Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Study on 13C MultiCP/MAS ssNMR Analysis of Tobacco Pectin

Author(s): Xin Ye, Zhenyu Xu, Da Xu, Jibao Cai, Shuiping Dai, Yuting Luo, Lei Guo, Ying Wang, Jiakun Su* and Jun Yang*

Volume 20, Issue 9, 2024

Published on: 20 May, 2024

Page: [686 - 696] Pages: 11

DOI: 10.2174/0115734110315088240516072328

Price: $65

Abstract

Background: As one of the most important economic crops, tobacco products have a long history and dominate the development of the world economy. Pectin, as a complex colloidal substance widely present in plant cell walls, its content is an important factor affecting the safety of tobacco smoking.

Objective: This study aimed to analyze the content and structure of pectin in tobacco samples.

Methods: In this study, tobacco pectin was extracted by ultrasonic-assisted ionic liquid extraction, and the 13C MultiCP/MAS NMR spectral analysis of pectin was conducted.

Results: The type of extractant, duration of ultrasonication, extraction temperature, and solid-liquid ratio were optimized. Under the conditions of using 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) as the extractant, the solid-liquid ratio of 1:20 g/mL, and the ultrasonic power of 600 w for 30 min at 30°C, the yield of 23.7% of tobacco stem pectin and the purity of 54.2% could be obtained. The optimized MultiCP sequence parameters, with 10 CP cycles of 1.0 ms and the repolarization time of 50 ms could obtain high-resolution spectra within a time of 1.0 h. The C-6 peaks of the pectin in spectra were fitted using the spectral deconvolution technique and calculated the methylesterification (DM) of the tobacco pectin, which was generally less than 50% and belonged to the low methyl esterification pectin. The pectin content of the tobacco sample was calculated using the standard curve method with the addition of dimethyl sulfone (DMS) as an internal reference. The results of this method were consistent with the colorimetric method.

Conclusion: The 13C MultiCP/MAS NMR method has the advantages of being green, fast, and accurate and provides a new technical tool for quantitative and qualitative studies of cell wall substances in tobacco samples.

Graphical Abstract

[1]
Baghdadi, F.; Nayebzadeh, K.; Aminifar, M.; Mortazavian, A.M. Pectin purification from plant materials. Macromol. Res., 2023, 31(8), 753-770.
[http://dx.doi.org/10.1007/s13233-023-00167-0]
[2]
Ishwarya, S. P.; R, S.; Nisha, P. Advances and prospects in the food applications of pectin hydrogels. Crit. Rev. Food Sci. Nutr., 2022, 62(16), 4393-4417.
[http://dx.doi.org/10.1080/10408398.2021.1875394] [PMID: 33511846]
[3]
Silva, J.R.G.; de Resende, E.D. Potential of the passion fruit mesocarp flour as a source of pectin and its application as thickener and gelling agent. Int. J. Food Sci. Technol., 2023, 58(4), 1766-1774.
[http://dx.doi.org/10.1111/ijfs.16284]
[4]
Roy, S.; Priyadarshi, R.; Łopusiewicz, Ł.; Biswas, D.; Chandel, V.; Rhim, J.W. Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: A review. Int. J. Biol. Macromol., 2023, 239, 124248.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124248] [PMID: 37003387]
[5]
Liang, Y.; Yang, Y.; Zheng, L.; Zheng, X.; Xiao, D.; Wang, S.; Ai, B.; Sheng, Z. Extraction of pectin from passion fruit peel: Composition, structural characterization and emulsion stability. Foods, 2022, 11(24), 3995.
[http://dx.doi.org/10.3390/foods11243995] [PMID: 36553737]
[6]
Chen, J.; Mei, M.S.; Xu, Y.; Xiong, S.; Zhao, Y.; Liu, R.; Shi, S.; Wang, H.; Wang, S. The impact of the methyl esters of homogalacturonan on cellular uptake dependent hypoglycemic activity in IR-HepG2 cells. Carbohydr. Polym., 2022, 293, 119741.
[http://dx.doi.org/10.1016/j.carbpol.2022.119741] [PMID: 35798434]
[7]
Kozioł, A.; Środa-Pomianek, K.; Górniak, A.; Wikiera, A.; Cyprych, K.; Malik, M. Structural determination of pectins by spectroscopy methods. Coatings, 2022, 12(4), 546.
[http://dx.doi.org/10.3390/coatings12040546]
[8]
Chen, G.; Li, Z.; Wu, Q.; Zhang, X. Advances in the applications of capillary electrophoresis to tobacco analysis. Curr. Anal. Chem., 2023, 19(1), 77-99.
[http://dx.doi.org/10.2174/1573411018666220927094137]
[9]
Zhu, X.; Dai, Y.; Wang, C.; Tan, L. Quantitative and structure analysis of cellulose in tobacco by 13C CP/MAS NMR spectroscopy. Beitr. Tabforsch. Int., 2016, 27(3), 126-135.
[http://dx.doi.org/10.1515/cttr-2016-0014]
[10]
Yan, K.Y.; Yan, H.Y.; Li, X.B.; Mao, W.L.; Bo, Y.C. Comparative analysis of cell wall substances in roasted tobacco leaves. Tob. Sci. Tech., 2005, 10, 6-11.
[http://dx.doi.org/1002-0861(2005)10-0006-06]
[11]
Kong, H.F.; Cheng, C.Y.; Chen, S.L.; Guo, X.H.; Pan, X.W.; Hu, M.N. Comparison of methods for the determination of pectin content in tobacco. Phys. Chem. Testing., 2016, 52(2), 216-218. 10.11973/Ihjy-hx201602023
[12]
Zhang, F.Y.; Pu, B.; Chen, A.J. Improvement of mass method for the determination of pectin content in Kiwifruit. Food. Sci. Tech., 2013, 38(12), 280-282.
[http://dx.doi.org/10.13684/j.cnki.spkj.2013.12.063]
[13]
Wang, F.; Du, C.; Chen, J.; Shi, L.; Li, H. A new method for determination of pectin content using spectrophotometry. Polymers, 2021, 13(17), 2847.
[http://dx.doi.org/10.3390/polym13172847] [PMID: 34502887]
[14]
Grassino, A.N.; Barba, F.J.; Brnčić, M.; Lorenzo, J.M.; Lucini, L.; Brnčić, S.R. Analytical tools used for the identification and quantification of pectin extracted from plant food matrices, wastes and by-products: A review. Food Chem., 2018, 266, 47-55.
[http://dx.doi.org/10.1016/j.foodchem.2018.05.105] [PMID: 30381214]
[15]
Li, D.; Hua, X.; Luo, J.; Xu, Y. Quantitative determination of galacturonic acid in pectin and pectin products by combined pectinase hydrolysis and HPLC determination. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2023, 40(3), 319-327.
[http://dx.doi.org/10.1080/19440049.2023.2165171] [PMID: 36649318]
[16]
Zhang, X.J.; Liu, C.Y.; Yang, L.N. Current status of research on methods for determination of pectin content. Applied. Chem, 2015, 44(4), 731-735.
[http://dx.doi.org/10.16581/j.cnki.issn1671-3206.2015.04.005]
[17]
Burana-osot, J.; Soonthornchareonnon, N.; Chaidedgumjorn, A.; Hosoyama, S.; Toida, T. Determination of galacturonic acid from pomelo pectin in term of galactose by HPAEC with fluorescence detection. Carbohydr. Polym., 2010, 81(2), 461-465.
[http://dx.doi.org/10.1016/j.carbpol.2010.03.001]
[18]
Wang, Z.F.; You, Y.L.; Li, F.F.; Kong, W.R.; Wang, S.Q. Research progress of NMR in natural product quantification. Molecules, 2021, 26(20), 6308.
[http://dx.doi.org/10.3390/molecules26206308] [PMID: 34684890]
[19]
Pujahari, S.R.; Mali, P.S.; Purusottam, R.N.; Kumar, A. Combined liquid-state and solid-state nuclear magnetic resonance at natural abundance for comparative higher order structure assessment in the formulated-state of biphasic biopharmaceutics. Anal. Chem., 2023, 95(22), 8469-8477.
[http://dx.doi.org/10.1021/acs.analchem.2c05485] [PMID: 37154614]
[20]
Ziarelli, F.; Viel, S.; Sanchez, S.; Cross, D.; Caldarelli, S. Precision and sensitivity optimization of quantitative measurements in solid state NMR. J. Magn. Reson., 2007, 188(2), 260-266.
[http://dx.doi.org/10.1016/j.jmr.2007.07.006] [PMID: 17703975]
[21]
Freitas, J.C.C.; Ejaz, M.; Toci, A.T.; Romão, W.; Khimyak, Y.Z. Solid-state NMR spectroscopy of roasted and ground coffee samples: Evidences for phase heterogeneity and prospects of applications in food screening. Food Chem., 2023, 409, 135317.
[http://dx.doi.org/10.1016/j.foodchem.2022.135317] [PMID: 36586269]
[22]
Kharbach, M.; Alaoui Mansouri, M.; Taabouz, M.; Yu, H. Current application of advancing spectroscopy techniques in food analysis: Data handling with chemometric approaches. Foods, 2023, 12(14), 2753.
[http://dx.doi.org/10.3390/foods12142753] [PMID: 37509845]
[23]
Addison, B.; Bu, L.; Bharadwaj, V.; Crowley, M.F.; Harman-Ware, A.E.; Crowley, M.F.; Bomble, Y.J.; Ciesielski, P.N. Atomistic, macromolecular model of the Populus secondary cell wall informed by solid-state NMR. Sci. Adv., 2024, 10(1), eadi7965.
[http://dx.doi.org/10.1126/sciadv.adi7965] [PMID: 38170770]
[24]
Hareendran, C.; Shaligram, P.S.; Gonnade, R.; Ajithkumar, T.G. A solid-state NMR method for characterization of pharmaceutical eutectics. Phys. Chem. Chem. Phys., 2024, 26(5), 3800-3803.
[http://dx.doi.org/10.1039/D3CP05615E] [PMID: 38240042]
[25]
Lecoq, L.; Brigandat, L.; Huber, R.; Fogeron, M.L.; Wang, S.; Dujardin, M.; Briday, M.; Wiegand, T.; Callon, M.; Malär, A.; Durantel, D.; Burdette, D.; Berke, J.M.; Meier, B.H.; Nassal, M.; Böckmann, A. Molecular elucidation of drug-induced abnormal assemblies of the hepatitis B virus capsid protein by solid-state NMR. Nat. Commun., 2023, 14(1), 471.
[http://dx.doi.org/10.1038/s41467-023-36219-3] [PMID: 36709212]
[26]
Cousin, S.F.; Hughes, C.E.; Ziarelli, F.; Viel, S.; Mollica, G.; Harris, K.D.M.; Pinon, A.C.; Thureau, P. Exploiting solid-state dynamic nuclear polarization NMR spectroscopy to establish the spatial distribution of polymorphic phases in a solid material. Chem. Sci., 2023, 14(37), 10121-10128.
[http://dx.doi.org/10.1039/D3SC02063K] [PMID: 37772100]
[27]
Reif, B.; Ashbrook, S.E.; Emsley, L.; Hong, M. Solid-state NMR spectroscopy. Nature Reviews Methods Primers, 2021, 1(1), 2.
[http://dx.doi.org/10.1038/s43586-020-00002-1] [PMID: 34368784]
[28]
Giraudeau, P. Challenges and perspectives in quantitative NMR. Magn. Reson. Chem., 2017, 55(1), 61-69.
[http://dx.doi.org/10.1002/mrc.4475] [PMID: 27370178]
[29]
Andrew, E.R.; Bradbury, A.; Eades, R.G. Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature, 1959, 183(4678), 1802-1803.
[http://dx.doi.org/10.1038/1831802a0]
[30]
Romero, C.M.; Redman, A.A.P.H.; Terry, S.A.; Hazendonk, P.; Hao, X.; McAllister, T.A.; Okine, E. Molecular speciation and aromaticity of biochar-manure: Insights from elemental, stable isotope and solid-state DPMAS 13C NMR analyses. J. Environ. Manage., 2021, 280, 111705.
[http://dx.doi.org/10.1016/j.jenvman.2020.111705] [PMID: 33298390]
[31]
Yang, H.; Xiong, Y.; Xie, Z.; Jin, L.; Li, Y.; Yang, J.; Hu, H. Quantitative characterization of coal structure by high-resolution CP/MAS 13C solid-state NMR spectroscopy. Proc. Combust. Inst., 2021, 38(3), 4161-4170.
[http://dx.doi.org/10.1016/j.proci.2020.07.044]
[32]
Kolodziejski, W.; Klinowski, J. Kinetics of cross-polarization in solid-state NMR: A guide for chemists. Chem. Rev., 2002, 102(3), 613-628.
[http://dx.doi.org/10.1021/cr000060n] [PMID: 11890752]
[33]
Johnson, R.L.; Schmidt-Rohr, K. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J. Magn. Reson., 2014, 239, 44-49.
[http://dx.doi.org/10.1016/j.jmr.2013.11.009] [PMID: 24374751]
[34]
Gerstein, B.C.; Dybowski, C. Transient Techniques in NMR of Solids: An Introduction to Theory and Practice; Academic Press: United States, 1985.
[35]
Wu, X.; Zhang, S. Selective Polarization Inversion and Depolarization of 13C in Cross Relaxation in NMR. Chem. Phys. Lett., 1989, 156(1), 79-81.
[http://dx.doi.org/10.1016/0009-2614(89)87085-X]
[36]
Duan, P.; Schmidt-Rohr, K. Composite-pulse and partially dipolar dephased multiCP for improved quantitative solid-state 13C NMR. J. Magn. Reson., 2017, 285, 68-78.
[http://dx.doi.org/10.1016/j.jmr.2017.10.010] [PMID: 29121512]
[37]
Mazurek, A.H.; Szeleszczuk, Ł. A review of applications of solid-state nuclear magnetic resonance (ssNMR) for the analysis of cyclodextrin-including systems. Int. J. Mol. Sci., 2023, 24(4), 3648.
[http://dx.doi.org/10.3390/ijms24043648] [PMID: 36835054]
[38]
Bernardinelli, O.D.; Lima, M.A.; Rezende, C.A.; Polikarpov, I.; deAzevedo, E.R. Quantitative 13C MultiCP solid-state NMR as a tool for evaluation of cellulose crystallinity index measured directly inside sugarcane biomass. Biotechnol. Biofuels, 2015, 8(1), 110.
[http://dx.doi.org/10.1186/s13068-015-0292-1] [PMID: 26244055]
[39]
Saïdi, F.; Taulelle, F.; Martineau, C. Quantitative 13C solid-state NMR spectra by multiple-contact cross-polarization for drug delivery: From active principles to excipients and drug carriers. J. Pharm. Sci., 2016, 105(8), 2397-2401.
[http://dx.doi.org/10.1016/j.xphs.2016.05.025] [PMID: 27372550]
[40]
Chu, W.; Cao, X.; Schmidt-Rohr, K.; Birdwell, J.E.; Mao, J. Investigation into the effect of heteroatom content on kerogen structure using advanced 13C solid-state nuclear magnetic resonance spectroscopy. Energy Fuels, 2019, 33(2), 645-653.
[http://dx.doi.org/10.1021/acs.energyfuels.8b01909]
[41]
Jiang, Z.; Tian, Z.; Zhang, C.; Li, D.; Wu, R.; Tian, N.; Xing, L.; Ma, L. Recent advances in speciation analyses of tobacco and other important economic crops. Curr. Anal. Chem., 2022, 18(5), 518-528.
[http://dx.doi.org/10.2174/1573411017999201201115234]
[42]
de Moura, F.A.; Macagnan, F.T.; dos Santos, L.R.; Bizzani, M.; de Oliveira Petkowicz, C.L.; da Silva, L.P. Characterization and physicochemical properties of pectins extracted from agroindustrial by-products. J. Food Sci. Technol., 2017, 54(10), 3111-3117.
[http://dx.doi.org/10.1007/s13197-017-2747-9] [PMID: 28974796]
[43]
Lin, Y.; An, F.; He, H.; Geng, F.; Song, H.; Huang, Q. Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll., 2021, 114, 106555.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106555]
[44]
Dranca, F.; Oroian, M. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res. Int., 2018, 113, 327-350.
[http://dx.doi.org/10.1016/j.foodres.2018.06.065] [PMID: 30195527]
[45]
Khezeli, T.; Daneshfar, A.; Sahraei, R. A green ultrasonic-assisted liquid–liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta, 2016, 150, 577-585.
[http://dx.doi.org/10.1016/j.talanta.2015.12.077] [PMID: 26838445]
[46]
Du, F.Y.; Xiao, X.H.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J. Chromatogr. A, 2007, 1140(1-2), 56-62.
[http://dx.doi.org/10.1016/j.chroma.2006.11.049] [PMID: 17141255]
[47]
Lasunon, P.; Sengkhamparn, N. Effect of ultrasound-assisted, microwave-assisted and ultrasound-microwave-assisted extraction on pectin extraction from industrial tomato waste. Molecules, 2022, 27(4), 1157.
[http://dx.doi.org/10.3390/molecules27041157] [PMID: 35208946]
[48]
Tang, X.Y.; Gu, L.L.; Li, Z.L.; Jing, L.P.; Yang, F.R.; Huang, Z.H. Advances in natural pectin extraction process. Cellul. Sci. Tech., 2020, 29(4), 52-59.
[http://dx.doi.org/10.16561/j.cnki.xws.2021.04.03]
[49]
Guolin, H.; Jeffrey, S.; Kai, Z.; Xiaolan, H. Application of ionic liquids in the microwave-assisted extraction of pectin from lemon peels. J. Anal. Methods Chem., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/302059] [PMID: 22567554]
[50]
Lin, X.; Liu, Y.; Wang, R.; Dai, J.; Wang, L.; Zhang, J. Extraction of pectins from renewable grapefruit (Citrus paradisi) peels using deep eutectic solvents and analysis of their structural and physicochemical properties. Int. J. Biol. Macromol., 2024, 254(Pt 2), 127785.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127785] [PMID: 37931867]
[51]
Bedzo, O.K.K.; Gottumukkala, L.D.; Sasso, G.L.; Kaminski, K.; Schlage, W.; Goffman, F.; Ivanov, N.; Hoeng, J.; Hayes, D.J. Process development for efficient pectin extraction from tobacco residues and its characterisation. Biomass Convers. Biorefin., 2023.
[http://dx.doi.org/10.1007/s13399-023-04750-4]
[52]
Yang, M.; Liu, Z.; Zhang, J.; Zhu, X.; Xie, W.; Lan, H.; Huang, Y.; Ye, X.; Yang, J. Simultaneous quantification of cellulose and pectin in tobacco using a robust solid-state NMR method. Carbohydr. Res., 2022, 521, 108676.
[http://dx.doi.org/10.1016/j.carres.2022.108676] [PMID: 36126413]
[53]
Zhu, X.; Liu, B.; Zheng, S.; Gao, Y. Quantitative and structure analysis of pectin in tobacco by 13C CP/MAS NMR spectroscopy. Anal. Methods, 2014, 6(16), 6407-6413.
[http://dx.doi.org/10.1039/C4AY01156B]
[54]
Giraudeau, P.; Tea, I.; Remaud, G.S.; Akoka, S. Reference and normalization methods: Essential tools for the intercomparison of NMR spectra. J. Pharm. Biomed. Anal., 2014, 93, 3-16.
[http://dx.doi.org/10.1016/j.jpba.2013.07.020] [PMID: 23953704]
[55]
Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem., 1973, 54(2), 484-489.
[http://dx.doi.org/10.1016/0003-2697(73)90377-1] [PMID: 4269305]
[56]
Georgiev, Y.; Ognyanov, M.; Yanakieva, I.; Kussovski, V.; Kratchanova, M. Isolation, characterization and modification of citrus pectins. J. Biosci. Biotechnol., 2012, 1(3), 223-233.
[57]
Trujillo-Rodríguez, M.J.; Pino, V.; Miró, M. High‐throughput microscale extraction using ionic liquids and derivatives: A review. J. Sep. Sci., 2020, 43(9-10), 1890-1907.
[http://dx.doi.org/10.1002/jssc.202000045] [PMID: 32074395]
[58]
Peng, X.; Mu, T.; Zhang, M.; Sun, H.; Chen, J.; Yu, M. Effects of pH and high hydrostatic pressure on the structural and rheological properties of sugar beet pectin. Food Hydrocoll., 2016, 60, 161-169.
[http://dx.doi.org/10.1016/j.foodhyd.2016.03.025]
[59]
An, S.H.; Zhao, F.F.; Wei, J.; Sun, L.N.; Wu, B. Study on the optimization of ultrasonic-assisted ionic liquid extraction process of seed melon pectin by response surface method. Sci. Tech. Food Ind., 2017, 38(11), 270-275.
[http://dx.doi.org/10.13386/j.issn1002-0306.2017.11.043]
[60]
Adetunji, L.R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocoll., 2017, 62, 239-250.
[http://dx.doi.org/10.1016/j.foodhyd.2016.08.015]
[61]
Freitas de Oliveira, C.; Giordani, D.; Lutckemier, R.; Gurak, P.D.; Cladera-Olivera, F.; Ferreira Marczak, L.D. Extraction of pectin from passion fruit peel assisted by ultrasound. Lebensm. Wiss. Technol., 2016, 71, 110-115.
[http://dx.doi.org/10.1016/j.lwt.2016.03.027]
[62]
Karbuz, P.; Tugrul, N. Microwave and ultrasound assisted extraction of pectin from various fruits peel. J. Food Sci. Technol., 2021, 58(2), 641-650.
[http://dx.doi.org/10.1007/s13197-020-04578-0] [PMID: 33568858]
[63]
Wang, L.; Bai, M.; Qin, Y.; Liu, B.; Wang, Y.; Zhou, Y. Application of ionic liquid-based ultrasonic-assisted extraction of flavonoids from bamboo leaves. Molecules, 2018, 23(9), 2309.
[http://dx.doi.org/10.3390/molecules23092309] [PMID: 30201916]
[64]
Tang, D.; Liu, Y.; Wang, N.; Dong, H.; Zhang, Z.; Yuan, Y.; Shu, J. Quantitative analysis of polymer-grafted cellulose nanocrystals using a ssNMR method on the basis of cross polarization reciprocity relation. Carbohydr. Res., 2022, 513, 108519.
[http://dx.doi.org/10.1016/j.carres.2022.108519] [PMID: 35228041]
[65]
Pauli, G.F.; Jaki, B.U.; Lankin, D.C. Quantitative 1H NMR: Development and potential of a method for natural products analysis. J. Nat. Prod., 2005, 68(1), 133-149.
[http://dx.doi.org/10.1021/np0497301] [PMID: 15679337]
[66]
Shi, X.C.; Feng, Y.F.; Chen, Z.L.; Wu, X.F.; Xiao, X.Y. Analysis of influencing factors of longitudinal relaxation time of reference materials for content determination of six kinds of nuclear magnetic resonance methods. Yaowu Fenxi Zazhi, 2020, 40(11), 1928-1934.
[http://dx.doi.org/10.16155/j.0254-1793.2020.11.04]
[67]
Mulder, F.A.A.; Tenori, L.; Luchinat, C. Fast and quantitative NMR metabolite analysis afforded by a paramagnetic co‐solute. Angew. Chem. Int. Ed., 2019, 58(43), 15283-15286.
[http://dx.doi.org/10.1002/anie.201908006] [PMID: 31398278]
[68]
Loening, N.M.; Thrippleton, M.J.; Keeler, J.; Griffin, R.G. Single-scan longitudinal relaxation measurements in high-resolution NMR spectroscopy. J. Magn. Reson., 2003, 164(2), 321-328.
[http://dx.doi.org/10.1016/S1090-7807(03)00186-1] [PMID: 14511600]
[69]
Ghosh, M.; Prajapati, B.P.; Suryawanshi, R.K.; Kishor Dey, K.; Kango, N. Study of the effect of enzymatic deconstruction on natural cellulose by NMR measurements. Chem. Phys. Lett., 2019, 727, 105-115.
[http://dx.doi.org/10.1016/j.cplett.2019.04.063]
[70]
Zhang, Z.N.; Wang, N.; Tang, D.D.; Shu, J.; Li, X.H. Parameter optimization and application study of multiple-CP quantitative technique for solid-state NMR. J. Higher Edu. Chem., 2021, 42(3), 784-793.
[http://dx.doi.org/10.7503/cjcu20200698]
[71]
Kirui, A.; Du, J.; Zhao, W.; Barnes, W.; Kang, X.; Anderson, C.T.; Xiao, C.; Wang, T. A pectin methyltransferase modulates polysaccharide dynamics and interactions in Arabidopsis primary cell walls: Evidence from solid-state NMR. Carbohydr. Polym., 2021, 270, 118370.
[http://dx.doi.org/10.1016/j.carbpol.2021.118370] [PMID: 34364615]
[72]
Synytsya, A.; Opíková, J.; Brus, J. <sup>13</sup>C CP/MAS NMR spectra of pectins: A peak-fitting analysis in the C-6 region. Czech J. Food Sci., 2003, 21(1), 1-12.
[http://dx.doi.org/10.17221/3471-CJFS]
[73]
Wilson, L.A.; Deligey, F.; Wang, T.; Cosgrove, D.J. Saccharide analysis of onion outer epidermal walls. Biotechnol. Biofuels, 2021, 14(1), 66.
[http://dx.doi.org/10.1186/s13068-021-01923-z] [PMID: 33722273]
[74]
Niu, F.C.; Xie, W.; Huang, C.Z.; Lan, H.Q.; Huang, Y.J.; Gao, M.; Yang, J. Analytical method for determination of pectin content in tobacco by solid state 13C CP/MAS NMR spectroscopy. J. Univ. Sci. Tech. China., 2021, 51(8), 637-646.
[75]
Elwinger, F.; Dvinskikh, S.V.; Furó, I. 13C SPE MAS measurement of ligand concentration in compressible chromatographic beads. Magn. Reson. Chem., 2015, 53(8), 572-577.
[http://dx.doi.org/10.1002/mrc.4257] [PMID: 26053054]
[76]
Ray, C.L.; Gawenis, J.A.; Harmata, M.; Greenlief, C.M. NMR internal standard signal shifts due to cyclodextrin inclusion complexes. Magn. Reson. Chem., 2022, 60(1), 80-85.
[http://dx.doi.org/10.1002/mrc.5180] [PMID: 33963614]
[77]
Wu, J.; Joza, P.; Sharifi, M.; Rickert, W.S.; Lauterbach, J.H. Quantitative method for the analysis of tobacco-specific nitrosamines in cigarette tobacco and mainstream cigarette smoke by use of isotope dilution liquid chromatography tandem mass spectrometry. Anal. Chem., 2008, 80(4), 1341-1345.
[http://dx.doi.org/10.1021/ac702100c] [PMID: 18189372]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy