384]
[55]
Bonner, T.I.; Affolter, H.U.; Young, A.C.; Young, W.S., III A cDNA encoding the precursor of the rat neuropeptide, neurokinin B. Brain Res. Mol. Brain Res., 1987, 2(3), 243-249.
[http://dx.doi.org/10.1016/0169-328X(87)90031-3] [PMID: 3479225]
[56]
Chawla, M.K.; Gutierrez, G.M.; Young, W.S., III; McMullen, N.T.; Rance, N.E. Localization of neurons expressing substance P and neurokinin B gene transcripts in the human hypothalamus and basal forebrain. J. Comp. Neurol., 1997, 384(3), 429-442.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19970804)384:3<429::AID-CNE8>3.0.CO;2-5] [PMID: 9254037]
[57]
Marksteiner, J.; Sperk, G.; Krause, J.E. Distribution of neurons expressing neurokinin B in the rat brain: Immunohistochemistry and in situ hybridization. J. Comp. Neurol., 1992, 317(4), 341-356.
[http://dx.doi.org/10.1002/cne.903170403] [PMID: 1374442]
[58]
Grant, A.D.; Akhtar, R.; Gerard, N.P.; Brain, S.D.; Neurokinin, B. Neurokinin B induces oedema formation in mouse lung via tachykinin receptor-independent mechanisms. J. Physiol., 2002, 543(3), 1007-1014.
[http://dx.doi.org/10.1113/jphysiol.2002.018846] [PMID: 12231654]
[59]
Regoli, D.; Boudon, A.; Fauchére, J.L. Receptors and antagonists for substance P and related peptides. Pharmacol. Rev., 1994, 46(4), 551-599.
[PMID: 7534932]
[60]
de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.B.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.F.; Gautvik, V.T.; Bartlett, F.S., II; Frankel, W.N.; van den Pol, A.N.; Bloom, F.E.; Gautvik, K.M.; Sutcliffe, J.G. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 322-327.
[http://dx.doi.org/10.1073/pnas.95.1.322] [PMID: 9419374]
[61]
Zink, A.N.; Perez-Leighton, C.E.; Kotz, C.M. The orexin neuropeptide system: Physical activity and hypothalamic function throughout the aging process. Front. Syst. Neurosci., 2014, 8, 211.
[http://dx.doi.org/10.3389/fnsys.2014.00211] [PMID: 25408639]
[62]
Safdar, M.; Liang, A.; Rajput, S.A.; Abbas, N.; Zubair, M.; Shaukat, A.; Rehman, A.; Jamil, H.; Guo, Y.; Ullah, F.; Yang, L. Orexin-A regulates follicular growth, proliferation, cell cycle and apoptosis in mouse primary granulosa cells via the AKT/ERK signaling pathway. Molecules, 2021, 26(18), 5635.
[http://dx.doi.org/10.3390/molecules26185635] [PMID: 34577105]
[63]
Couvineau, A.; Nicole, P.; Gratio, V.; Voisin, T. The orexin receptors: Structural and anti-tumoral properties. Front. Endocrinol., 2022, 13, 931970.
[http://dx.doi.org/10.3389/fendo.2022.931970] [PMID: 35966051]
[64]
Tang, J.; Chen, J.; Ramanjaneya, M.; Punn, A.; Conner, A.C.; Randeva, H.S. The signalling profile of recombinant human orexin-2 receptor. Cell. Signal., 2008, 20(9), 1651-1661.
[http://dx.doi.org/10.1016/j.cellsig.2008.05.010] [PMID: 18599270]
[65]
Randeva, H.S.; Karteris, E.; Grammatopoulos, D.; Hillhouse, E.W. Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: Implications for adrenal function and energy homeostasis. J. Clin. Endocrinol. Metab., 2001, 86(10), 4808-4813.
[http://dx.doi.org/10.1210/jcem.86.10.7921] [PMID: 11600545]
[66]
Karteris, E.; Chen, J.; Randeva, H.S. Expression of human prepro-orexin and signaling characteristics of orexin receptors in the male reproductive system. J. Clin. Endocrinol. Metab., 2004, 89(4), 1957-1962.
[http://dx.doi.org/10.1210/jc.2003-031778] [PMID: 15070969]
[67]
Digby, J.E.; Chen, J.; Tang, J.Y.; Lehnert, H.; Matthews, R.N.; Randeva, H.S. Orexin receptor expression in human adipose tissue: Effects of orexin-A and orexin-B. J. Endocrinol., 2006, 191(1), 129-136.
[http://dx.doi.org/10.1677/joe.1.06886] [PMID: 17065396]
[68]
Yamanaka, A.; Kunii, K.; Nambu, T.; Tsujino, N.; Sakai, A.; Matsuzaki, I.; Miwa, Y.; Katsutoshi Goto; Sakurai, T. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res., 2000, 859(2), 404-409.
[http://dx.doi.org/10.1016/S0006-8993(00)02043-6] [PMID: 10719096]
[69]
Scammell, T.E.; Winrow, C.J. Orexin receptors: Pharmacology and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol., 2011, 51(1), 243-266.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100528] [PMID: 21034217]
[70]
Sakurai, T.; Moriguchi, T.; Furuya, K.; Kajiwara, N.; Nakamura, T.; Yanagisawa, M.; Goto, K. Structure and function of human prepro-orexin gene. J. Biol. Chem., 1999, 274(25), 17771-17776.
[http://dx.doi.org/10.1074/jbc.274.25.17771] [PMID: 10364220]
[71]
Ammoun, S.; Holmqvist, T.; Shariatmadari, R.; Oonk, H.B.; Detheux, M.; Parmentier, M.; Åkerman, K.E.O.; Kukkonen, J.P. Distinct recognition of OX1 and OX2 receptors by orexin peptides. J. Pharmacol. Exp. Ther., 2003, 305(2), 507-514.
[http://dx.doi.org/10.1124/jpet.102.048025] [PMID: 12606634]
[72]
Chieffi, S.; Carotenuto, M.; Monda, V.; Valenzano, A.; Villano, I.; Precenzano, F.; Tafuri, D.; Salerno, M.; Filippi, N.; Nuccio, F.; Ruberto, M.; De Luca, V.; Cipolloni, L.; Cibelli, G.; Mollica, M.P.; Iacono, D.; Nigro, E.; Monda, M.; Messina, G.; Messina, A. Orexin system: The key for a healthy life. Front. Physiol., 2017, 8, 357.
[http://dx.doi.org/10.3389/fphys.2017.00357] [PMID: 28620314]
[73]
Wang, C.; Wang, Q.; Ji, B.; Pan, Y.; Xu, C.; Cheng, B.; Bai, B.; Chen, J. The orexin/receptor system: Molecular mechanism and therapeutic potential for neurological diseases. Front. Mol. Neurosci., 2018, 11, 220.
[http://dx.doi.org/10.3389/fnmol.2018.00220] [PMID: 30002617]
[74]
Russell, S.H.; Small, C.J.; Kennedy, A.R.; Stanley, S.A.; Seth, A.; Murphy, K.G.; Taheri, S.; Ghatei, M.A.; Bloom, S.R. Orexin A interactions in the hypothalamo-pituitary gonadal axis. Endocrinology, 2001, 142(12), 5294-5302.
[http://dx.doi.org/10.1210/endo.142.12.8558] [PMID: 11713229]
[75]
Nitkiewicz, A.; Smolinska, N.; Maleszka, A.; Kiezun, M.; Kaminski, T. Localization of orexin A and orexin B in the porcine uterus. Reprod. Biol., 2012, 12(2), 135-155.
[http://dx.doi.org/10.1016/S1642-431X(12)60082-5] [PMID: 22850467]
[76]
Barb, C.R.; Matteri, R.L. Orexin-B modulates luteinizing hormone and growth hormone secretion from porcine pituitary cells in culture. Domest. Anim. Endocrinol., 2005, 28(3), 331-337.
[http://dx.doi.org/10.1016/j.domaniend.2004.09.005] [PMID: 15760673]
[77]
Small, C.J.; Goubillon, M.L.; Murray, J.F.; Siddiqui, A.; Grimshaw, S.E.; Young, H.; Sivanesan, V.; Kalamatianos, T.; Kennedy, A.R.; Coen, C.W.; Bloom, S.R.; Wilson, C.A. Central orexin A has site-specific effects on luteinizing hormone release in female rats. Endocrinology, 2003, 144(7), 3225-3236.
[http://dx.doi.org/10.1210/en.2002-0041] [PMID: 12810579]
[78]
Jászberényi, M.; Bujdosó, E.; Pataki, I.; Telegdy, G. Effects of orexins on the hypothalamic-pituitary-adrenal system. J. Neuroendocrinol., 2000, 12(12), 1174-1178.
[http://dx.doi.org/10.1046/j.1365-2826.2000.00572.x] [PMID: 11106974]
[79]
Pu, S. Orexins, a novel family of hypothalamic neuropeptides, modulate pituitary luteinizing hormone secretion in an ovarian steroid-dependent manner.. Regul. Pept., 1998, 78(1-3), 133-136.
[http://dx.doi.org/10.1016/S0167-0115(98)00128-1] [PMID: 9879756]
[80]
Hori, A.; Honda, S.; Asada, M.; Ohtaki, T.; Oda, K.; Watanabe, T.; Shintani, Y.; Yamada, T.; Suenaga, M.; Kitada, C.; Onda, H.; Kurokawa, T.; Nishimura, O.; Fujino, M. Metastin suppresses the motility and growth of CHO cells transfected with its receptor. Biochem. Biophys. Res. Commun., 2001, 286(5), 958-963.
[http://dx.doi.org/10.1006/bbrc.2001.5470] [PMID: 11527393]
[81]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[82]
Ringel, M.D.; Hardy, E.; Bernet, V.J.; Burch, H.B.; Schuppert, F.; Burman, K.D.; Saji, M. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. J. Clin. Endocrinol. Metab., 2002, 87(5), 2399-2399.
[http://dx.doi.org/10.1210/jcem.87.5.8626] [PMID: 11994395]
[83]
Pampillo, M.; Camuso, N.; Taylor, J.E.; Szereszewski, J.M.; Ahow, M.R.; Zajac, M.; Millar, R.P.; Bhattacharya, M.; Babwah, A.V. Regulation of GPR54 signaling by GRK2 and β-Arrestin. Mol. Endocrinol., 2009, 23(12), 2060-2074.
[http://dx.doi.org/10.1210/me.2009-0013] [PMID: 19846537]
[84]
Szereszewski, J.M.; Pampillo, M.; Ahow, M.R.; Offermanns, S.; Bhattacharya, M.; Babwah, A.V. GPR54 regulates ERK1/2 activity and hypothalamic gene expression in a Gα(q/11) and β-arrestin-dependent manner. PLoS One, 2010, 5(9), e12964.
[http://dx.doi.org/10.1371/journal.pone.0012964] [PMID: 20886089]
[85]
Goertzen, C.G.; Dragan, M.; Turley, E.; Babwah, A.V.; Bhattacharya, M. KISS1R signaling promotes invadopodia formation in human breast cancer cell via β-arrestin2/ERK. Cell. Signal., 2016, 28(3), 165-176.
[http://dx.doi.org/10.1016/j.cellsig.2015.12.010] [PMID: 26721186]
[86]
Abbara, A.; Eng, P.C.; Phylactou, M.; Clarke, S.A.; Richardson, R.; Sykes, C.M.; Phumsatitpong, C.; Mills, E.; Modi, M.; Izzi-Engbeaya, C.; Papadopoulou, D.; Purugganan, K.; Jayasena, C.N.; Webber, L.; Salim, R.; Owen, B.; Bech, P.; Comninos, A.N.; McArdle, C.A.; Voliotis, M.; Tsaneva-Atanasova, K.; Moenter, S.; Hanyaloglu, A.; Dhillo, W.S. Kisspeptin receptor agonist has therapeutic potential for female reproductive disorders. J. Clin. Invest., 2020, 130(12), 6739-6753.
[http://dx.doi.org/10.1172/JCI139681] [PMID: 33196464]
[87]
Chan, Y.M.; Lippincott, M.F.; Sales Barroso, P.; Alleyn, C.; Brodsky, J.; Granados, H.; Roberts, S.A.; Sandler, C.; Srivatsa, A.; Seminara, S.B. Using kisspeptin to predict pubertal outcomes for youth with pubertal delay. J. Clin. Endocrinol. Metab., 2020, 105(8), e2717-e2725.
[http://dx.doi.org/10.1210/clinem/dgaa162] [PMID: 32232399]
[88]
Vuralli, D.; Ciftci, N.; Demirbilek, H. Serum kisspeptin, neurokinin B and inhibin B levels can be used as alternative parameters to distinguish idiopathic CPP from premature thelarche in the early stages of puberty. Clin. Endocrinol., 2023, 98(6), 788-795.
[http://dx.doi.org/10.1111/cen.14906] [PMID: 36879296]
[89]
Podfigurna, A.; Maciejewska-Jeske, M.; Meczekalski, B.; Genazzani, A.D. Kisspeptin and LH pulsatility in patients with functional hypothalamic amenorrhea. Endocrine, 2020, 70(3), 635-643.
[http://dx.doi.org/10.1007/s12020-020-02481-4] [PMID: 32915434]
[90]
Akad, M.; Socolov, R.; Furnică, C.; Covali, R.; Stan, C.D.; Crauciuc, E.; Pavaleanu, I. Kisspeptin variations in patients with polycystic ovary syndrome—A prospective case control study. Medicina, 2022, 58(6), 776.
[http://dx.doi.org/10.3390/medicina58060776] [PMID: 35744039]
[91]
Hoskova, K.; Kayton Bryant, N.; Chen, M.E.; Nachtigall, L.B.; Lippincott, M.F.; Balasubramanian, R.; Seminara, S.B. Kisspeptin overcomes GnRH neuronal suppression secondary to hyperprolactinemia in humans. J. Clin. Endocrinol. Metab., 2022, 107(8), e3515-e3525.
[http://dx.doi.org/10.1210/clinem/dgac166] [PMID: 35323937]
[92]
Jayasena, C.N.; Abbara, A.; Comninos, A.N.; Nijher, G.M.K.; Christopoulos, G.; Narayanaswamy, S.; Izzi-Engbeaya, C.; Sridharan, M.; Mason, A.J.; Warwick, J.; Ashby, D.; Ghatei, M.A.; Bloom, S.R.; Carby, A.; Trew, G.H.; Dhillo, W.S. Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. J. Clin. Invest., 2014, 124(8), 3667-3677.
[http://dx.doi.org/10.1172/JCI75730] [PMID: 25036713]
[93]
Silva, P.H.A.; Romão, L.G.M.; Freitas, N.P.A.; Carvalho, T.R.; Porto, M.E.M.P.; Araujo Júnior, E.; Cavalcante, M.B. Kisspeptin as a predictor of miscarriage: A systematic review. J. Matern. Fetal Neonatal Med., 2023, 36(1), 2197097.
[http://dx.doi.org/10.1080/14767058.2023.2197097] [PMID: 37015836]
[94]
Pérez-López, F.R.; López-Baena, M.T.; Varikasuvu, S.R.; Ruiz-Román, R.; Fuentes-Carrasco, M.; Savirón-Cornudella, R. Preeclampsia and gestational hypertension are associated to low maternal circulating kisspeptin levels: A systematic review and meta-analysis. Gynecol. Endocrinol., 2021, 37(12), 1055-1062.
[http://dx.doi.org/10.1080/09513590.2021.2004396] [PMID: 34779331]
[95]
Young, J.; Bouligand, J.; Francou, B.; Raffin-Sanson, M.L.; Gaillez, S.; Jeanpierre, M.; Grynberg, M.; Kamenicky, P.; Chanson, P.; Brailly-Tabard, S.; Guiochon-Mantel, A. TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J. Clin. Endocrinol. Metab., 2010, 95(5), 2287-2295.
[http://dx.doi.org/10.1210/jc.2009-2600] [PMID: 20194706]
[96]
Ho, M.; Su, Y.; Yeung, W.; Wong, Y. Regulation of transcription factors by heterotrimeric G proteins. Curr. Mol. Pharmacol., 2009, 2(1), 19-31.
[http://dx.doi.org/10.2174/1874467210902010019] [PMID: 20021442]
[97]
Szeliga, A.; Rudnicka, E.; Maciejewska-Jeske, M.; Kucharski, M.; Kostrzak, A.; Hajbos, M.; Niwczyk, O.; Smolarczyk, R.; Meczekalski, B. Neuroendocrine determinants of polycystic ovary syndrome. Int. J. Environ. Res. Public Health, 2022, 19(5), 3089.
[http://dx.doi.org/10.3390/ijerph19053089] [PMID: 35270780]
[98]
Ye, L.; Yang, Y.; Li, C.; Zhang, J.; Wang, W.; Ma, M.; Xu, H.; Zhang, W.; Zou, F.; Hu, Z.; Wang, H.; Tian, J. Synthesis and evaluation of piperazinotriazoles. Discovery of a potent and orally bioavailable neurokinin-3 receptor inhibitor. Eur. J. Med. Chem., 2023, 257, 115486.
[http://dx.doi.org/10.1016/j.ejmech.2023.115486] [PMID: 37247507]
[99]
Fraser, G.L.; Obermayer-Pietsch, B.; Laven, J.; Griesinger, G.; Pintiaux, A.; Timmerman, D.; Fauser, B.C.J.M.; Lademacher, C.; Combalbert, J.; Hoveyda, H.R.; Ramael, S. Randomized controlled trial of neurokinin 3 receptor antagonist fezolinetant for treatment of polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2021, 106(9), e3519-e3532.
[http://dx.doi.org/10.1210/clinem/dgab320] [PMID: 34000049]
[100]
Lederman, S.; Ottery, F.D.; Cano, A.; Santoro, N.; Shapiro, M.; Stute, P.; Thurston, R.C.; English, M.; Franklin, C.; Lee, M.; Neal-Perry, G. Fezolinetant for treatment of moderate-to-severe vasomotor symptoms associated with menopause (SKYLIGHT 1): A phase 3 randomised controlled study. Lancet, 2023, 401(10382), 1091-1102.
[http://dx.doi.org/10.1016/S0140-6736(23)00085-5] [PMID: 36924778]
[101]
Skorupskaite, K.; George, J.T.; Veldhuis, J.D.; Millar, R.P.; Anderson, R.A. Kisspeptin and neurokinin B interactions in modulating gonadotropin secretion in women with polycystic ovary syndrome. Hum. Reprod., 2020, 35(6), 1421-1431.
[http://dx.doi.org/10.1093/humrep/deaa104] [PMID: 32510130]
[102]
Trower, M.; Anderson, R.A.; Ballantyne, E.; Joffe, H.; Kerr, M.; Pawsey, S. Effects of NT-814, a dual neurokinin 1 and 3 receptor antagonist, on vasomotor symptoms in postmenopausal women: A placebo-controlled, randomized trial. Menopause, 2020, 27(5), 498-505.
[http://dx.doi.org/10.1097/GME.0000000000001500] [PMID: 32068688]
[103]
Depypere, H.; Timmerman, D.; Donders, G.; Sieprath, P.; Ramael, S.; Combalbert, J.; Hoveyda, H.R.; Fraser, G.L. Treatment of menopausal vasomotor symptoms with fezolinetant, a neurokinin 3 receptor antagonist: A phase 2a trial. J. Clin. Endocrinol. Metab., 2019, 104(12), 5893-5905.
[http://dx.doi.org/10.1210/jc.2019-00677] [PMID: 31415087]
[104]
Kim, H.J.J.; Dickie, S.A.; Laprairie, R.B. Estradiol-dependent hypocretinergic/orexinergic behaviors throughout the estrous cycle. Psychopharmacology, 2023, 240(1), 15-25.
[http://dx.doi.org/10.1007/s00213-022-06296-1] [PMID: 36571628]
[105]
Zhu, Y.; Miwa, Y.; Yamanaka, A.; Yada, T.; Shibahara, M.; Abe, Y.; Sakurai, T.; Goto, K. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J. Pharmacol. Sci., 2003, 92(3), 259-266.
[http://dx.doi.org/10.1254/jphs.92.259] [PMID: 12890892]
[106]
Gorojankina, T.; Grébert, D.; Salesse, R.; Tanfin, Z.; Caillol, M. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: Multiple orexin signalling pathways. Regul. Pept., 2007, 141(1-3), 73-85.
[http://dx.doi.org/10.1016/j.regpep.2006.12.012] [PMID: 17292491]
[107]
Kohlmeier, K.A.; Watanabe, S.; Tyler, C.J.; Burlet, S.; Leonard, C.S. Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: Noisy cation current activation and selective enhancement of Ca2+ transients mediated by L-type calcium channels. J. Neurophysiol., 2008, 100(4), 2265-2281.
[http://dx.doi.org/10.1152/jn.01388.2007] [PMID: 18667550]
[108]
Larsson, K.P.; Peltonen, H.M.; Bart, G.; Louhivuori, L.M.; Penttonen, A.; Antikainen, M.; Kukkonen, J.P.; Åkerman, K.E.O. Orexin-A-induced Ca2+ entry: Evidence for involvement of trpc channels and protein kinase C regulation. J. Biol. Chem., 2005, 280(3), 1771-1781.
[http://dx.doi.org/10.1074/jbc.M406073200] [PMID: 15537648]
[109]
Uramura, K.; Funahashi, H.; Muroya, S.; Shioda, S.; Takigawa, M.; Yada, T. Orexin-a activates phospholipase C- and protein kinase C-mediated Ca2+ signaling in dopamine neurons of the ventral tegmental area. Neuroreport, 2001, 12(9), 1885-1889.
[http://dx.doi.org/10.1097/00001756-200107030-00024] [PMID: 11435917]
[110]
Sasson, R.; Dearth, R.K.; White, R.S.; Chappell, P.E.; Mellon, P.L.; Orexin, A. Orexin A induces GnRH gene expression and secretion from GT1-7 hypothalamic GnRH neurons. Neuroendocrinology, 2006, 84(6), 353-363.
[http://dx.doi.org/10.1159/000098333] [PMID: 17192702]
[111]
Silveyra, P.; Catalano, P.N.; Lux-Lantos, V.; Libertun, C. Impact of proestrous milieu on expression of orexin receptors and prepro-orexin in rat hypothalamus and hypophysis: Actions of Cetrorelix and Nembutal. Am. J. Physiol. Endocrinol. Metab., 2007, 292(3), E820-E828.
[http://dx.doi.org/10.1152/ajpendo.00467.2006] [PMID: 17122088]
[112]
Basini, G.; Ciccimarra, R.; Bussolati, S.; Grolli, S.; Ragionieri, L.; Ravanetti, F.; Botti, M.; Gazza, F.; Cacchioli, A.; Di Lecce, R.; Cantoni, A.M.; Grasselli, F. Orexin A in swine corpus luteum. Domest. Anim. Endocrinol., 2018, 64, 38-48.
[http://dx.doi.org/10.1016/j.domaniend.2018.04.001] [PMID: 29733985]
[113]
Dobrzyn, K.; Szeszko, K.; Kiezun, M.; Kisielewska, K.; Rytelewska, E.; Gudelska, M.; Wyrebek, J.; Bors, K.; Kaminski, T.; Smolinska, N. In vitro effect of orexin A on the transcriptomic profile of the endometrium during early pregnancy in pigs. Anim. Reprod. Sci., 2019, 200, 31-42.
[http://dx.doi.org/10.1016/j.anireprosci.2018.11.008] [PMID: 30545750]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy