Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

The Synthesis of Trans-enediones from Furan Derivatives using Pyridinium Chlorochromate: An Explanation

Author(s): Maurizio D’Auria* and Fausto Langerame

Volume 28, Issue 16, 2024

Published on: 20 May, 2024

Page: [1300 - 1305] Pages: 6

DOI: 10.2174/0113852728309735240513053527

Price: $65

Abstract

The reaction of pyridinium chlorochromate (PCC) with furan derivatives gives the corresponding enediones. However, the reaction of pyridinium chlorochromate with furan to give enedione derivatives cannot be performed by using commercial PCC. XRD and XPS analysis of the reagents coupled with DFT calculations can allow us to explain this different behavior. Homemade and commercial PCC have different colors and show some differences in the XRD spectrum. XPS shows the presence of a relevant amount of Cr(III) in the homemade reagent. DFT calculations demonstrate that Cr(III) impurities in the reagent could catalyze the reaction with furan derivatives if an oxygen atom in the Cr(III) derivative attacks the furan ring while it is reoxidized by PCC through the migration of a chlorine atom.

« Previous
Graphical Abstract

[1]
Corey, E.J.; Suggs, J.W. Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett., 1975, 16(31), 2647-2650.
[http://dx.doi.org/10.1016/S0040-4039(00)75204-X]
[2]
Meyer, R.J.; Best, H. Notizen über Chromylchlorid, Chlorchromsäure und Amidochromsäure. Z. Anorg. Allg. Chem., 1899, 22(1), 192-199.
[http://dx.doi.org/10.1002/zaac.18990220111]
[3]
Piancatelli, G.; Scettri, A.; D’Auria, M. Pyridinium chlorochromate: A versatile oxidant in organic synthesis. Synthesis, 1982, 1982(4), 245-258.
[http://dx.doi.org/10.1055/s-1982-29766]
[4]
Beihoffer, L.A.; Craven, R.A.; Knight, K.S.; Sisson, C.R.; Waddell, T.G. Pyridinium chlorochromate (PCC) oxidation of bishomoallylic tertiary alcohols. A structure–reactivity study. Trans. Met. Chem., 2005, 30(5), 582-585.
[http://dx.doi.org/10.1007/s11243-005-4049-8]
[5]
Saraswat, S.; Sharma, V.; Banerji, K.K. Kinetics and mechanism of oxidation of aliphatic aldehydes by pyridinium chlorochromate. Indian J. Chem., 2001, 40A, 583-587.
[6]
Panigrahi, G.P.; Padhy, S. Michealis-Menten behaviour in the oxidation of benzaldehydes by pyridinium chlorochromate. Bull. Korean Chem. Soc., 1992, 13, 547-550.
[7]
Rathore, R.; Saxena, N.; Chandrasekaran, S. A convenient method of benzylic oxidation with pyridinium chlorochromate. Synth. Commun., 1986, 16(12), 1493-1498.
[http://dx.doi.org/10.1080/00397918608056400]
[8]
Hosseinzadeh, R.; Tajbakhsh, M.; Vahedi, H. Selective oxidation of methylarenes with pyridinium chlorochromate. Synlett, 2005, (18), 2769-2770.
[http://dx.doi.org/10.1055/s-2005-917118]
[9]
Narasimhan, V.; Rathore, R.; Chandrasekaran, S. Highly selective oxidative cleavage of aryl substituted olefins with pyridinium chlorochromate. Synth. Commun., 1985, 15(9), 769-774.
[http://dx.doi.org/10.1080/00397918508063871]
[10]
Piccialli, V.; Zaccaria, S.; Oliviero, G.; D’Errico, S.; D’Atri, V.; Borbone, N. Insight into pyridinium chlorochromate chemistry: Catalytic oxidation of tetrahydrofuran compounds and synthesis of umbelactone. Eur. J. Org. Chem., 2012, 2012(23), 4293-4305.
[http://dx.doi.org/10.1002/ejoc.201200069]
[11]
Hunsen, M. Pyridinium chlorochromate catalyzed oxidation of alcohols to aldehydes and ketones with periodic acid. Tetrahedron Lett., 2005, 46(10), 1651-1653.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.076]
[12]
Seth, M.; Mathur, A.; Banerji, K.K. Kinetics and mechanism of oxidation of phosphinic, phenylphosphinic, and phosphonic acids by pyridinium chlorochromate. Bull. Chem. Soc. Jpn., 1990, 63(12), 3640-3643.
[http://dx.doi.org/10.1246/bcsj.63.3640]
[13]
Rajarajan, G.; Jayachandramani, N.; Manivarman, S.; Jayabharathi, J.; Thanikachalam, V. Kinetics and mechanism of oxidation of N,α-diphenylnitrones by 4-(dimethylamino)pyridinium chlorochromate (DMAPCC) in aqueous DMF medium. Trans. Met. Chem., 2008, 33(3), 393-397.
[http://dx.doi.org/10.1007/s11243-008-9055-1]
[14]
Rajasekaran, K.; Baskaran, T.; Gnanasekaran, C. Pyridinium chlorochromate oxidation of ortho-substituted phenyl methyl sulphides. Indian J. Chem., 1987, 26A, 956-957.
[15]
Salehi, P.; Farrokhi, A.; Gholizadeh, M. Oxidative coupling of thiols by pyridinium chlorochromate in solution and solvent free conditions. Synth. Commun., 2001, 31(18), 2777-2781.
[http://dx.doi.org/10.1081/SCC-100105325]
[16]
Cha, J.S.; Chun, J.H.; Kim, J.M.; Kwon, O.O.; Kwon, S.Y.; Lee, J.C. Preparation of aldehydes from carboxylic acids by reductive oxidation with lithium aluminum hydride and pyridinium chlorochromate or pyridinium dichromate. Bull. Korean Chem. Soc., 1999, 20, 400-402.
[17]
Cha, J.S.; Chun, J.H.; Kim, J.M.; Lee, D.Y.; Cho, S.D. Preparation of aldehydes from carboxylic esters by reductive oxidation with lithium aluminum hydride and pyridinium chlorochromate or pyridinium dichromate. Bull. Korean Chem. Soc., 1999, 20, 1373-1374.
[18]
Cha, J.S.; Park, J.H.; Lee, D.W. Exceptionally facile conversion of carboxylic acid salts to aldehydes by reductive oxidation with borane and pyridinium chlorochromate. Bull. Korean Chem. Soc., 2001, 22, 325-326.
[19]
Singh, K.; Singh, K. An efficacious protocol for the oxidation of 3,4-dihydropyrimidin-2(1H)-ones using pyridinium chlorochromate as catalyst. Aust. J. Chem., 2008, 61(11), 910-913.
[http://dx.doi.org/10.1071/CH07432]
[20]
Srikrishna, A.; Vasantha Lakshmi, B.; Sudhakar, A.V.S. Pyridinium chlorochromate mediated oxidative cyclisation of sterically crowded γ,δ-unsaturated alcohols. Tetrahedron Lett., 2007, 48(43), 7610-7613.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.112]
[21]
Heravi, M.M.; Fazeli, A.; Faghihi, Z. Recent advances in application of pyridinium chlorochromate (PCC) in organic synthesis. Curr. Org. Synth., 2016, 13, 220-254.
[http://dx.doi.org/10.2174/1570179412666150402220923]
[22]
Panda, J.A.K.; Patnaik, A.K.; Pradhan, G.C.; Mohanty, P. Electron transfer reaction between pyridinium chlorochromate (VI) and metformin, an antidiabetic drug in aqueous acid medium. World J. Pharm. Res., 2015, 4, 1093-1108.
[23]
Piancatelli, G.; Scettri, A.; D’Auria, M. Oxidative ring opening of furan derivatives to α,β-unsaturated γ-dicarbonyl compounds, useful intermediates for 3-oxocyclopentenes synthesis. Tetrahedron, 1980, 36(5), 661-663.
[http://dx.doi.org/10.1016/0040-4020(80)88010-0]
[24]
Piancatelli, G.; D’Auria, M.; D’Onofrio, F. Synthesis of 1,4-dicarbonyl compounds and cyclopentenones from furans. Synthesis, 1994, 1994(9), 867-889.
[http://dx.doi.org/10.1055/s-1994-25591]
[25]
D’auria, M.; Piancatelli, G.; Scettri, A. A mild and selective reduction of enedicarbonyl compounds. Synthesis, 1980, 1980(3), 245-247.
[http://dx.doi.org/10.1055/s-1980-28987]
[26]
Piancatelli, G.; D’Auria, M.; Scettri, A. Process for the synthesis of 3-ketocyclopentene-5-oxy derivatives having insecticide activity. Patent GB2092571A, 1981.
[27]
D’Ascoli, R.; D’Auria, M.; De Mico, A.; Piancatelli, G.; Scettri, A. A rapid and efficient route to 4- and 5-amino-3-oxocyclopentene derivatives. J. Org. Chem., 1980, 45(22), 4500-4502.
[http://dx.doi.org/10.1021/jo01310a047]
[28]
Antonioletti, R.; D’Auria, M.; Piancatelli, G.; Scettri, A. Michael addition to trans-enediones: A facile route to 2,3,4,5-tetra-substituted furans. J. Chem. Soc., Perkin Trans. 1, 1981, I, 2398-2400.
[http://dx.doi.org/10.1039/p19810002398]
[29]
D’Auria, M.; De Mico, A.; Piancatelli, G.; Scettri, A. A facile route to 5-alkyl-2(3H)-furanones by photoisomerisation of enedicarbonyl compounds. Tetrahedron, 1982, 38(11), 1661-1666.
[http://dx.doi.org/10.1016/0040-4020(82)80143-9]
[30]
Antonioletti, R.; D’Auria, M.; Piancatelli, G.; Santucci, S.; Scettri, A. Photochemical synthesis of dialkoxy- and diacetoxy- dihydro-furans from -enedicarbonyl compounds. Tetrahedron Lett., 1982, 23(29), 2981-2984.
[http://dx.doi.org/10.1016/S0040-4039(00)87511-5]
[31]
Piancatelli, G.; Scettri, A.; D’Auria, M. The oxidation of furan derivatives with pyridinium chlorochromate: A novel synthesis of 6-hydroxy-2 h-pyran-3 (6 H)-ones. Tetrahedron Lett., 1977, 18(25), 2199-2200.
[http://dx.doi.org/10.1016/S0040-4039(01)83720-5]
[32]
Piancatelli, G.; Scettri, A.; D’Auria, M. Pyridinium chlorochromate in the organic synthesis: A convenient oxidation of enol-ethers to esters and lactones. Tetrahedron Lett., 1977, 18(39), 3483-3484.
[http://dx.doi.org/10.1016/S0040-4039(01)83272-X]
[33]
Piancatelli, G.; Scettri, A.; D’Auria, M. Pyridinium chlorochromate in the organic synthesis: A convenient oxidation of 5-bromo-2-furan-derivatives to γ-hydroxy butenolides. Tetrahedron Lett., 1979, 20(17), 1507-1508.
[http://dx.doi.org/10.1016/S0040-4039(01)86191-8]
[34]
D’auria, M.; D’onofrio, F.; Piancatelli, G.; Scettri, A. Studies on reactivity of pyridinium chlorochromate - iodine system: An efficient method for converting enol silyl ethers into α-Iodo ketones. Synth. Commun., 1982, 12(14), 1127-1138.
[http://dx.doi.org/10.1080/00397918208065980]
[35]
Antonioletti, R.; D’Auria, M.; De Mico, A.; Piancatelli, G.; Scettri, A. Oxidative C-C cleavage of phenyloxiranes by pyridinium chlorochromate. Synthesis, 1983, 1983(11), 890-891.
[http://dx.doi.org/10.1055/s-1983-30551]
[36]
Antonioletti, R.; D’Auria, M.; De Mico, A.; Piancatelli, G.; Scettri, A. Pyridinium chlorochromate in organic synthesis. A convenient preparation of 4-oxo-2-alkenethioic s-esters. Synthesis, 1984, 1984(3), 280-281.
[http://dx.doi.org/10.1055/s-1984-30812]
[37]
Bonadies, F.; Di Fabio, R.; Bonini, C. Use of pyridinium chlorochromate as methylene oxidant in 5,6-dihydropyrans: A practical one-step preparation of the anhydromevalonolactone. J. Org. Chem., 1984, 49(9), 1647-1649.
[http://dx.doi.org/10.1021/jo00183a030]
[38]
Bonadies, F.; Bonini, C. Oxidation of active methylene compounds by pyridinium chlorochromate. Synth. Commun., 1988, 18(13), 1573-1580.
[http://dx.doi.org/10.1080/00397918808081315]
[39]
Castle, J.E.; Salvi, A.M. Chemical state information from the near-peak region of the X-ray photoelectron background. J. Electron Spectrosc. Relat. Phenom., 2001, 114-116, 1103-1113.
[http://dx.doi.org/10.1016/S0368-2048(00)00305-4]
[40]
Małuszyńska, H.; Czarnecki, P.; Czarnecka, A.; Pająk, Z. Structures and phase transitions in a new ferroelectric – pyridinium chlorochromate – studied by X-ray diffraction, DSC and dielectric methods. Acta Crystallogr. B, 2012, 68(2), 128-136.
[http://dx.doi.org/10.1107/S0108768112005782]
[41]
Suvitha, A.; Sathyanarayanamoorthi, V.; Murugakoothan, P. Growth, spectroscopy properties and DFT based PCM calculations of guanidinium chlorochromate. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 110, 255-261.
[http://dx.doi.org/10.1016/j.saa.2013.02.025] [PMID: 23578533]
[42]
Desimoni, E.; Malitesta, C.; Zambonin, P.G.; Rivière, J.C. An x‐ray photoelectron spectroscopic study of some chromium–oxygen systems. Surf. Interface Anal., 1988, 13(2-3), 173-179.
[http://dx.doi.org/10.1002/sia.740130210]
[43]
Salvi, A.M.; Castle, J.E.; Watts, J.F.; Desimoni, E. Peak fitting of the chromium 2p XPS spectrum. Appl. Surf. Sci., 1995, 90(3), 333-341.
[http://dx.doi.org/10.1016/0169-4332(95)00168-9]
[44]
Aronniemi, M.; Sainio, J.; Lahtinen, J. Chemical state quantification of iron and chromium oxides using XPS: The effect of the background subtraction method. Surf. Sci., 2005, 578(1-3), 108-123.
[http://dx.doi.org/10.1016/j.susc.2005.01.019]
[45]
Wessjohann, L.A.; Scheid, G. Recent advances in Chromium(II)- and Chromium(III)-madiated organic synthesis. Synthesis, 1999, 1999(1), 1-36.
[http://dx.doi.org/10.1055/s-1999-3672]
[46]
Bousquet, C.; Gilheany, D.G. Chromium catalysed asymmetric alkene epoxidation. greater selectivity for an E-alkene versus its Z-isomer. Tetrahedron Lett., 1995, 36(42), 7739-7742.
[http://dx.doi.org/10.1016/0040-4039(95)01577-5]
[47]
Imanishi, H.; Katsuki, T. Unusual solvent-effect in stereochemistry of asymmetric epoxidation using a (salen)chromium(III) complex as a catalyst. Tetrahedron Lett., 1997, 38(2), 251-254.
[http://dx.doi.org/10.1016/S0040-4039(96)02274-5]
[48]
Chatterjee, D.; Basak, S.; Muzart, J. Asymmetric epoxidation of alkenes with aqueous t-BuOOH catalyzed by novel chiral complexes of chromium(III) containing tridentate Schiff-base ligands. J. Mol. Catal. Chem., 2007, 271(1-2), 270-276.
[http://dx.doi.org/10.1016/j.molcata.2007.03.011]
[49]
Ikeda, H.; Nishi, K.; Tsurugi, H.; Mashima, K. Chromium-catalyzed cyclopropanation of alkenes with bromoform in the presence of 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-dihydropyrazine. Chem. Sci. (Camb.), 2020, 11(14), 3604-3609.
[http://dx.doi.org/10.1039/D0SC00964D] [PMID: 34094048]
[50]
Todaro, L.; D’Auria, M.; Langerame, F.; Salvi, A.M.; Scopa, A. Surface characterization of untreated and hydro-thermally pre-treated Turkey oak woods after UV-C irradiation. Surf. Interface Anal., 2015, 47(2), 206-215.
[http://dx.doi.org/10.1002/sia.5689]
[51]
Castle, J.E.; Chapman-Kpodo, H.; Proctor, A.; Salvi, A.M. Curve-fitting in XPS using extrinsic and intrinsic background structure. J. Electron Spectrosc. Relat. Phenom., 2000, 106(1), 65-80.
[http://dx.doi.org/10.1016/S0368-2048(99)00089-4]
[52]
D’Auria, M. The effect of strain on the aromatic character of infinitene. Compounds, 2023, 3(2), 336-340.
[http://dx.doi.org/10.3390/compounds3020025]
[53]
Gaussian 09 (Gaussian, Inc., Wallingford CT). 2009. Available from: https://gaussian.com/glossary/g09/
[54]
Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989.
[55]
Becke, A.D. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local densi-ty approximation ionization threshold. J. Chem. Phys., 1993, 98, 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[56]
Peng, C.; Bernhard Schlegel, H. Combining synchronous transit and quasi‐newton methods to find transition states. Isr. J. Chem., 1993, 33(4), 449-454.
[http://dx.doi.org/10.1002/ijch.199300051]
[57]
Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem., 1996, 17(1), 49-56.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49:AID-JCC5>3.0.CO;2-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy