Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Friedel Crafts Reactions Revisited: Some Applications in Heterogeneous Catalysis#

Author(s): Elizabeth R. Lachter, Rosane A.S. San Gil* and Luis G. Valdivieso

Volume 28, Issue 14, 2024

Published on: 20 May, 2024

Page: [1060 - 1068] Pages: 9

DOI: 10.2174/0113852728306222240513112937

Price: $65

Abstract

Important organic reactions require the use of catalysts. The Friedel-Crafts reactions were discovered by Charles Friedel and James Mason Crafts in 1887. They are an essential catalytic process since they are widely applied in different areas such as fuels, cleaning, and pharmacological products. The reaction is usually carried out in the presence of Lewis acids or Brønsted acids in a homogeneous medium, with the nucleophilic aromatic substrate in excess. Although there is still work in the literature on the Friedel- Crafts reaction in a homogeneous medium using metal halides, the tendency is to replace these catalysts, which generate effluents that are harmful to the environment. Heterogeneous catalysts using solid acids show advantages over homogeneous catalysts, especially concerning separating products from the reaction medium, recycling, and reusing. This paper presents a mini-review focusing on the use of solid acids in Friedel-Crafts reactions.

Graphical Abstract

[1]
(a) Friedel, C.; Crafts, J.M. A new general synthetic hydrocarbon production method. J. Chem. Soc., 1877, 32, 725-791.
[http://dx.doi.org/10.1038/scientificamerican03021878-1801esupp];
(b) Olah, G.A. Friedel-crafts and related reactions. Inter. Publishers, 1966, 173-175, 173-175.
[http://dx.doi.org/10.1016/B978-0-08-012210-6.50106-X];
(c) Olah, G.A. Friedel-Crafts Chemistry; John Wiley Sons Inc: New York, 1973. ;
(d) Rueping, M.; Nachtsheim, B.J. A review of new developments in the Friedel–Crafts alkylation – From green chemistry to asymmetric catalysis. Beilstein J. Org. Chem., 2010, 6, 6.
[http://dx.doi.org/10.3762/bjoc.6.6] [PMID: 20485588]
[2]
Evano, G.; Theunissen, C. Beyond Friedel, and Crafts: directed alkylation of C-H bonds in arenes. Angew. Chem. Int. Ed., 2019, 58(22), 7202-7236.
[http://dx.doi.org/10.1002/anie.201806629] [PMID: 30107097]
[3]
(a) Jana, U.; Maiti, S.; Biswas, S. An FeCl3-catalyzed highly C3-selective Friedel–Crafts alkylation of indoles with alcohols. Tetrahedron Lett., 2007, 48(40), 7160-7163.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.208];
(b) Gee, J.C.; Kattchee, L.M.; Gee, S.J. Kinetics of pi-complex isomerization during AlCl3-catalyzed Friedel-Crafts reactions between linear olefins and p-xylene. J. Phys. Org. Chem., 2014, 27(7), 583-588.
[http://dx.doi.org/10.1002/poc.3303]
[4]
Zhang, X.; Zeng, P.; Zhang, S.; Chen, Z. FeCl3-mediated Friedel-crafts alkylation and oxidative annulations: Facile synthesis of benzofurans. ChemistrySelect, 2020, 5(13), 3934-3938.
[http://dx.doi.org/10.1002/slct.202000381]
[5]
Talukdar, R. Synthetically important ring-opening acylations of alkoxybenzenes. Synthesis, 2020, 52(24), 3764-3780.
[http://dx.doi.org/10.1055/s-0040-1707255] [PMID: 35520658]
[6]
Zheng, J.; Meng, S.; Wang, Q. Cascade intramolecular Prins/Friedel–Crafts cyclization for the synthesis of 4-aryltetralin-2-ols and 5-aryltetrahydro-5 H -benzo[7]annulen-7-ols. Beilstein J. Org. Chem., 2021, 17, 1481-1489.
[http://dx.doi.org/10.3762/bjoc.17.104] [PMID: 34239615]
[7]
Murugan, E.; Arunachalam, P. Designing efficient metal complex catalysts for acylation: A comparative study with soluble and insoluble catalysts systems. Indian J. Chem. Technol., 2022, 29, 635-646.
[http://dx.doi.org/10.56042/ijct.v29i6.67397]
[8]
Olah, G.A.; Prakash, G.K.S.; Sommer, J. Superacid Chemistry, 1st ed; Wiley-Interscience: New York, 1985.
[http://dx.doi.org/10.1002/9780470421604]
[9]
Deniz, H. Yıldız, T.; Başpınar Küçük, H. Intramolecular Friedel−Crafts reaction with trifluoroacetic acid: Synthesizing some new functionalized 9-aryl/alkyl thioxanthenes. ACS Omega, 2024, 9(11), acsomega.3c07150.
[http://dx.doi.org/10.1021/acsomega.3c07150] [PMID: 38524477 ]
[10]
(a) Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S. Scandium(III) triflate catalyzed friedel-crafts alkylation with benzyl and allyl alcohols. Synlett, 1996, 1996(6), 557-559.
[http://dx.doi.org/10.1055/s-1996-5498];
(b) Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S. Scandium(III) triflate-catalyzed Friedel-crafts alkylation reactions. J. Org. Chem., 1997, 62(20), 6997-7005.
[http://dx.doi.org/10.1021/jo970599u];
(c) Shimizu, I.; Khien, K.M.; Nagatomo, M.; Nakajima, T.; Yamamoto, A. Molybdenum-catalyzed aromatic substitution with olefins and alcohols. Chem. Lett., 1997, 26(9), 851-852.
[http://dx.doi.org/10.1246/cl.1997.851]
[11]
(a) Sarca, V.D.; Laali, K.K. Facile benzylation of aromatics in ionic liquid solvents promoted by TfOH, Sc(OTf)3, and Yb(OTf)3·xH2O; New life for a classic transformation. Green Chem., 2006, 8(7), 615-620.
[http://dx.doi.org/10.1039/B603176E];
(b) Wang, Z.; Zhou, M-M.; Sun, G.; Sun, H. A Novel InCl3/SiO2-catalyzed hydroarylation of arenes with styrenes under solvent-free conditions. Synlett, 2008, 2008(7), 1096-1100.
[http://dx.doi.org/10.1055/s-2008-1042917]
[12]
Gomes, R.F.A.; Coelho, J.A.S.; Frade, R.F.M.; Trindade, A.F.; Afonso, C.A.M. Synthesis of Symmetric Bis(N-alkyl aniline) triaryl methanes via Friedel–Crafts-Catalyzed Reaction between Secondary Anilines and Aldehydes. J. Org. Chem., 2015, 80(20), 10404-10411.
[http://dx.doi.org/10.1021/acs.joc.5b01875] [PMID: 26402221]
[13]
Merkushev, A.A.; Eshmemet’eva, D.A.; Uchuskin, M.G. FeCl3-catalyzed Friedel-Crafts alkylation of 2-substituted furans with 2-nitrobenzhydrols. Tetrahedron, 2023, 145, 133627.
[http://dx.doi.org/10.1016/j.tet.2023.133627]
[14]
Taniguchi, N.; Kitayama, K. Mo-catalyzed Friedel-Crafts alkylation using alkenes under mild condition. Tetrahedron Lett., 2023, 129, 154729.
[http://dx.doi.org/10.1016/j.tetlet.2023.154729]
[15]
(a) Laszlo, P.; Mathy, A. Catalysis of Friedel-crafts alkylation by a montmorillonite doped with transition-metal cations. Helv. Chim. Acta, 1987, 70(3), 577-586.
[http://dx.doi.org/10.1002/hlca.19870700310];
(b) Cornélis, A.; Dony, C.; Laszlo, P.; Nsunda, K.M. No contest: A co-reactant deprived of reactivity. Tetrahedron Lett., 1991, 32(25), 2903-2904.
[http://dx.doi.org/10.1016/0040-4039(91)80644-L];
(c) Coq, B.; Gourves, V.; Figuéras, F. Benzylation of toluene by benzyl chloride over protonic zeolites. Appl. Catal. A Gen., 1993, 100(1), 69-75.
[http://dx.doi.org/10.1016/0926-860X(93)80116-8];
(d) Cseri, T.; Békássy, S.; Figueras, F.; Rizner, S. Benzylation of aromatics on ion-exchanged clays. J. Mol. Catal. Chem., 1995, 98(2), 101-107.
[http://dx.doi.org/10.1016/1381-1169(95)00016-X];
(e) da Silva, M.S.M.; da Costa, C.L.; de Magdala Pinto, M.; Lachter, E.R. Benzylation of benzene, toluene and anisole with benzyl alcohol catalyzed by cation-exchange resins. Reactive Polymers, 1995, 25(1), 55-61.
[http://dx.doi.org/10.1016/0923-1137(95)00019-F];
(f) Perego, C.; Ingallina, P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal. Today, 2002, 73(1-2), 3-22.
[http://dx.doi.org/10.1016/S0920-5861(01)00511-9];
(g) Dasgupta, S.; Török, B. Environmentally benign contemporary Friedel-crafts chemistry by solid acids. Curr. Org. Synth., 2008, 5(4), 321-342.
[http://dx.doi.org/10.2174/157017908786241572]
[16]
Kokel, A.; Schäfer, C.; Török, B. Organic synthesis using environmentally benign acid catalysis. Curr. Org. Synth., 2019, 16(4), 615-649.
[http://dx.doi.org/10.2174/1570179416666190206141028] [PMID: 31984932]
[17]
Jahromi, H.; Adhikari, S.; Roy, P.; Shelley, M.; Hassani, E.; Oh, T.S. Synthesis of novel bio-lubricants from waste cooking oil and cyclic oxygenates through an integrated catalytic process. ACS Sustain. Chem. Eng., 2021, 9(40), 13424-13437.
[http://dx.doi.org/10.1021/acssuschemeng.1c03523]
[18]
Bayat, M.; Gheidari, D. Green Lewis acid catalysis in organic reactions. ChemistrySelect, 2022, 7(28), e202200774.
[http://dx.doi.org/10.1002/slct.202200774]
[19]
Hazra, C.K.; Singh, S. Recent advancements in typical Friedel-Crafts alkylation reactions focused on targeting arene nucleophiles. Synthesis, 2024, 56(3), 368-388.
[http://dx.doi.org/10.1055/s-0042-1751492]
[20]
Yati, I.; Kang, J.; Noh, H.; Choo, H.; Choi, J.W.; Suh, D.J.; Ha, J.M. Production of high-carbon-number bio-aviation fuels from furans using sulfated zirconia and silica-alumina aerogel catalysts. Catal. Today, 2024, 426, 114402.
[http://dx.doi.org/10.1016/j.cattod.2023.114402]
[21]
Török, B.; Christian Schäfer, C.; Anne Kokel, A. Advances in Green and Sustainable Chemistry, 2022, 317-378.
[http://dx.doi.org/10.1016/B978-0-12-817825-6.00020-3]
[22]
(a) Clark, J.H.; Martin, K.; Teasdale, A.J.; Barlow, S.J. Environmentally friendly catalysis using supported reagents: evolution of a highly active form of immobilised aluminium chloride. J. Chem. Soc. Chem. Commun., 1995, 2037-2040(19), 2037.
[http://dx.doi.org/10.1039/c39950002037];
(b) Miller, J.M.; Goodchild, M.; Lakshmi, J.L.; Wails, D.; Hartman, J.S. Friedel-Crafts catalysis using supported reagents. Synthesis, characterization, and catalytic application of ZnCl2 supported on fluoride-modified sol-gel-derived aluminosilicates. Catal. Lett., 1999, 63(3/4), 199-203.
[http://dx.doi.org/10.1023/A:1019045811205];
(c) Sebti, S.; Tahir, R.; Nazih, R.; Boulaajaj, S. Comparison of different Lewis acid supported on hydroxyapatite as new catalysts of Friedel–Crafts alkylation. Appl. Catal. A Gen., 2001, 218(1-2), 25-30.
[http://dx.doi.org/10.1016/S0926-860X(01)00599-3];
(d) Choudhary, V.R.; Mantri, K. AlClx-grafted Si-MCM-41 prepared by reacting anhydrous AlCl3 with terminal Si–OH groups: an active solid catalyst for benzylation and acylation reactions. Microporous Mesoporous Mater., 2002, 56(3), 317-320.
[http://dx.doi.org/10.1016/S1387-1811(02)00501-2];
(e) Choudhary, V.R.; Mantri, K. AlCl3-grafted Si-MCM-41: Influence of thermal treatment conditions on surface properties and incorporation of Al in the structure of MCM-41. J. Catal., 2002, 205(1), 221-225.
[http://dx.doi.org/10.1006/jcat.2001.3435];
(f) Losfeld, G.; Escande, V.; Vidal de La Blache, P.; L’Huillier, L.; Grison, C. Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel–Crafts alkylation and acylation. Catal. Today, 2012, 189(1), 111-116.
[http://dx.doi.org/10.1016/j.cattod.2012.02.044]
[23]
Iqbal, A.; Tan, K.H.; Shaari, U.S.; Ahmad, N.I.N.B.; Adam, F.; Lee, H.V.; Yusop, R.M.; Bakar, N.H.H.A.; Lee, H.L.; Pauzi, H.; Malik, M.F.I.A.; Jusoh, A.F.; Wilson, L.D.; Ahmad, M.N.; Hussain, M.H.; Ibrahim, M.N.M. Friedel–crafts benzylation of toluene catalyzed by ZnCl2/SiO2 heterogeneous catalyst to para- and ortho-mono-benzylated toluene. J. Iran Chem. Soc., 2020, 17, 1615-1626.
[http://dx.doi.org/10.1007/s13738-020-01888-0]
[24]
Sun, J.; Jin, H.; Mao, X.; He, G.; Li, J.; Yan, Z.; Hu, F.; Ma, L.; Guo, X.; Yang, S. The catalytic characteristics of 2-methylnaphthalene acylation with AlCl3 immobilized on Hβ as Lewis acid catalyst. Green Process. Synth., 2023, 12(1), 20230003-20230013.
[http://dx.doi.org/10.1515/gps-2023-0003]
[25]
(a) Nowak, I.; Ziolek, M. Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem. Rev., 1999, 99(12), 3603-3624.
[http://dx.doi.org/10.1021/cr9800208] [PMID: 11849031];
(b) Tanabe, K. Catalytic application of niobium compounds. Catal. Today, 2003, 78(1-4), 65-77.
[http://dx.doi.org/10.1016/S0920-5861(02)00343-7];
(c) Ziolek, M. Niobium-containing catalysts-the state of the art. Catal. Today, 2003, 78(1-4), 47-64.
[http://dx.doi.org/10.1016/S0920-5861(02)00340-1];
(d) Andrade, C.K.Z.; Rocha, R.O. Recent applications of niobium catalysts in organic synthesis. Mini Rev. Org. Chem., 2006, 3, 271-280.
[http://dx.doi.org/10.2174/157019306778742823];
(e) Ziolek, M.; Sobczak, I.; Andrade, C.K.Z.; Silva-Filho, L.C.; Ziolek, M.; Sobczak, I. The role of niobium component in heterogeneous catalysts. Catal. Today, 2017, 285, 211-225.
[http://dx.doi.org/10.1016/j.cattod.2016.12.013];
(f) Arpini, B.; Andrade Bartolomeu, A.; Andrade, C.; da Silva-Filho, L.; Lacerda, V. Recent advances in using niobium compounds as catalysts in organic chemistry. Curr. Org. Synth., 2015, 12(5), 570-583.
[http://dx.doi.org/10.2174/157017941205150821125817]
[26]
(a) Moraes, M.; Pinto, W.S.F.; Gonzalez, W.A.; Carmo, L.M.P.M.; Pastura, N.M.R.; Lachter, E.R. Benzylation of toluene and anisole by benzyl alcohol catalyzed by niobic acid: influence of pretreatment temperature in the catalytic activity of niobic acid. Appl. Catal. A Gen., 1996, 138(1), L7-L12.
[http://dx.doi.org/10.1016/0926-860X(96)00044-0];
(b) Morais, M.; Torres, E.F.; Carmo, L.M.P.M.; Pastura, N.M.R.; Gonzalez, W.A.; dos Santos, A.C.B.; Lachter, E.R. Benzylation of toluene and anisole by benzyl alcohol catalysed by niobic acid. Catal. Today, 1996, 28(1-2), 17-21.
[http://dx.doi.org/10.1016/0920-5861(95)00214-6];
(c) de La Cruz, M.H.C.; Rocha, Â.S.; Lachter, E.R.; Forrester, A.M.S.; Reis, M.C.; San Gil, R.A.S.; Caldarelli, S.; Farias, A.D.; Gonzalez, W.A. Investigation of the catalytic activity of niobium phosphates for liquid phase alkylation of anisole with benzyl chloride. Appl. Catal. A Gen., 2010, 386(1-2), 60-64.
[http://dx.doi.org/10.1016/j.apcata.2010.07.030];
(d) de la Cruz, M.H.C.; Rocha, A.S.; da Silva, J.F.C.; San Gil, R.A.S.; Lachter, E.R. Catalytic activity of niobium phosphate in the benzylation of anisole with styrene, benzyl alcohol and benzyl chloride. React. Kinet. Mech. Catal., 2017, 122(2), 1081-1094.
[http://dx.doi.org/10.1007/s11144-017-1259-y]
[27]
Pereira, C.C.M.; Lachter, E.R. Alkylation of toluene and anisole with 1-octen-3-ol over niobium catalysts. Appl. Catal. A Gen., 2004, 266(1), 67-72.
[http://dx.doi.org/10.1016/j.apcata.2004.01.027]
[28]
(a) Okumura, K.; Yamashita, K.; Hirano, M.; Niwa, M. The active and reusable catalysts in the benzylation of anisole derived from a heteropoly acid. J. Catal., 2005, 234(2), 300-307.
[http://dx.doi.org/10.1016/j.jcat.2005.06.033];
(b) Yamashita, K.; Hirano, M.; Okumura, K.; Niwa, M. Activity and acidity of Nb2O5-MoO3 and Nb2O5-WO3 in the Friedel-Crafts alkylation. Catal. Today, 2006, 118(3-4), 385-391.
[http://dx.doi.org/10.1016/j.cattod.2006.07.025];
(c) Kitano, T.; Shishido, T.; Teramura, K.; Tanaka, T. Brønsted Acid property of alumina-supported niobium oxide calcined at high temperatures: characterization by acid-catalyzed reactions and spectroscopic methods. J. Phys. Chem. C, 2012, 116(21), 11615-11625.
[http://dx.doi.org/10.1021/jp3032429];
(d) Kitano, T.; Shishido, T.; Teramura, K.; Tanaka, T. Acid property of Nb2O5/Al2O3 prepared by impregnation method by using niobium oxalate solution: Effect of pH on the structure and acid property. Catal. Today, 2014, 226, 97-102.
[http://dx.doi.org/10.1016/j.cattod.2013.09.053];
(e) Dos Santos, C.G.; Marquez, D.T.; Crites, C.O.L.; Netto-Ferreira, J.C.; Scaiano, J.C. Plasmon heating mediated Friedel-Crafts alkylation of anisole using supported AuNP@Nb2O5 catalysts. Tetrahedron Lett., 2017, 58(5), 427-431.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.048]
[29]
Du, Y.P.; Héroguel, F.; Nguyen, X.T.; Luterbacher, J.S. Post-synthesis deposition of mesoporous niobic acid with improved thermal stability by kinetically controlled sol–gel overcoating. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(41), 23803-23811.
[http://dx.doi.org/10.1039/C9TA01459D]
[30]
Pineda, A.; Lázaro, N.; Balu, A.M.; Garcia, A.; Romero, A.A.; Luque, R. Evaluation of acid properties of mechanochemically synthesized supported niobium oxide catalysts in the alkylation of toluene. Mol. Catal., 2020, 493, 111092.
[http://dx.doi.org/10.1016/j.mcat.2020.111092]
[31]
Yang, X.; Yasukawa, T.; Yamashita, Y.; Kobayashi, S. Development of trifluoromethanesulfonic acid-immobilized nitrogen-doped carbon-incarcerated niobia nanoparticle catalysts for Friedel–crafts acylation. J. Org. Chem., 2021, 86(21), 15800-15806.
[http://dx.doi.org/10.1021/acs.joc.1c01944] [PMID: 34617753]
[32]
Ly, I.; Layan, E.; Picheau, E.; Chanut, N.; Nallet, F.; Bentaleb, A.; Dourges, M.A.; Pellenq, R.J.; Hillard, E.A.; Toupance, T.; Dole, F.; Louërat, F.; Backov, R. Design of binary Nb2O5-SiO2 self-standing monoliths bearing hierarchical porosity and their efficient Friedel-crafts alkylation/acylation catalytic properties. ACS Appl. Mater. Interfaces, 2022, 14(11), 13305-13316.
[http://dx.doi.org/10.1021/acsami.1c24554] [PMID: 35258941]
[33]
Samikannu, A.; Konwar, L.J.; Rajendran, K.; Lee, C.C.; Shchukarev, A.; Virtanen, P.; Mikkola, J.P. Highly dispersed NbOPO4/SBA-15 as a versatile acid catalyst upon production of renewable jet-fuel from bio-based furanics via hydroxyalkylation-alkylation (HAA) and hydrodeoxygenation (HDO) reactions. Appl. Catal. B, 2020, 272, 118987.
[http://dx.doi.org/10.1016/j.apcatb.2020.118987]
[34]
Chhabra, T.; Krishnan, V. Nanoarchitectonics of niobium (V) oxide with grafted sulfonic acid groups for solventless conversion of biomass derivatives to high carbon biofuel precursors. Fuel, 2023, 341, 127713.
[http://dx.doi.org/10.1016/j.fuel.2023.127713]
[35]
Liu, D.; Niu, X.; Guo, Z.; Zhang, K.; Jiang, N.; Qin, Y.; Zhao, W.; Zhang, X.; Wang, Q. One-pot solvent-free sequential synthesis of high-density polycycloalkanes fuels from lignin-derivatives over laminated NbOPO4 catalyst. Fuel, 2024, 360, 130570.
[http://dx.doi.org/10.1016/j.fuel.2023.130570]
[36]
a) Leite, S.Q.M.; Dieguez, L.C.; San Gil, R.A.S.; Menezes, S.M.C. Pillarization of Brazilian smectite for the catalytic of purpose. Use of pillared clay in the alkylation of benzene with 1-dodecene. Quim. Nova, 2000, 23, 149-154.
[http://dx.doi.org/10.1590/S0100-40422000000200002];
(b) Choudary, B.M.; Rao, B.P.C.; Chowdari, N.S.; Kantam, M.L. Fe3+-montmorillonite: A bifunctional catalyst for one pot Friedel–Crafts alkylation of arenes with alcohols. Catal. Commun., 2002, 3(8), 363-367.
[http://dx.doi.org/10.1016/S1566-7367(02)00143-7];
(c) Guerra, S.R.; Merat, L.M.O.C.; San Gil, R.A.S.; Dieguez, L.C. Alkylation of benzene with olefins in the presence of zirconium-pillared clays. Catal. Today, 2008, 133-135, 223-230.
[http://dx.doi.org/10.1016/j.cattod.2007.12.094]
[37]
Li, R.; Xing, S.; Zhang, S.; Han, M. Effect of surface silicon modification of H-β zeolites for alkylation of benzene with 1-dodecene. RSC Advances, 2020, 10(17), 10006-10016.
[http://dx.doi.org/10.1039/D0RA00393J] [PMID: 35498587]
[38]
Takabatake, M.; Nambo, M.; Manaka, Y.; Motokura, K. Direct alkylation of benzene at lower temperatures in the liquid phase: Catalysis by montmorillonites as noble-metal-free solid acids. ChemPlusChem, 2020, 85(3), 450-453.
[http://dx.doi.org/10.1002/cplu.202000090] [PMID: 32154992]
[39]
Takabatake, M.; Motokura, K. Montmorillonite-based heterogeneous catalysts for efficient organic reactions. Nano Express, 2022, 3(1), 014004.
[http://dx.doi.org/10.1088/2632-959X/ac5ac3]
[40]
Masuda, K.; Okamoto, Y.; Onozawa, S.; Koumura, N.; Kobayashi, S. Development of highly efficient Friedel–Crafts alkylations with alcohols using heterogeneous catalysts under continuous-flow conditions. RSC Advances, 2021, 11(39), 24424-24428.
[http://dx.doi.org/10.1039/D1RA04005G] [PMID: 35479054]
[41]
Poman, A.S.; Kamble, P.A.; Rathod, V.K.; Mannepalli, L.K. Alkylation of phenol using tert-butanol over modified clay catalysts. Catal. Green Chem Eng., 2023, 6, 47-59.
[http://dx.doi.org/10.1021/op010077n]
[42]
Ghadiri, M.; Shams, K. Synthesis of monoalkylbenzenes via transalkylation of heavy alkylbenzenes using benzene over alumina-pillared bentonite clay catalysts. React. Kinet. Mech. Catal., 2023, 136(1), 311-329.
[http://dx.doi.org/10.1007/s11144-023-02346-7]
[43]
Nouri, N.; Tasviri, M.; Zendehboudi, S. Effect of poly(vinyl alcohol) on the catalytic performance of Al-pillared clay in the alkylation of aromatic hydrocarbons with olefins. Ind. Eng. Chem. Res., 2023, 62(17), 6612-6625.
[http://dx.doi.org/10.1021/acs.iecr.2c02295]
[44]
Phan, N.T.S.; Le, K.K.A.; Phan, T.D. MOF-5 as an efficient heterogeneous catalyst for Friedel–Crafts alkylation reactions. Appl. Catal. A Gen., 2010, 382(2), 246-253.
[http://dx.doi.org/10.1016/j.apcata.2010.04.053]
[45]
Rao, P.C.; Mandal, S. Friedel–crafts alkylation of indoles with nitroalkenes through hydrogen-bond-donating metal–organic framework. ChemCatChem, 2017, 9(7), 1172-1176.
[http://dx.doi.org/10.1002/cctc.201601583]
[46]
Zhang, H.; Song, X.; Hu, D.; Zhang, W.; Jia, M. Iron-based nanoparticles embedded in a graphitic layer of carbon architectures as stable heterogeneous Friedel–Crafts acylation catalysts. Catal. Sci. Technol., 2019, 9(14), 3812-3819.
[http://dx.doi.org/10.1039/C9CY00598F]
[47]
Wu, J.Q.; Wu, X.Y.; Lu, J.M.; Shi, Q.; Shao, L.X. Highly active La(III)-based metal-organic framework as a heterogeneous Lewis acid catalyst for Friedel-crafts alkylation. Chemistry, 2022, 28(69), e202202441.
[http://dx.doi.org/10.1002/chem.202202441] [PMID: 36082763]
[48]
Atayde, E.C., Jr; Matsagar, B.M.; Wang, Y.C.; Wu, K.C.W. MOF-catalyzed hydroxyalkylation-alkylation reaction for the controlled synthesis of furan oligomers. Appl. Catal. A Gen., 2024, 669, 119492-119500.
[http://dx.doi.org/10.1016/j.apcata.2023.119492]
[49]
da Silva, F.C.M.; Costa, M.J.S.; da Silva, L.K.R.; Batista, A.M.; da Luz, G.E., Jr Functionalization methods of SBA-15 mesoporous molecular sieve: A brief overview. SN Applied Sciences, 2019, 1(6), 654.
[http://dx.doi.org/10.1007/s42452-019-0677-z]
[50]
Kasakado, T.; Hyodo, M.; Furuta, A.; Kamardine, A.; Ryu, I.; Fukuyama, T. Flow FRIEDEL–CRAFTS alkylation of 1-ADAMANTANOL with arenes using HO-SAS as an immobilized acid catalyst. J. Chin. Chem. Soc. (Taipei), 2020, 67(12), 2253-2257.
[http://dx.doi.org/10.1002/jccs.202000518]
[51]
Wawrzyńczak, A.; Jarmolińska, S.; Nowak, I. Nanostructured KIT-6 materials functionalized with sulfonic groups for catalytic purposes. Catal. Today, 2022, 397-399, 526-539.
[http://dx.doi.org/10.1016/j.cattod.2021.06.019]
[52]
Singh, S.; Kumar, A.; Nebhani, L.; Hazra, C.K. Sustainable sulfonic acid functionalized tubular shape mesoporous silica as a heterogeneous catalyst for selective unsymmetrical Friedel–crafts alkylation in one pot. JACS Au, 2023, 3(12), 3400-3411.
[http://dx.doi.org/10.1021/jacsau.3c00563] [PMID: 38155639]
[53]
Liu, B.; Lu, W.; Liu, Y.; Feng, Q.; Huang, Y.; Shang, J.; Zhu, Y.; Dong, J. Synthesis of dodecylbenzene via the alkylation of benzene and 1-dodecene over mesopore β zeolites. AIChE J., 2023, 69(11), e18201.
[http://dx.doi.org/10.1002/aic.18201]
[54]
Niwate, Y.; Malankar, G.; Ghangale, S.; Lande, S.G.K.; Jasra, R.V. Environmentally friendly utilization of spent FCC catalyst: an efficient solid acid catalyst for Friedel-Crafts alkylation reaction. Catal. Cataly. Green Chem. Eng., 2019, 2(2), 91-97.
[http://dx.doi.org/10.1615/CatalGreenChemEng.2020032618]
[55]
Elvas-Leitão, R.; Martins, F.; Borbinha, L.; Marranita, C.; Martins, A.; Nunes, N. Probing substrate/catalyst effects using QSPR analysis on Friedel-Crafts acylation reactions over hierarchical BEA Zeolites. Molecules, 2020, 25(23), 5682.
[http://dx.doi.org/10.3390/molecules25235682] [PMID: 33276487]
[56]
Fanfei, M.; Linhui, D.; Wei, M.; Yuansheng, D.; Jun, Q. High-efficiency catalyst of modified Y molecular sieve by rare earth La3+ catalyzed the synthesis of cyclohexylbenzene from benzene and cyclohexene. Catal. Lett., 2022, 152(3), 745-754.
[http://dx.doi.org/10.1007/s10562-021-03676-8]
[57]
Nishimura, Y.; Dasireddy, V.D.B.C.; Joseph, S.; Sugi, Y.; Vinu, A. Heterogeneous Friedel-Crafts alkylation; , 2023, pp. 595-643.
[http://dx.doi.org/10.1002/9783527827992.ch21]
[58]
Koshti, H.; Bandyopadhyay, M.; Kumar, M.; Tsunoji, N.; Bandyopadhyay, R. Alkylation of toluene to mono-benzylated toluene over micro-mesoporous zeolite: Effect of post-synthetic treatment and catalytic application. Eur. J. Inorg. Chem., 2024, 27(5), e202300674.
[http://dx.doi.org/10.1002/ejic.202300674]
[59]
Miao, S.; Sun, S.; Lei, Z.; Sun, Y.; Zhao, C.; Zhan, J.; Zhang, W.; Jia, M. Micron-sized hierarchical β Zeolites templated by mesoscale cationic polymers as robust catalysts for acylation of anisole with acetic anhydride. Catalysts, 2023, 13(12), 1517.
[http://dx.doi.org/10.3390/catal13121517]
[60]
Bayout, A.; Cammarano, C.; Medeiros-Costa, I.; Veryasov, G.; Hulea, V. Friedel-Crafts alkylation of toluene by methyl mercaptan: Effect of topology and acidity of zeolite catalysts. ACS Catal., 2024, 14(6), 3867-3877.
[http://dx.doi.org/10.1021/acscatal.3c06088]
[61]
Motokura, K.; Nakamura, Y.; Takabatake, M.; Suzuki, K.; Hasegawa, S. Direct alkylation of benzene with branched alkanes using solid acids: Unexpected product selectivity based on the tertiary carbon position. Catal. Today, 2024, 425, 114363.
[http://dx.doi.org/10.1016/j.cattod.2023.114363]
[62]
Bond, G.; Gardner, J.A.; McCabe, R.W.; Shorrock, D.J. Friedel-Crafts acylation reactions using heterogeneous catalysts stimulated by conventional and microwave heating. J. Mol. Catal. Chem., 2007, 278(1-2), 1-5.
[http://dx.doi.org/10.1016/j.molcata.2007.07.048]
[63]
Császár, Z.; Juzsakova, T.; Jakab, M.; Balogh, S.; Szegedi, Á.; Solt, H.; Hancsók, J.; Bakos, J.; Farkas, G. Continuous flow Friedel–Crafts alkylation catalyzed by silica-supported phosphotungstic acid: An environmentally benign process. Top. Catal., 2021, 1-5.
[http://dx.doi.org/10.1007/s11244-021-01497-y]
[64]
Alharbi, W.; Alharbi, K.H.; Roselin, L.S.; Savidha, R.; Selvin, R. Nanosized Silica - Supported 12-Tungstophosphoric Acid: A highly active and stable catalyst for the alkylation of p-Cresol with tert-butanol. Catalysts, 2023, 13(11), 1432.
[http://dx.doi.org/10.3390/catal13111432]
[65]
(a) Olah, G.A.; Iyer, P.S.; Surya Prakash, G.K. Perfluorinated resin sulfonic acid (Nation-H) catalysis in synthesis. Synthesis, 1986, 1986(7), 513-531.
[http://dx.doi.org/10.1055/s-1986-31692];
(b) Tanabe, K.; Holderich, W.F. Industrial application of solid acid–base catalysts. Appl. Catal. A Gen., 1999, 181(2), 399-434.
[http://dx.doi.org/10.1016/S0926-860X(98)00397-4];
(c) Gelbard, G. Organic synthesis by catalysis with ion-exchange resins. Ind. Eng. Chem. Res., 2005, 44(23), 8468-8498.
[http://dx.doi.org/10.1021/ie0580405];
(d) Busca, G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev., 2007, 107(11), 5366-5410.
[http://dx.doi.org/10.1021/cr068042e] [PMID: 17973436]
[66]
Olah, G.A.; Molnar, A. Prakash, G.K.S. Hydrocarbon Chemistry, 3rd ed; John Wiley & Sons: New York, 2018.
[67]
Lachter, E.R.; Rodrigues, J.A.; Teixeira, V.G.; Mendonça, R.H.; Ribeiro, P.S.; Villabona-Estupiñan, S. Applications of Ion Exchange Materials in Chemical and Food Industries; , 2019, pp. 35-74.
[68]
(a) Rosenwald, R.H.; Hill, H.A.; Rosenwald, R.D.; Caudell, T.P. Solar oscillations-The influence of the sun’s outer layers on their detection. J. Astro. Phys. NSF-USAF-supported Res., 1978, 225, 304-317.
[http://dx.doi.org/10.1002/0471238961];
(b) Harmer, M.A.; Sun, Q.; Vega, A.J.; Farneth, W.E.; Heidekum, A.; Hoelderich, W.F. Nafion resin–silica nanocomposite solid acid catalysts. Microstructure–processing–property correlations. Green Chem., 2000, 2(1), 7-14.
[http://dx.doi.org/10.1039/a907892d];
(c) Lachter, E.R.; da Silva San Gil, R.A.; Tabak, D.; Costa, V.G.; Chaves, C.P.S.; dos Santos, J.A. Alkylation of toluene with aliphatic alcohols and 1-octene catalyzed by cation-exchange resins. React. Funct. Polym., 2000, 44(1), 1-7.
[http://dx.doi.org/10.1016/S1381-5148(99)00071-1];
(d) Fernandes, R.M.; Lachter, E.R. Evaluation of sulfonic resins for liquid phase alkylation of toluene. Catal. Commun., 2005, 6(8), 550-554.
[http://dx.doi.org/10.1016/j.catcom.2005.04.022]
[69]
Wang, J.J.; Chuang, Y.Y.; Hsu, H.Y.; Tsai, T.C. Toward industrial catalysis of zeolite for linear alkylbenzene synthesis: A mini review. Catal. Today, 2017, 298, 109-116.
[http://dx.doi.org/10.1016/j.cattod.2017.05.046]
[70]
Ramírez, E.; Soto, R.; Bringué, R.; Iborra, M.; Tejero, J. Catalytic hydroxyalkylation/alkylation of 2-methylfuran with butanal to form a biodiesel precursor using acidic ion-exchange resins. Ind. Eng. Chem. Res., 2020, 59(47), 20676-20685.
[http://dx.doi.org/10.1021/acs.iecr.0c04308]
[71]
Dutta, S.; Madav, V.; Joshi, G.; Naik, N.; Kumar, S. Directional synthesis of aviation-, diesel-, and gasoline range hydrocarbon fuels by catalytic transformations of biomass components: An overview. Fuel, 2023, 347, 128437.
[http://dx.doi.org/10.1016/j.fuel.2023.128437]
[72]
Gao, C.L.; Wang, X.; Gang, H.Z.; Liu, J.F.; Mu, B.Z.; Yang, S.Z. The optimization of heterogeneous catalytic conditions in the direct alkylation of waste vegetable oil. R. Soc. Open Sci., 2020, 7(7), 192254.
[http://dx.doi.org/10.1098/rsos.192254] [PMID: 32874616]
[73]
Schiaroli, N.; Allegri, A.; Eberle, M.; Billi, S.; Guerrini, A.; Albonetti, S.; Vaccari, A.; Tabanelli, T.; Lucarelli, C. Superacid resin-based heterogeneous catalysts for the selective acylation of 1,2-methylenedioxybenzene. ChemSusChem, 2023, 16(21), e202300903.
[http://dx.doi.org/10.1002/cssc.202300903] [PMID: 37499171]
[74]
Nori, V.; Della Penna, F.; Cocco, E.; Mantegazza, S.; Razzetti, G.; Quattrocchi, G.; Pesciaioli, F.; Carlone, A. A sustainable and catalytic synthesis of dibenzosuberone. ChemCatChem, 2023, 15(14), e202300642.
[http://dx.doi.org/10.1002/cctc.202300642]
[75]
Zhang, S.; Li, J.; Ji, G.; Liang, X. One-pot synthesis of a novel magnetic carbon based solid acid for alkylation. Kinet. Catal., 2017, 58(4), 414-421.
[http://dx.doi.org/10.1134/S002315841704005X]
[76]
Al-Zeer, M.I.M.; MacKenzie, K.J.D. Fly Ash-based geopolymers as sustainable bifunctional heterogeneous catalysts and their reactivity in Friedel-crafts acylation reactions. Catalysts, 2019, 9(4), 372-385.
[http://dx.doi.org/10.3390/catal9040372]
[77]
Wang, S.; Meng, X.; Liu, N.; Shi, L. Alkylation for removing trace olefins from reforming aromatics over novel Al2O3@SO42-/ZrO2 catalysts derived from the ZrO2-coated γ-Al2O3 strategy. Separ. Purif. Tech., 2023, 308, 122731-122747.
[http://dx.doi.org/10.1016/j.seppur.2022.122731]
[78]
Yan, P.; Wang, H.; Liao, Y.; Wang, C. Synthesis of renewable diesel and jet fuels from bio-based furanics via hydroxyalkylation/alkylation (HAA) over SO42-/TiO2 and hydrodeoxygenation (HDO) reactions. Fuel, 2023, 342, 127685.
[http://dx.doi.org/10.1016/j.fuel.2023.127685]
[79]
Chen, X.; Zhang, Z.; Yuan, B.; Yu, F.; Xie, C.; Yu, S. Lignin-based sulfonated carbon as an efficient biomass catalyst for clean benzylation of benzene ring compounds. J. Ind. Eng. Chem., 2022, 111, 369-379.
[http://dx.doi.org/10.1016/j.jiec.2022.04.019]
[80]
Kabi, A.K.; Gujjarappa, R.; Vodnala, N.; Kaldhi, D.; Tyagi, U.; Mukherjee, K.; Malakar, C.C. HFIP-mediated strategy towards β-oxo amides and subsequent Friedel-Craft type cyclization to 2 quinolinones using recyclable catalyst. Tetrahedron Lett., 2020, 61(46), 152535.
[http://dx.doi.org/10.1016/j.tetlet.2020.152535]
[81]
Singh, S.; Mondal, S.; Tiwari, V.; Karmakar, T.; Hazra, C.K. Cooperative Friedel–Crafts alkylation of electron-deficient arenes via catalyst activation with hexafluoroisopropanol. Chemistry, 2023, 29(18), e202300180.
[http://dx.doi.org/10.1002/chem.202300180] [PMID: 36680470]
[82]
Teli, Y.A.; Reetu, R.; Gujjarappa, R.; Banerjee, S.; Ghanta, S; Patel, M.J.; Singh, V.; Al-Zaqri, N.; Sengupta, R.; Malakar, C.C. B B(OH)3-catalyzed cual Friedel-Crafts type reaction of anilines and aldehydes to access di- or triarylmethanes (TRAMs). Eur. J. Org. Chem., 2024, 27, e202301086.
[http://dx.doi.org/10.1002/ejoc.202301086]
[83]
Shu, D.; Zhang, J.; Ruan, R.; Lei, H.; Wang, Y.; Moriko, Q.; Zou, R.; Huo, E.; Duan, D.; Gan, L.; Zhou, D.; Zhao, Y.; Dai, L. Insights into preparation methods and functions of carbon-based solid acids. Molecules, 2024, 29(1), 247.
[http://dx.doi.org/10.3390/molecules29010247] [PMID: 38202830]
[84]
Mennani, M.; Kasbaji, M.; Ait Benhamou, A.; Boussetta, A.; Kassab, Z.; El Achaby, M.; Grimi, N.; Moubarik, A. The potential of lignin-functionalized metal catalysts - A systematic review. Renew. Sustain. Energy Rev., 2024, 189, 113936.
[http://dx.doi.org/10.1016/j.rser.2023.113936]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy