Abstract
Important organic reactions require the use of catalysts. The Friedel-Crafts reactions were discovered by Charles Friedel and James Mason Crafts in 1887. They are an essential catalytic process since they are widely applied in different areas such as fuels, cleaning, and pharmacological products. The reaction is usually carried out in the presence of Lewis acids or Brønsted acids in a homogeneous medium, with the nucleophilic aromatic substrate in excess. Although there is still work in the literature on the Friedel- Crafts reaction in a homogeneous medium using metal halides, the tendency is to replace these catalysts, which generate effluents that are harmful to the environment. Heterogeneous catalysts using solid acids show advantages over homogeneous catalysts, especially concerning separating products from the reaction medium, recycling, and reusing. This paper presents a mini-review focusing on the use of solid acids in Friedel-Crafts reactions.
Graphical Abstract
[http://dx.doi.org/10.1038/scientificamerican03021878-1801esupp];
(b) Olah, G.A. Friedel-crafts and related reactions. Inter. Publishers, 1966, 173-175, 173-175.
[http://dx.doi.org/10.1016/B978-0-08-012210-6.50106-X];
(c) Olah, G.A. Friedel-Crafts Chemistry; John Wiley Sons Inc: New York, 1973. ;
(d) Rueping, M.; Nachtsheim, B.J. A review of new developments in the Friedel–Crafts alkylation – From green chemistry to asymmetric catalysis. Beilstein J. Org. Chem., 2010, 6, 6.
[http://dx.doi.org/10.3762/bjoc.6.6] [PMID: 20485588]
[http://dx.doi.org/10.1002/anie.201806629] [PMID: 30107097]
[http://dx.doi.org/10.1016/j.tetlet.2007.07.208];
(b) Gee, J.C.; Kattchee, L.M.; Gee, S.J. Kinetics of pi-complex isomerization during AlCl3-catalyzed Friedel-Crafts reactions between linear olefins and p-xylene. J. Phys. Org. Chem., 2014, 27(7), 583-588.
[http://dx.doi.org/10.1002/poc.3303]
[http://dx.doi.org/10.1002/slct.202000381]
[http://dx.doi.org/10.1055/s-0040-1707255] [PMID: 35520658]
[http://dx.doi.org/10.3762/bjoc.17.104] [PMID: 34239615]
[http://dx.doi.org/10.56042/ijct.v29i6.67397]
[http://dx.doi.org/10.1002/9780470421604]
[http://dx.doi.org/10.1021/acsomega.3c07150] [PMID: 38524477 ]
[http://dx.doi.org/10.1055/s-1996-5498];
(b) Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S. Scandium(III) triflate-catalyzed Friedel-crafts alkylation reactions. J. Org. Chem., 1997, 62(20), 6997-7005.
[http://dx.doi.org/10.1021/jo970599u];
(c) Shimizu, I.; Khien, K.M.; Nagatomo, M.; Nakajima, T.; Yamamoto, A. Molybdenum-catalyzed aromatic substitution with olefins and alcohols. Chem. Lett., 1997, 26(9), 851-852.
[http://dx.doi.org/10.1246/cl.1997.851]
[http://dx.doi.org/10.1039/B603176E];
(b) Wang, Z.; Zhou, M-M.; Sun, G.; Sun, H. A Novel InCl3/SiO2-catalyzed hydroarylation of arenes with styrenes under solvent-free conditions. Synlett, 2008, 2008(7), 1096-1100.
[http://dx.doi.org/10.1055/s-2008-1042917]
[http://dx.doi.org/10.1021/acs.joc.5b01875] [PMID: 26402221]
[http://dx.doi.org/10.1016/j.tet.2023.133627]
[http://dx.doi.org/10.1016/j.tetlet.2023.154729]
[http://dx.doi.org/10.1002/hlca.19870700310];
(b) Cornélis, A.; Dony, C.; Laszlo, P.; Nsunda, K.M. No contest: A co-reactant deprived of reactivity. Tetrahedron Lett., 1991, 32(25), 2903-2904.
[http://dx.doi.org/10.1016/0040-4039(91)80644-L];
(c) Coq, B.; Gourves, V.; Figuéras, F. Benzylation of toluene by benzyl chloride over protonic zeolites. Appl. Catal. A Gen., 1993, 100(1), 69-75.
[http://dx.doi.org/10.1016/0926-860X(93)80116-8];
(d) Cseri, T.; Békássy, S.; Figueras, F.; Rizner, S. Benzylation of aromatics on ion-exchanged clays. J. Mol. Catal. Chem., 1995, 98(2), 101-107.
[http://dx.doi.org/10.1016/1381-1169(95)00016-X];
(e) da Silva, M.S.M.; da Costa, C.L.; de Magdala Pinto, M.; Lachter, E.R. Benzylation of benzene, toluene and anisole with benzyl alcohol catalyzed by cation-exchange resins. Reactive Polymers, 1995, 25(1), 55-61.
[http://dx.doi.org/10.1016/0923-1137(95)00019-F];
(f) Perego, C.; Ingallina, P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal. Today, 2002, 73(1-2), 3-22.
[http://dx.doi.org/10.1016/S0920-5861(01)00511-9];
(g) Dasgupta, S.; Török, B. Environmentally benign contemporary Friedel-crafts chemistry by solid acids. Curr. Org. Synth., 2008, 5(4), 321-342.
[http://dx.doi.org/10.2174/157017908786241572]
[http://dx.doi.org/10.2174/1570179416666190206141028] [PMID: 31984932]
[http://dx.doi.org/10.1021/acssuschemeng.1c03523]
[http://dx.doi.org/10.1002/slct.202200774]
[http://dx.doi.org/10.1055/s-0042-1751492]
[http://dx.doi.org/10.1016/j.cattod.2023.114402]
[http://dx.doi.org/10.1016/B978-0-12-817825-6.00020-3]
[http://dx.doi.org/10.1039/c39950002037];
(b) Miller, J.M.; Goodchild, M.; Lakshmi, J.L.; Wails, D.; Hartman, J.S. Friedel-Crafts catalysis using supported reagents. Synthesis, characterization, and catalytic application of ZnCl2 supported on fluoride-modified sol-gel-derived aluminosilicates. Catal. Lett., 1999, 63(3/4), 199-203.
[http://dx.doi.org/10.1023/A:1019045811205];
(c) Sebti, S.; Tahir, R.; Nazih, R.; Boulaajaj, S. Comparison of different Lewis acid supported on hydroxyapatite as new catalysts of Friedel–Crafts alkylation. Appl. Catal. A Gen., 2001, 218(1-2), 25-30.
[http://dx.doi.org/10.1016/S0926-860X(01)00599-3];
(d) Choudhary, V.R.; Mantri, K. AlClx-grafted Si-MCM-41 prepared by reacting anhydrous AlCl3 with terminal Si–OH groups: an active solid catalyst for benzylation and acylation reactions. Microporous Mesoporous Mater., 2002, 56(3), 317-320.
[http://dx.doi.org/10.1016/S1387-1811(02)00501-2];
(e) Choudhary, V.R.; Mantri, K. AlCl3-grafted Si-MCM-41: Influence of thermal treatment conditions on surface properties and incorporation of Al in the structure of MCM-41. J. Catal., 2002, 205(1), 221-225.
[http://dx.doi.org/10.1006/jcat.2001.3435];
(f) Losfeld, G.; Escande, V.; Vidal de La Blache, P.; L’Huillier, L.; Grison, C. Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel–Crafts alkylation and acylation. Catal. Today, 2012, 189(1), 111-116.
[http://dx.doi.org/10.1016/j.cattod.2012.02.044]
[http://dx.doi.org/10.1007/s13738-020-01888-0]
[http://dx.doi.org/10.1515/gps-2023-0003]
[http://dx.doi.org/10.1021/cr9800208] [PMID: 11849031];
(b) Tanabe, K. Catalytic application of niobium compounds. Catal. Today, 2003, 78(1-4), 65-77.
[http://dx.doi.org/10.1016/S0920-5861(02)00343-7];
(c) Ziolek, M. Niobium-containing catalysts-the state of the art. Catal. Today, 2003, 78(1-4), 47-64.
[http://dx.doi.org/10.1016/S0920-5861(02)00340-1];
(d) Andrade, C.K.Z.; Rocha, R.O. Recent applications of niobium catalysts in organic synthesis. Mini Rev. Org. Chem., 2006, 3, 271-280.
[http://dx.doi.org/10.2174/157019306778742823];
(e) Ziolek, M.; Sobczak, I.; Andrade, C.K.Z.; Silva-Filho, L.C.; Ziolek, M.; Sobczak, I. The role of niobium component in heterogeneous catalysts. Catal. Today, 2017, 285, 211-225.
[http://dx.doi.org/10.1016/j.cattod.2016.12.013];
(f) Arpini, B.; Andrade Bartolomeu, A.; Andrade, C.; da Silva-Filho, L.; Lacerda, V. Recent advances in using niobium compounds as catalysts in organic chemistry. Curr. Org. Synth., 2015, 12(5), 570-583.
[http://dx.doi.org/10.2174/157017941205150821125817]
[http://dx.doi.org/10.1016/0926-860X(96)00044-0];
(b) Morais, M.; Torres, E.F.; Carmo, L.M.P.M.; Pastura, N.M.R.; Gonzalez, W.A.; dos Santos, A.C.B.; Lachter, E.R. Benzylation of toluene and anisole by benzyl alcohol catalysed by niobic acid. Catal. Today, 1996, 28(1-2), 17-21.
[http://dx.doi.org/10.1016/0920-5861(95)00214-6];
(c) de La Cruz, M.H.C.; Rocha, Â.S.; Lachter, E.R.; Forrester, A.M.S.; Reis, M.C.; San Gil, R.A.S.; Caldarelli, S.; Farias, A.D.; Gonzalez, W.A. Investigation of the catalytic activity of niobium phosphates for liquid phase alkylation of anisole with benzyl chloride. Appl. Catal. A Gen., 2010, 386(1-2), 60-64.
[http://dx.doi.org/10.1016/j.apcata.2010.07.030];
(d) de la Cruz, M.H.C.; Rocha, A.S.; da Silva, J.F.C.; San Gil, R.A.S.; Lachter, E.R. Catalytic activity of niobium phosphate in the benzylation of anisole with styrene, benzyl alcohol and benzyl chloride. React. Kinet. Mech. Catal., 2017, 122(2), 1081-1094.
[http://dx.doi.org/10.1007/s11144-017-1259-y]
[http://dx.doi.org/10.1016/j.apcata.2004.01.027]
[http://dx.doi.org/10.1016/j.jcat.2005.06.033];
(b) Yamashita, K.; Hirano, M.; Okumura, K.; Niwa, M. Activity and acidity of Nb2O5-MoO3 and Nb2O5-WO3 in the Friedel-Crafts alkylation. Catal. Today, 2006, 118(3-4), 385-391.
[http://dx.doi.org/10.1016/j.cattod.2006.07.025];
(c) Kitano, T.; Shishido, T.; Teramura, K.; Tanaka, T. Brønsted Acid property of alumina-supported niobium oxide calcined at high temperatures: characterization by acid-catalyzed reactions and spectroscopic methods. J. Phys. Chem. C, 2012, 116(21), 11615-11625.
[http://dx.doi.org/10.1021/jp3032429];
(d) Kitano, T.; Shishido, T.; Teramura, K.; Tanaka, T. Acid property of Nb2O5/Al2O3 prepared by impregnation method by using niobium oxalate solution: Effect of pH on the structure and acid property. Catal. Today, 2014, 226, 97-102.
[http://dx.doi.org/10.1016/j.cattod.2013.09.053];
(e) Dos Santos, C.G.; Marquez, D.T.; Crites, C.O.L.; Netto-Ferreira, J.C.; Scaiano, J.C. Plasmon heating mediated Friedel-Crafts alkylation of anisole using supported AuNP@Nb2O5 catalysts. Tetrahedron Lett., 2017, 58(5), 427-431.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.048]
[http://dx.doi.org/10.1039/C9TA01459D]
[http://dx.doi.org/10.1016/j.mcat.2020.111092]
[http://dx.doi.org/10.1021/acs.joc.1c01944] [PMID: 34617753]
[http://dx.doi.org/10.1021/acsami.1c24554] [PMID: 35258941]
[http://dx.doi.org/10.1016/j.apcatb.2020.118987]
[http://dx.doi.org/10.1016/j.fuel.2023.127713]
[http://dx.doi.org/10.1016/j.fuel.2023.130570]
[http://dx.doi.org/10.1590/S0100-40422000000200002];
(b) Choudary, B.M.; Rao, B.P.C.; Chowdari, N.S.; Kantam, M.L. Fe3+-montmorillonite: A bifunctional catalyst for one pot Friedel–Crafts alkylation of arenes with alcohols. Catal. Commun., 2002, 3(8), 363-367.
[http://dx.doi.org/10.1016/S1566-7367(02)00143-7];
(c) Guerra, S.R.; Merat, L.M.O.C.; San Gil, R.A.S.; Dieguez, L.C. Alkylation of benzene with olefins in the presence of zirconium-pillared clays. Catal. Today, 2008, 133-135, 223-230.
[http://dx.doi.org/10.1016/j.cattod.2007.12.094]
[http://dx.doi.org/10.1039/D0RA00393J] [PMID: 35498587]
[http://dx.doi.org/10.1002/cplu.202000090] [PMID: 32154992]
[http://dx.doi.org/10.1088/2632-959X/ac5ac3]
[http://dx.doi.org/10.1039/D1RA04005G] [PMID: 35479054]
[http://dx.doi.org/10.1021/op010077n]
[http://dx.doi.org/10.1007/s11144-023-02346-7]
[http://dx.doi.org/10.1021/acs.iecr.2c02295]
[http://dx.doi.org/10.1016/j.apcata.2010.04.053]
[http://dx.doi.org/10.1002/cctc.201601583]
[http://dx.doi.org/10.1039/C9CY00598F]
[http://dx.doi.org/10.1002/chem.202202441] [PMID: 36082763]
[http://dx.doi.org/10.1016/j.apcata.2023.119492]
[http://dx.doi.org/10.1007/s42452-019-0677-z]
[http://dx.doi.org/10.1002/jccs.202000518]
[http://dx.doi.org/10.1016/j.cattod.2021.06.019]
[http://dx.doi.org/10.1021/jacsau.3c00563] [PMID: 38155639]
[http://dx.doi.org/10.1002/aic.18201]
[http://dx.doi.org/10.1615/CatalGreenChemEng.2020032618]
[http://dx.doi.org/10.3390/molecules25235682] [PMID: 33276487]
[http://dx.doi.org/10.1007/s10562-021-03676-8]
[http://dx.doi.org/10.1002/9783527827992.ch21]
[http://dx.doi.org/10.1002/ejic.202300674]
[http://dx.doi.org/10.3390/catal13121517]
[http://dx.doi.org/10.1021/acscatal.3c06088]
[http://dx.doi.org/10.1016/j.cattod.2023.114363]
[http://dx.doi.org/10.1016/j.molcata.2007.07.048]
[http://dx.doi.org/10.1007/s11244-021-01497-y]
[http://dx.doi.org/10.3390/catal13111432]
[http://dx.doi.org/10.1055/s-1986-31692];
(b) Tanabe, K.; Holderich, W.F. Industrial application of solid acid–base catalysts. Appl. Catal. A Gen., 1999, 181(2), 399-434.
[http://dx.doi.org/10.1016/S0926-860X(98)00397-4];
(c) Gelbard, G. Organic synthesis by catalysis with ion-exchange resins. Ind. Eng. Chem. Res., 2005, 44(23), 8468-8498.
[http://dx.doi.org/10.1021/ie0580405];
(d) Busca, G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev., 2007, 107(11), 5366-5410.
[http://dx.doi.org/10.1021/cr068042e] [PMID: 17973436]
[http://dx.doi.org/10.1002/0471238961];
(b) Harmer, M.A.; Sun, Q.; Vega, A.J.; Farneth, W.E.; Heidekum, A.; Hoelderich, W.F. Nafion resin–silica nanocomposite solid acid catalysts. Microstructure–processing–property correlations. Green Chem., 2000, 2(1), 7-14.
[http://dx.doi.org/10.1039/a907892d];
(c) Lachter, E.R.; da Silva San Gil, R.A.; Tabak, D.; Costa, V.G.; Chaves, C.P.S.; dos Santos, J.A. Alkylation of toluene with aliphatic alcohols and 1-octene catalyzed by cation-exchange resins. React. Funct. Polym., 2000, 44(1), 1-7.
[http://dx.doi.org/10.1016/S1381-5148(99)00071-1];
(d) Fernandes, R.M.; Lachter, E.R. Evaluation of sulfonic resins for liquid phase alkylation of toluene. Catal. Commun., 2005, 6(8), 550-554.
[http://dx.doi.org/10.1016/j.catcom.2005.04.022]
[http://dx.doi.org/10.1016/j.cattod.2017.05.046]
[http://dx.doi.org/10.1021/acs.iecr.0c04308]
[http://dx.doi.org/10.1016/j.fuel.2023.128437]
[http://dx.doi.org/10.1098/rsos.192254] [PMID: 32874616]
[http://dx.doi.org/10.1002/cssc.202300903] [PMID: 37499171]
[http://dx.doi.org/10.1002/cctc.202300642]
[http://dx.doi.org/10.1134/S002315841704005X]
[http://dx.doi.org/10.3390/catal9040372]
[http://dx.doi.org/10.1016/j.seppur.2022.122731]
[http://dx.doi.org/10.1016/j.fuel.2023.127685]
[http://dx.doi.org/10.1016/j.jiec.2022.04.019]
[http://dx.doi.org/10.1016/j.tetlet.2020.152535]
[http://dx.doi.org/10.1002/chem.202300180] [PMID: 36680470]
[http://dx.doi.org/10.1002/ejoc.202301086]
[http://dx.doi.org/10.3390/molecules29010247] [PMID: 38202830]
[http://dx.doi.org/10.1016/j.rser.2023.113936]