Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

Lipid-Based Nanocarriers for Targeted Gene Delivery in Lung Cancer Therapy: Exploring a Novel Therapeutic Paradigm

In Press, (this is not the final "Version of Record"). Available online 20 May, 2024
Author(s): Anahita Beigi, Seyed Morteza Naghib*, Amir Matini, Maryam Tajabadi and Mohammad Reza Mozafari
Published on: 20 May, 2024

DOI: 10.2174/0115665232292768240503050508

Price: $95

Abstract

Lung cancer is a significant cause of cancer-related death worldwide. It can be broadly categorised into small-cell lung cancer (SCLC) and Non-small cell lung cancer (NSCLC). Surgical intervention, radiation therapy, and the administration of chemotherapeutic medications are among the current treatment modalities. However, the application of chemotherapy may be limited in more advanced stages of metastasis due to the potential for adverse effects and a lack of cell selectivity. Although small-molecule anticancer treatments have demonstrated effectiveness, they still face several challenges. The challenges at hand in this context comprise insufficient solubility in water, limited bioavailability at specific sites, adverse effects, and the requirement for epidermal growth factor receptor inhibitors that are genetically tailored. Bio-macromolecular drugs, including small interfering RNA (siRNA) and messenger RNA (mRNA), are susceptible to degradation when exposed to the bodily fluids of humans, which can reduce stability and concentration. In this context, nanoscale delivery technologies are utilised. These agents offer encouraging prospects for the preservation and regulation of pharmaceutical substances, in addition to improving the solubility and stability of medications. Nanocarrier-based systems possess the notable advantage of facilitating accurate and sustained drug release, as opposed to traditional systemic methodologies. The primary focus of scientific investigation has been to augment the therapeutic efficacy of nanoparticles composed of lipids. Numerous nanoscale drug delivery techniques have been implemented to treat various respiratory ailments, such as lung cancer. These technologies have exhibited the potential to mitigate the limitations associated with conventional therapy. As an illustration, applying nanocarriers may enhance the solubility of small-molecule anticancer drugs and prevent the degradation of bio-macromolecular drugs. Furthermore, these devices can administer medications in a controlled and extended fashion, thereby augmenting the therapeutic intervention's effectiveness and reducing adverse reactions. However, despite these promising results, challenges remain that must be addressed. Multiple factors necessitate consideration when contemplating the application of nanoparticles in medical interventions. To begin with, the advancement of more efficient delivery methods is imperative. In addition, a comprehensive investigation into the potential toxicity of nanoparticles is required. Finally, additional research is needed to comprehend these treatments' enduring ramifications. Despite these challenges, the field of nanomedicine demonstrates considerable promise in enhancing the therapy of lung cancer and other respiratory diseases.

[1]
Yan A, Song X, Liu B, Zhu K. IGF2BP3 worsens lung cancer through modifying long non-coding RNA CERS6-AS1/microRNA-1202 axis. Curr Med Chem 2023; 30(7): 878-91.
[http://dx.doi.org/10.2174/0929867329666220614091445] [PMID: 35702784]
[2]
De SK. Sotorasib: first approved KRAS mutation inhibitor for the treatment of non-small cell lung cancer. Curr Med Chem 2023; 30(9): 1000-2.
[http://dx.doi.org/10.2174/0929867329666220907161505] [PMID: 36082871]
[3]
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent advances in lung cancer therapy based on nanomaterials: A review. Curr Med Chem 2023; 30(3): 335-55.
[http://dx.doi.org/10.2174/0929867328666210810160901] [PMID: 34375182]
[4]
Jung D-H, Nahar J, Mathiyalagan R, et al. A focused review on molecular signalling mechanisms of ginsenosides anti-Lung cancer and anti-inflammatory activities. Anti-Cancer Agents Med Chem 2023; 23: 3-14.
[5]
Huang J, Cheng N, Chen C, Li C. Inferring cell-type-specific genes of lung cancer based on deep learning. Curr Gene Ther 2022; 22(5): 439-48.
[http://dx.doi.org/10.2174/1566523222666220324110914] [PMID: 35331109]
[6]
Müller C, Hank E, Giera M, Bracher F. Dehydrocholesterol reductase 24 (DHCR24): Medicinal chemistry, pharmacology and novel therapeutic options. Curr Med Chem 2022; 29(23): 4005-25.
[http://dx.doi.org/10.2174/0929867328666211115121832] [PMID: 34781860]
[7]
Dong C, He W, Li Q, et al. Cancer treatment evolution from traditional methods to stem cells and gene therapy. Curr Gene Ther 2022; 22(5): 368-85.
[http://dx.doi.org/10.2174/1566523221666211119110755] [PMID: 34802404]
[8]
Balsa LM, Baran EJ, León IE. Copper complexes as antitumor agents: in vitro and in vivo evidence. Curr Med Chem 2023; 30(5): 510-57.
[http://dx.doi.org/10.2174/0929867328666211117094550] [PMID: 34789122]
[9]
Xu R, Wu J, Luo Y, et al. Sanguinarine represses the growth and metastasis of non-small cell lung cancer by facilitating ferroptosis. Curr Pharm Des 2022; 28(9): 760-8.
[http://dx.doi.org/10.2174/1381612828666220217124542] [PMID: 35176976]
[10]
Lundstrom K. Gene therapy cargoes based on viral vector delivery. Curr Gene Ther 2023; 23(2): 111-34.
[http://dx.doi.org/10.2174/1566523222666220921112753] [PMID: 36154608]
[11]
Su L, Zhao J, Su H, et al. CircRNAs in lung Adeno Carcinoma: Diagnosis and therapy. Curr Gene Ther 2022; 22(1): 15-22.
[PMID: 34856899]
[12]
Rojas-Martinez A, Cienfuegos-Jimenez O, Vazquez-Garza E. CAR-NK cells for cancer therapy: Molecular redesign of the innate antineoplastic response. Curr Gene Ther 2022; 22(4): 303-18.
[http://dx.doi.org/10.2174/1566523222666211217091724] [PMID: 34923939]
[13]
Hunt C, Montgomery S, Berkenpas JW, et al. Recent progress of machine learning in gene therapy. Curr Gene Ther 2022; 22(2): 132-43.
[http://dx.doi.org/10.2174/1566523221666210622164133] [PMID: 34161210]
[14]
Kesavan Y, Srinivasan SS, Pathak S, Ramalingam S. Role of dietary phytochemicals in targeting human miRNAs for cancer prevention and treatment. Curr Gene Ther 2023; 23(5): 343-55.
[http://dx.doi.org/10.2174/1566523223666230519124519] [PMID: 37497747]
[15]
Huang L, Zhou Y, Xu X, et al. Different roles of the insulin-like growth factor (IGF) axis in non-small cell lung cancer. Curr Pharm Des 2022; 28(25): 2052-64.
[http://dx.doi.org/10.2174/1381612828666220608122934] [PMID: 36062855]
[16]
Shukla MK, Dubey A, Pandey S, et al. Managing apoptosis in lung diseases using nano-assisted drug delivery system. Curr Pharm Des 2022; 28(39): 3202-11.
[http://dx.doi.org/10.2174/1381612828666220413103831] [PMID: 35422206]
[17]
Marwah H, Pant J, Yadav J, Shah K, Dewangan HK. Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights. Curr Pharm Des 2023; 29(43): 3442-57.
[http://dx.doi.org/10.2174/0113816128276948231204111531] [PMID: 38270161]
[18]
Zhang Q, Wu Y, Chen J, et al. The regulatory role of both MBNL1 and MBNL1-AS1 in several common cancers. Curr Pharm Des 2022; 28(7): 581-5.
[http://dx.doi.org/10.2174/1381612827666210830110732] [PMID: 34459372]
[19]
Dondulkar A, Akojwar N, Katta C, et al. Inhalable polymeric micro and nano-immunoadjuvants for developing therapeutic vaccines in the treatment of non-small cell lung cancer. Curr Pharm Des 2022; 28(5): 395-409.
[http://dx.doi.org/10.2174/1381612827666211104155604] [PMID: 34736378]
[20]
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019; 12(1): 134.
[http://dx.doi.org/10.1186/s13045-019-0818-2] [PMID: 31815659]
[21]
Liu W, Du Y, Wen R, Yang M, Xu J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Ther 2020; 206: 107438.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107438] [PMID: 31715289]
[22]
Shi B, Zheng M, Tao W, et al. Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems. Biomacromolecules 2017; 18(8): 2231-46.
[http://dx.doi.org/10.1021/acs.biomac.7b00803] [PMID: 28661127]
[23]
Matini A, Naghib SM. Microwave-assisted natural gums for drug delivery systems: Recent progresses and advances over emerging biopolymers and technologies. Curr Med Chem 2024; 31: 1-25.
[http://dx.doi.org/10.2174/0109298673283144231212055603] [PMID: 38192130]
[24]
Yazdan M, Naghib SM. Smart ultrasound-responsive polymers for drug delivery: An overview on advanced stimuli-sensitive materials and techniques. Curr Drug Deliv 2024; 21: 1-9.
[http://dx.doi.org/10.2174/0115672018283792240115053302] [PMID: 38288800]
[25]
Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021; 18(2): 205-27.
[http://dx.doi.org/10.1080/17425247.2021.1828339] [PMID: 32969740]
[26]
Schroeder A, Levins CG, Cortez C, Langer R, Anderson DG. Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 2010; 267(1): 9-21.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02189.x] [PMID: 20059641]
[27]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[28]
Poulsen T, Poulsen H, Pappot H. Molecular biology of lung cancer. Cardiothorac Surg Rev 2008; 32: 20-34.
[http://dx.doi.org/10.3109/9781439802014-4]
[29]
Oxnard GR, Binder A, Jänne PA. New targetable oncogenes in non-small-cell lung cancer. J Clin Oncol 2013; 31(8): 1097-104.
[http://dx.doi.org/10.1200/JCO.2012.42.9829] [PMID: 23401445]
[30]
Hassan Lemjabbar-Alaouia OH, Yanga Y-W, Buchanana P. Lung cancer: biology and treatment options Hassan. Physiol Behav 2016; 176: 139-48.
[http://dx.doi.org/10.1016/j.bbcan.2015.08.002.Lung]
[31]
Xie X, Li X, Tang W, Xie P, Tan X. Primary tumor location in lung cancer: the evaluation and administration. Chin Med J 2022; 135(2): 127-36.
[http://dx.doi.org/10.1097/CM9.0000000000001802] [PMID: 34784305]
[32]
Denisov EV, Schegoleva AA, Gervas PA, et al. Premalignant lesions of squamous cell Carcinoma of the lung: The molecular make-up and factors affecting their progression. Lung Cancer 2019; 135: 21-8.
[http://dx.doi.org/10.1016/j.lungcan.2019.07.001] [PMID: 31446997]
[33]
Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 2011; 32(4): 605-44.
[http://dx.doi.org/10.1016/j.ccm.2011.09.001] [PMID: 22054876]
[34]
Matini A, Naghib SM. The necessity of nanotechnology in Mycoplasma pneumoniae detection: A comprehensive examination. Sens Biosensing Res 2024; 43: 100631.
[http://dx.doi.org/10.1016/j.sbsr.2024.100631]
[35]
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008; 83(5): 584-94.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[36]
Garbuzenko OB, Kuzmov A, Taratula O, Pine SR, Minko T. Strategy to enhance lung cancer treatment by five essential elements: Inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy. Theranostics 2019; 9(26): 8362-76.
[http://dx.doi.org/10.7150/thno.39816] [PMID: 31754402]
[37]
Shen T, Sciences M, States U, et al. Nucleic acid immunotherapeutics for cancer. HHS Public Access 2021; 3: 2838-49.
[http://dx.doi.org/10.1021/acsabm.0c00101.Nucleic]
[38]
Fu J, Dong H, Wu J, Jin Y. Emerging progress of RNA-based antitumor therapeutics. Int J Biol Sci 2023; 19(10): 3159-83.
[http://dx.doi.org/10.7150/ijbs.83732] [PMID: 37416764]
[39]
Luo K, Li N, Ye W, Gao H, Luo X, Cheng B. Activation of stimulation of interferon genes (STING) signal and cancer immunotherapy. Molecules 2022; 27(14): 4638.
[http://dx.doi.org/10.3390/molecules27144638] [PMID: 35889509]
[40]
De Mey W, Esprit A, Thielemans K, Breckpot K, Franceschini L. RNA in cancer immunotherapy: Unlocking the potential of the immune system. Clin Cancer Res 2022; 28(18): 3929-39.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-3304] [PMID: 35583609]
[41]
Bishani A, Chernolovskaya EL. Activation of innate immunity by therapeutic nucleic acids. Int J Mol Sci 2021; 22(24): 13360.
[http://dx.doi.org/10.3390/ijms222413360] [PMID: 34948156]
[42]
Yan X, Yao C, Fang C, et al. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer. Int J Biol Sci 2022; 18(2): 585-98.
[http://dx.doi.org/10.7150/ijbs.65019] [PMID: 35002511]
[43]
Hoden B, DeRubeis D, Martinez-Moczygemba M, Ramos KS, Zhang D. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy. Front Immunol 2022; 13: 1033483.
[http://dx.doi.org/10.3389/fimmu.2022.1033483] [PMID: 36389785]
[44]
Huang L, Ge X, Liu Y, Li H, Zhang Z. The role of toll-like receptor agonists and their nanomedicines for tumor immunotherapy, pharmaceutics. Pharmaceutics 2022; 14(6): 1228.
[http://dx.doi.org/10.3390/pharmaceutics14061228]
[45]
Qin S, Tang X, Chen Y, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7(1): 166.
[http://dx.doi.org/10.1038/s41392-022-01007-w] [PMID: 35597779]
[46]
Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. Genes Cancer 2011; 2(4): 466-74.
[http://dx.doi.org/10.1177/1947601911408889] [PMID: 21779514]
[47]
Marei HE, Althani A, Afifi N, et al. p53 signaling in cancer progression and therapy. Cancer Cell Int 2021; 21(1): 703.
[http://dx.doi.org/10.1186/s12935-021-02396-8] [PMID: 34952583]
[48]
Freire Boullosa L, Van Loenhout J, Flieswasser T, et al. Auranofin reveals therapeutic anticancer potential by triggering distinct molecular cell death mechanisms and innate immunity in mutant p53 non-small cell lung cancer. Redox Biol 2021; 42: 101949.
[http://dx.doi.org/10.1016/j.redox.2021.101949] [PMID: 33812801]
[49]
Youn H, Chung J. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opin Biol Ther 2015; 15(9): 1337-48.
[50]
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids 2014; 3(8): e182.
[http://dx.doi.org/10.1038/mtna.2014.32]
[51]
Zhou G, Wilson G, Hebbard L, et al. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget 2016; 7(12): 13446-63.
[52]
Qin S, Yi M, Jiao D, Li A, Wu K. Distinct roles of VEGFA and ANGPT2 in Lung Adeno Carcinoma and Squamous Cell Carcinoma. J Cancer 2020; 11(1): 153-67.
[http://dx.doi.org/10.7150/jca.34693]
[53]
Jiang C, Lin X, Zhao Z. Applications of CRISPR/Cas9 technology in the treatment of lung cancer. Trends Mol Med 2019; 25(11): 1039-49.
[http://dx.doi.org/10.1016/j.molmed.2019.07.007] [PMID: 31422862]
[54]
Romero R, Sayin VI, Davidson SM, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med 2018; 23(11): 1362-8.
[55]
Sridharan K, Gogtay NJ. Therapeutic nucleic acids : Current clinical status. BrJClinPharmacol 2016; 82(3): 659-72.
[http://dx.doi.org/10.1111/bcp.12987]
[56]
Man HSJ, Moosa VA, Singh A, et al. Unlocking the potential of RNA-based therapeutics in the lung: Current status and future directions. Front Genet 2023; 14: 1281538.
[http://dx.doi.org/10.3389/fgene.2023.1281538] [PMID: 38075698]
[57]
Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov 2020; 19(7): 441-2.
[http://dx.doi.org/10.1038/d41573-020-00078-0] [PMID: 32341501]
[58]
Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: An overview and prospectus. Cell Death Dis 2022; 13(7): 644.
[http://dx.doi.org/10.1038/s41419-022-05075-2] [PMID: 35871216]
[59]
Kaikkonen MU, Lam MTY, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 2011; 90(3): 430-40.
[http://dx.doi.org/10.1093/cvr/cvr097] [PMID: 21558279]
[60]
Chery J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 2016; 4: 35-50.
[61]
Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431(7006): 343-9.
[http://dx.doi.org/10.1038/nature02873] [PMID: 15372041]
[62]
Shobaki N, Sato Y, Suzuki Y, Okabe N, Harashima H. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy. J Control Release 2020; 325: 235-48.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.001] [PMID: 32649972]
[63]
Kurakula H, Vaishnavi S, Sharif MY, Ellipilli S. Emergence of small interfering RNA-based gene drugs for various diseases. ACS Omega 2023; 8(23): 20234-50.
[http://dx.doi.org/10.1021/acsomega.3c01703] [PMID: 37323391]
[64]
To KKW, Fong W, Tong CWS, Wu M, Yan W, Cho WCS. Advances in the discovery of microRNA-based anticancer therapeutics: Latest tools and developments. Expert Opin Drug Discov 2020; 15(1): 63-83.
[http://dx.doi.org/10.1080/17460441.2020.1690449] [PMID: 31739699]
[65]
Wu KL, Tsai YM, Lien CT, Kuo PL, Hung JY. The roles of microRNA in lung cancer. Int J Mol Sci 2019; 20(7): 1611.
[http://dx.doi.org/10.3390/ijms20071611] [PMID: 30935143]
[66]
Wu SG, Chang TH, Liu YN, Shih JY. MicroRNA in lung cancer metastasis. Cancers 2019; 11(2): 265.
[http://dx.doi.org/10.3390/cancers11020265] [PMID: 30813457]
[67]
Pozza DH, De Mello RA, Araujo RLC, Velcheti V. MicroRNAs in lung cancer oncogenesis and tumor suppression: How it can improve the clinical practice? Curr Genomics 2020; 21(5): 372-81.
[http://dx.doi.org/10.2174/1389202921999200630144712] [PMID: 33093800]
[68]
Chen T, Xiao Q, Wang X, et al. miR-16 regulates proliferation and invasion of lung cancer cells via the ERK/MAPK signaling pathway by targeted inhibition of MAPK kinase 1 (MEK1). J Int Med Res 2019; 47(10): 5194-204.
[http://dx.doi.org/10.1177/0300060519856505] [PMID: 31379227]
[69]
Xue X, Liu Y, Wang Y, et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016; 7: 84508-19. Available from: www.impactjournals.com/oncotarget
[70]
Legras A, Nicolas P, Imbeaud S, et al. Epithelial to mesenchymal transition and MicroRNAs in lung cancer. Cancers 2017; 9(8): 101.
[http://dx.doi.org/10.3390/cancers9080101]
[71]
Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020; 9(2): 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[72]
Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci 2008; 105(10): 3903-8.
[http://dx.doi.org/10.1073/pnas.0712321105] [PMID: 18308936]
[73]
Johnson CD, Esquela-kerscher A, Stefani G, et al. The let-7 MicroRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67(16): 7713-22.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1083]
[74]
Shan N, Shen L, Wang J, He D, Duan C. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19. Biochem Biophys Res Commun 2015; 456(1): 385-91.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.093] [PMID: 25475731]
[75]
Yousefnia S. A comprehensive review on miR-153: Mechanistic and controversial roles of miR-153 in tumorigenicity of cancer cells. Front Oncol 2022; 12: 985897.
[http://dx.doi.org/10.3389/fonc.2022.985897]
[76]
Qiu C, Li S, Sun D, Yang S. lncRNA PVT1 accelerates progression of non-small cell lung cancer via targeting miRNA-526b/EZH2 regulatory loop. Oncol Lett 2020; 19(2): 1267-72.
[http://dx.doi.org/10.3892/ol.2019.11237]
[77]
Wang L, Yao J, Sun H, et al. MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A. Oncol Lett 2017; 13(1): 329-38.
[http://dx.doi.org/10.3892/ol.2016.5423]
[78]
Lv P, Zhang P, Li X, Chen Y. Micro ribonucleic acid (RNA)-101 inhibits cell proliferation and invasion of lung cancer by regulating cyclooxygenase-2. Thorac Cancer 2015; 6(6): 778-84.
[http://dx.doi.org/10.1111/1759-7714.12283]
[79]
Li X, Yu Z, Li Y, Liu S. The tumor suppressor miR-124 inhibits cell proliferation by targeting STAT3 and functions as a prognostic marker for postoperative NSCLC patients Int J Oncol 2015; 46(2): 798-808.
[http://dx.doi.org/10.3892/ijo.2014.2786]
[80]
Xie C, Han Y, Liu Y, Han L, Liu J. Suppresses cell proliferation in non-small cell. lung cancer 2014; 7: 6534-42.
[81]
Zhu Q, Zhang Y, Li M, et al. MiR-124-3p impedes the metastasis of non-small cell lung cancer via extracellular exosome transport and intracellular PI3K/AKT signaling. Biomark Res 2023; 11: 1.
[http://dx.doi.org/10.1186/s40364-022-00441-w]
[82]
Zhang L, Liao Y, Tang L. MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 2019; 38(1): 53.
[83]
Hashemi ZS, Khalili S, Forouzandeh Moghadam M, Sadroddiny E. Lung cancer and miRNAs: A possible remedy for anti-metastatic, therapeutic and diagnostic applications. Expert Rev Respir Med 2017; 11(2): 147-57.
[http://dx.doi.org/10.1080/17476348.2017.1279403] [PMID: 28118799]
[84]
Cortez MA, Ivan C, Valdecanas D, et al. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 2016; 108(1): djv303.
[http://dx.doi.org/10.1093/jnci/djv303]
[85]
Chen Q, Chen S, Zhao J, Zhou YA, Xu LIN. MicroRNA-126: A new and promising player in lung cancer. Oncol Lett 2021; 21(1): 35.
[http://dx.doi.org/10.3892/ol.2020.12296]
[86]
Lányi Á. miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. FEBS Lett 2011; 585(8): 1191-6.
[http://dx.doi.org/10.1016/j.febslet.2011.03.039]
[87]
Chen M, Peng W, Hu S, Deng JIE. miR-126/VCAM-1 regulation by naringin suppresses cell growth of human non-small cell lung cancer. Oncol Lett 2018; 16(4): 4754-60.
[http://dx.doi.org/10.3892/ol.2018.9204]
[88]
Shao C, Yang F, Qin Z, Jing X, Shu Y. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer : A systematic review with meta-analysis. BMC Cancer 2019; 19(1): 1103.
[http://dx.doi.org/10.1186/s12885-019-6297-6]
[89]
Inflammation C, Zanoaga O, Braicu C, et al. The Role of miR-155 in Nutrition: Modulating cancer-associated inflammation. Nutrients 2021; 13(7): 2245.
[90]
Fujita Y, Yagishita S, Hagiwara K, et al. The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol Ther 2015; 23(4): 717-27.
[http://dx.doi.org/10.1038/mt.2015.10]
[91]
Wang D, Chen X, Yu D, et al. miR-197: A novel biomarker for cancers. Gene 2016; 591(2): 313-9.
[http://dx.doi.org/10.1016/j.gene.2016.06.035] [PMID: 27320730]
[92]
Sui A, Zhang X, Zhu Q. Diagnostic value of serum miR197 and miR145 in non-small cell lung cancer. Oncol Lett 2019; 17(3): 3247-52.
[http://dx.doi.org/10.3892/ol.2019.9958]
[93]
Sp N, Kang DY, Lee JM, Jang KJ. Mechanistic insights of anti-immune evasion by nobiletin through regulating miR-197/STAT3/PD-L1 signaling in non-small cell lung cancer (NSCLC) cells. Int J Mol Sci 2021; 22(18): 9843.
[http://dx.doi.org/10.3390/ijms22189843] [PMID: 34576006]
[94]
Li J, Tan Q, Yan M, et al. miRNA-200c inhibits invasion and metastasis of human non-small cell lung cancer by directly targeting ubiquitin specific peptidase 25. Mol Cancer 2014; 13: 166.
[95]
Xue B, Chuang C, Prosser HM, et al. miR-200 deficiency promotes lung cancer metastasis by activating Notch signaling in cancer-associated fibroblasts. biorxiv 2021; 35(15-16): 1109-22.
[http://dx.doi.org/10.1101/2020.09.02.276550]
[96]
Manuscript A. Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett 2011; 296(2): 216-24.
[97]
Huang X, Zhang H, Guo X, Zhu Z, Cai H, Kong X. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J Hematol Oncol 2018; 11(1): 88.
[98]
Faversani A, Amatori S, Augello C, et al. miR-494-3p is a novel tumor driver of lung carcinogenesis. Oncotarget 2017; 8(5): 7231-47.
[99]
Yu F, Liang M, Huang Y, Wu W, Zheng B, Chen C. Hypoxic tumor-derived exosomal miR-31-5p promotes lung adenocarcinoma metastasis by negatively regulating SATB2-reversed EMT and activating MEK / ERK signaling. J Exp Clin Cancer Res 2021; 40(1): 179.
[100]
Liu X, Sempere LF, Ouyang H, Memoli VA. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010; 120(4): 1298-309.
[101]
Guz MB, Rivero-müller A. MicroRNAs-role in lung cancer. Dis Markers 2014; 2014: 218169.
[102]
Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 2013; 20(12): 1603-14.
[http://dx.doi.org/10.1038/cdd.2013.125] [PMID: 24212931]
[103]
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and challenges in the delivery of mrna-based vaccines. Pharmaceutics 2020; 12(2): 102.
[http://dx.doi.org/10.3390/pharmaceutics12020102] [PMID: 32013049]
[104]
Sabnis S, Kumarasinghe ES, Salerno T, et al. A novel amino lipid series for mRNA delivery: Improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther 2018; 26(6): 1509-19.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.010] [PMID: 29653760]
[105]
Hald C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Available from: https://cdn.who.int/media/docs/default-source/whhd-2021/scientific-publications/2.jhi_5may2021.pdf?sfvrsn=6526a2a5_5
[106]
Sun D, Lu ZR. Structure and function of cationic and ionizable lipids for nucleic acid delivery. Pharm Res 2023; 40(1): 27-46.
[http://dx.doi.org/10.1007/s11095-022-03460-2] [PMID: 36600047]
[107]
Shim G, Choi H, Lee S, et al. Enhanced intrapulmonary delivery of anticancer siRNA for lung cancer therapy using cationic ethylphosphocholine-based nanolipoplexes. Mol Ther 2013; 21(4): 816-24.
[http://dx.doi.org/10.1038/mt.2013.10] [PMID: 23380818]
[108]
Tan T, Feng Y, Wang W, et al. Cabazitaxel-loaded human serum albumin nanoparticles combined with TGFβ-1 siRNA lipid nanoparticles for the treatment of paclitaxel-resistant non-small cell lung cancer. Cancer Nanotechnol 2023; 14(1): 70.
[http://dx.doi.org/10.1186/s12645-023-00194-7]
[109]
Feng X, Xu W, Li Z, Song W, Ding J, Chen X. Immunomodulatory nanosystems. Adv Sci 2019; 6(17): 1900101.
[http://dx.doi.org/10.1002/advs.201900101] [PMID: 31508270]
[110]
Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021; 15(11): 16982-7015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[111]
Li W, Szoka FC Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 2007; 24(3): 438-49.
[http://dx.doi.org/10.1007/s11095-006-9180-5] [PMID: 17252188]
[112]
Zhang Z, Yao S, Hu Y, Zhao X, Lee RJ. Application of lipid-based nanoparticles in cancer immunotherapy. Front Immunol 2022; 13: 967505.
[http://dx.doi.org/10.3389/fimmu.2022.967505] [PMID: 36003395]
[113]
Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Front Chem 2021; 9: 580118.
[http://dx.doi.org/10.3389/fchem.2021.580118] [PMID: 33981670]
[114]
Leung AKK, Tam YYC, Cullis PR. Lipid nanoparticles for short interfering RNA delivery. Adv Genet 2014; 88: 71-110.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00004-3]
[115]
Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res 2019; 52(9): 2435-44.
[http://dx.doi.org/10.1021/acs.accounts.9b00368] [PMID: 31397996]
[116]
Moro M, Di Paolo D, Milione M, et al. Coated cationic lipid-nanoparticles entrapping miR-660 inhibit tumor growth in patient-derived xenografts lung cancer models. J Control Release 2019; 308: 44-56.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.006] [PMID: 31299263]
[117]
Yung BC, Li J, Zhang M, et al. Lipid nanoparticles composed of quaternary amine–tertiary amine cationic lipid combination (QTsome) for therapeutic delivery of AntimiR-21 for lung cancer. Mol Pharm 2016; 13(2): 653-62.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00878] [PMID: 26741162]
[118]
Zhang C, Zhao Y, Zhang E, et al. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Deliv 2020; 27(1): 1397-411.
[http://dx.doi.org/10.1080/10717544.2020.1827085] [PMID: 33096948]
[119]
Nakamura T, Sato T, Endo R, et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J Immunother Cancer 2021; 9(7): e002852.
[http://dx.doi.org/10.1136/jitc-2021-002852] [PMID: 34215690]
[120]
Dane EL, Belessiotis-Richards A, Backlund C, et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat Mater 2022; 21(6): 710-20.
[http://dx.doi.org/10.1038/s41563-022-01251-z] [PMID: 35606429]
[121]
Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci 2012; 109(36): 14604-9.
[http://dx.doi.org/10.1073/pnas.1209367109]
[122]
Luiz MT, Dutra JAP, Viegas JSR, de Araújo JTC, Tavares Junior AG, Chorilli M. Hybrid magnetic lipid-based nanoparticles for cancer therapy. Pharmaceutics 2023; 15(3): 751.
[http://dx.doi.org/10.3390/pharmaceutics15030751] [PMID: 36986612]
[123]
Abdel-bar HM, Walters AA, Wang JT. Combinatory Delivery of Etoposide and siCD47 in a lipid polymer hybrid delays lung tumor growth in an experimental melanoma lung metastatic model. Adv Healthc Mater 2021; 10(7): e2001853.
[http://dx.doi.org/10.1002/adhm.202001853]
[124]
Conte G, Costabile G, Baldassi D, et al. Hybrid lipid/polymer nanoparticles to tackle the cystic fibrosis mucus barrier in sirna delivery to the lungs: Does pegylation make the difference? ACS Appl Mater Interfaces 2022; 14(6): 7565-78.
[http://dx.doi.org/10.1021/acsami.1c14975]
[125]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[126]
Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid lipid nanoparticles: Applications and prospects in cancer treatment. Int J Mol Sci 2023; 24(7): 6199.
[http://dx.doi.org/10.3390/ijms24076199] [PMID: 37047172]
[127]
Kotmakçı M, Çetintaş VB, Kantarcı AG. Preparation and characterization of lipid nanoparticle/pDNA complexes for STAT3 downregulation and overcoming chemotherapy resistance in lung cancer cells. Int J Pharm 2017; 525(1): 101-11.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.034] [PMID: 28428090]
[128]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[129]
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022; 8(5): e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[130]
Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 2021; 192: 113642.
[http://dx.doi.org/10.1016/j.jpba.2020.113642] [PMID: 33011580]
[131]
Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 129-37.
[http://dx.doi.org/10.1016/j.addr.2016.01.022] [PMID: 26900977]
[132]
Akbarzadeh A, Rezaei-sadabady R, Davaran S, Joo SW, Zarghami N. Liposome : Classification, prepNew aspects of liposomesaration, and applications. Nanoscale Res Lett 2013; 8: 1-9.
[http://dx.doi.org/10.1186/1556-276X-8-102]
[133]
Dong Z, Yin Y, Luo J, et al. An FGFR1-binding peptide modified liposome for siRNA delivery in lung cancer. Int J Mol Sci 2022; 23(15): 8380.
[http://dx.doi.org/10.3390/ijms23158380] [PMID: 35955516]
[134]
Jarallah SJ, Aldossary AM, Tawfik EA, et al. GL67 lipid-based liposomal formulation for efficient siRNA delivery into human lung cancer cells. Saudi Pharm J 2023; 31(7): 1139-48.
[http://dx.doi.org/10.1016/j.jsps.2023.05.017] [PMID: 37273265]
[135]
Quan YH, Lim JY, Choi BH, et al. Self-targeted knockdown of CD44 improves cisplatin sensitivity of chemoresistant non-small cell lung cancer cells. Cancer Chemother Pharmacol 2019; 83(3): 399-410.
[http://dx.doi.org/10.1007/s00280-018-3737-y] [PMID: 30515553]
[136]
Jiang M, Zhang E, Liang Z, et al. Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. J Drug Deliv Sci Technol 2019; 54: 101316.
[http://dx.doi.org/10.1016/j.jddst.2019.101316]
[137]
Koshy ST, Cheung AS, Gu L, Graveline AR, Mooney DJ. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv Biosyst 2017; 1(1-2): 1600013.
[http://dx.doi.org/10.1002/adbi.201600013] [PMID: 30258983]
[138]
Garbuzenko OB, Saad M, Betigeri S, et al. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res 2009; 26(2): 382-94.
[http://dx.doi.org/10.1007/s11095-008-9755-4] [PMID: 18958402]
[139]
Chowdhury N, Vhora I, Patel K, Doddapaneni R, Mondal A, Singh M. Liposomes co-loaded with 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) shRNA plasmid and docetaxel for the treatment of non-small cell lung cancer. Pharm Res 2017; 34(11): 2371-84.
[http://dx.doi.org/10.1007/s11095-017-2244-x] [PMID: 28875330]
[140]
Zhou Y, Zhou G, Tian C, et al. Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip Rev RNA 2016; 7(6): 758-71.
[http://dx.doi.org/10.1002/wrna.1363] [PMID: 27196002]
[141]
Kalluri R, LeBleu VS. The biology , function , and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[142]
Bai J, Duan J, Liu R, et al. Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells. Asian J Pharmac Sci 2020; 15(4): 461-71.
[http://dx.doi.org/10.1016/j.ajps.2019.04.002] [PMID: 32952669]
[143]
Lin X, Lin L, Wu J, et al. A targeted SIRNA -loaded PDL1 -exosome and functional evaluation against lung cancer. Thorac Cancer 2022; 13(11): 1691-702.
[http://dx.doi.org/10.1111/1759-7714.14445] [PMID: 35545838]
[144]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[145]
Priya S, Desai VM, Singhvi G. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery. ACS Omega 2023; 8(1): 74-86.
[http://dx.doi.org/10.1021/acsomega.2c05976] [PMID: 36643539]
[146]
Cardoso MM, Peça IN, Roque ACA. Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem 2012; 19(19): 3103-27.
[http://dx.doi.org/10.2174/092986712800784667] [PMID: 22612698]
[147]
Parhiz H, Shuvaev VV, Pardi N, et al. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J Control Release 2018; 291: 106-15.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.015] [PMID: 30336167]
[148]
Lee YK, Lee TS, Song IH, et al. Inhibition of pulmonary cancer progression by epidermal growth factor receptor-targeted transfection with Bcl-2 and survivin siRNAs. Cancer Gene Ther 2015; 22(7): 335-43.
[http://dx.doi.org/10.1038/cgt.2015.18] [PMID: 25857361]
[149]
Li Q, Chan C, Peterson N, et al. Engineering caveolae-targeted lipid nanoparticles to deliver mRNA to the lungs. ACS Chem Biol 2020; 15(4): 830-6.
[http://dx.doi.org/10.1021/acschembio.0c00003] [PMID: 32155049]
[150]
Yang S, Wang M, Wang T, et al. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Mater Today Bio 2023; 20: 100644.
[http://dx.doi.org/10.1016/j.mtbio.2023.100644] [PMID: 37214549]
[151]
Odeh F, Nsairat H, Alshaer W, et al. Aptamers chemistry: Chemical modifications and conjugation strategies. Molecules 2019; 25(1): 3.
[http://dx.doi.org/10.3390/molecules25010003] [PMID: 31861277]
[152]
Liang C, Li F, Wang L, et al. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials 2017; 147: 68-85.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.015] [PMID: 28938163]
[153]
Ma J, Zhuang H, Zhuang Z, et al. Development of docetaxel liposome surface modified with CD133 aptamers for lung cancer targeting. Artif Cells Nanomed Biotechnol 2017; 46(8): 1-8.
[http://dx.doi.org/10.1080/21691401.2017.1394874] [PMID: 29082764]
[154]
Abdelaziz HM, Freag MS, Elzoghby AO. Solid lipid nanoparticle-based drug delivery for lung cancer. NanotechnolBased Targ Drug Deliv Sys Lung Canc. Elsevier Inc. 2019; pp. 95-121.
[http://dx.doi.org/10.1016/B978-0-12-815720-6.00005-8]
[155]
Pang J, Xing H, Sun Y, Feng S, Wang S. Non-small cell lung cancer combination therapy: Hyaluronic acid modified, epidermal growth factor receptor targeted, pH sensitive lipid-polymer hybrid nanoparticles for the delivery of erlotinib plus bevacizumab. Biomed Pharmacother 2020; 125: 109861.
[http://dx.doi.org/10.1016/j.biopha.2020.109861] [PMID: 32070872]
[156]
Pirkalkhoran S, Grabowska WR, Kashkoli HH, et al. Bioengineering of antibody fragments: Challenges and opportunities. Bioengineering 2023; 10(2): 122.
[157]
Qin L, Fang C. Carbonic anhydrase IX-directed immunoliposomes for targeted drug delivery to human lung cancer cells in vitro. Drug Des Devel Ther 2014; 8: 993-1001.
[158]
Wang T, Shigdar S, Shamaileh HA, et al. Challenges and opportunities for siRNA-based cancer treatment. Cancer Lett 2017; 387: 77-83.
[http://dx.doi.org/10.1016/j.canlet.2016.03.045] [PMID: 27045474]
[159]
Shin H, Park SJ, Yim Y, et al. Recent advances in RNA therapeutics and RNA delivery systems based on nanoparticles. Adv Ther 2018; 1(7): 1800065.
[http://dx.doi.org/10.1002/adtp.201800065]
[160]
Bost JP, Barriga H, Holme MN, et al. Delivery of oligonucleotide therapeutics: Chemical modifications, lipid nanoparticles, and extracellular vesicles. ACS Nano 2021; 15(9): 13993-4021.
[http://dx.doi.org/10.1021/acsnano.1c05099] [PMID: 34505766]
[161]
Kim SJ, Puranik N, Yadav D, Jin JO, Lee PCW. Lipid nanocarrier-based drug delivery systems: Therapeutic advances in the treatment of lung cancer. Int J Nanomedicine 2023; 18: 2659-76.
[http://dx.doi.org/10.2147/IJN.S406415] [PMID: 37223276]
[162]
Colaco V, Roy AA, Naik GARR, Mondal A, Mutalik S, Dhas N. Advancement in lipid-based nanocomposites for theranostic applications in lung Carcinoma treatment. OpenNano 2024; 15: 100199.
[http://dx.doi.org/10.1016/j.onano.2023.100199]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy