Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Review Article

Role of Biomass Gasification in Achieving Circular Economy

In Press, (this is not the final "Version of Record"). Available online 20 May, 2024
Author(s): Anil Kumar Vinayak, Hridya Ashokan, Sanyukta Sinha, Yogita Halkara and Anand V.P. Gurumoorthy*
Published on: 20 May, 2024

DOI: 10.2174/0124055204319671240515060552

Price: $95

Abstract

Growing awareness of environmental concerns and the prioritisation of environmental stewardship necessitates the incorporation of sustainability practices that are both economical and profitable. This involves transforming existing industrial practices from the ‘take-make-waste’ approach to one that aligns with the principles of a circular economy. This includes the use and restoration of bioreserves or the cycling of products in a manner that minimizes waste generation by employing the concepts of reuse and recycling. The adoption of circular economy principles is especially critical in energy-intensive industries, and there is increased attention to implementing these principles through biomass gasification. Various methodologies exist for utilizing the potential of biomass by employing biomass gasification to achieve the desired levels of energy output. Techniques incorporating circular economy principles for biomass gasification have become increasingly sought after and achieved widespread implementation in the past few decades. In this paper, we examine the principle of a circular economy and how biomass gasification can be leveraged in processes requiring high-energy input to achieve the same.

[1]
Korhonen J, Honkasalo A, Seppälä J. Circular economy: The concept and its limitations. Ecol Econ 2018; 143: 37-46.
[http://dx.doi.org/10.1016/j.ecolecon.2017.06.041]
[2]
George DAR, Lin BC, Chen Y. A circular economy model of economic growth. Environ Model Softw 2015; 73: 60-3.
[http://dx.doi.org/10.1016/j.envsoft.2015.06.014]
[3]
Yuan Z, Bi J, Moriguichi Y. The circular economy: A new development strategy in China. J Ind Ecol 2006; 10(1-2): 4-8.
[http://dx.doi.org/10.1162/108819806775545321]
[4]
Kunz N, Mayers K, Van Wassenhove LN. Stakeholder views on extended producer responsibility and the circular economy. Calif Manage Rev 2018; 60(3): 45-70.
[http://dx.doi.org/10.1177/0008125617752694]
[5]
Murray A, Skene K, Haynes K. The circular economy: An interdisciplinary exploration of the concept and application in a global context. J Bus Ethics 2017; 140(3): 369-80.
[http://dx.doi.org/10.1007/s10551-015-2693-2]
[6]
Rekleitis G, Haralambous KJ, Loizidou M, Aravossis K. Utilization of agricultural and livestock waste in anaerobic digestion (A.D): Applying the biorefinery concept in a circular economy. Energies 2020; 13(17): 4428.
[http://dx.doi.org/10.3390/en13174428]
[7]
Braungart M, McDonough W. Cradle to cradle: Remaking the way we make things. London: Vintage 2019.
[8]
Adoption of the paris agreement. 0000. Available From : https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
[9]
Paris Agreement to the United Nations Framework Convention on Climate Change. 2015. Available From : https://unfccc.int/process-and-meetings/the-paris-agreement
[10]
U.S. Energy Information Administration. International energy outlook 2021. Available From https://www.eia.gov/outlooks/ieo/consumption/sub-topic-03.php
[11]
Newell P, Bulkeley H. Landscape for change? International climate policy and energy transitions: evidence from sub-Saharan Africa. Clim Policy 2017; 17(5): 650-63.
[http://dx.doi.org/10.1080/14693062.2016.1173003]
[12]
Hermoso-Orzáez MJ, Mota-Panizio R, Carmo-Calado L, Brito P. Thermochemical and economic analysis for energy recovery by the gasification of WEEE plastic waste from the disassembly of large-scale outdoor obsolete luminaires by LEDs in the alto alentejo region (Portugal). Appl Sci 2020; 10(13): 4601.
[http://dx.doi.org/10.3390/app10134601]
[13]
Poulikakos LD, Papadaskalopoulou C, Hofko B, et al. Harvesting the unexplored potential of European waste materials for road construction. Resour Conserv Recycling 2017; 116: 32-44.
[http://dx.doi.org/10.1016/j.resconrec.2016.09.008]
[14]
Schmidt W, Commeh M, Olonade K, et al. Sustainable circular value chains: From rural waste to feasible urban construction materials solutions. Develop Built Environ 2021; 6: 100047.
[http://dx.doi.org/10.1016/j.dibe.2021.100047]
[15]
Salvador R, Puglieri FN, Halog A, Andrade FG, Piekarski CM, De Francisco AC. Key aspects for designing business models for a circular bioeconomy. J Clean Prod 2021; 278: 124341.
[http://dx.doi.org/10.1016/j.jclepro.2020.124341]
[16]
Stephenson PJ, Damerell A. Bioeconomy and circular economy approaches need to enhance the focus on biodiversity to achieve sustainability. Sustainability 2022; 14(17): 10643.
[http://dx.doi.org/10.3390/su141710643]
[17]
Antar M, Lyu D, Nazari M, Shah A, Zhou X, Smith DL. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew Sustain Energy Rev 2021; 139: 110691.
[http://dx.doi.org/10.1016/j.rser.2020.110691]
[18]
Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour Technol 2015; 178: 178-86.
[http://dx.doi.org/10.1016/j.biortech.2014.09.103] [PMID: 25446783]
[19]
Cecchi F, Cavinato C. Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects. Waste Manag Res 2015; 33(5): 429-38.
[http://dx.doi.org/10.1177/0734242X14568610] [PMID: 25687916]
[20]
Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S. Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 2015; 4(1): 26-32.
[http://dx.doi.org/10.1016/j.jmrt.2014.10.009]
[21]
Chaudhary P, Bansal S, Sharma BB, Saini S, Joshi A. Waste biomass-derived activated carbons for various energy storage device applications: A review. J Energy Storage 2024; 78: 109996.
[http://dx.doi.org/10.1016/j.est.2023.109996]
[22]
Sharma P, Gupta B, Pandey M, Singh Bisen K, Baredar P. Downdraft biomass gasification: A review on concepts, designs analysis, modelling and recent advances. Mater Today Proc 2021; 46: 5333-41.
[http://dx.doi.org/10.1016/j.matpr.2020.08.789]
[23]
MacFarlane DW. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A. Biomass Bioenergy 2009; 33(4): 628-34.
[http://dx.doi.org/10.1016/j.biombioe.2008.10.004]
[24]
Li M, Hou Y, Jia Z, Li J. Role of green technological innovation in the green economic growth in China’s natural resource markets. Resour Policy 2023; 86: 104187.
[http://dx.doi.org/10.1016/j.resourpol.2023.104187]
[25]
Ogunrewo OF, Nwulu NI. Optimisation framework of biomass supply chain in southwest Nigeria. Cleaner Engineering and Technology 2024; 18: 100711.
[http://dx.doi.org/10.1016/j.clet.2023.100711]
[26]
Liu Y, Huang Y. Assessing the interrelationship between fossil fuels resources and the biomass energy market for achieving a sustainable and green economy. Resour Policy 2024; 88: 104397.
[http://dx.doi.org/10.1016/j.resourpol.2023.104397]
[27]
Dey B, Ahmed R, Ferdous J, Halim MA, Haque MMU. Biomass or LPG? A case study for unraveling cooking fuel choices and motivations of rural users in Maheshkhali Island, Bangladesh. Sustainable Futures 2024; 7: 100152.
[http://dx.doi.org/10.1016/j.sftr.2024.100152]
[28]
Rahut DB, Aryal JP, Manchanda N, Sonobe T. Examining energy justice: Empirical analysis of clean cooking transition across social groups in India, 2004–2018. Renew Sustain Energy Rev 2024; 193: 114260.
[http://dx.doi.org/10.1016/j.rser.2023.114260]
[29]
Indrawan N, Kumar A, Moliere M, Sallam KA, Huhnke RL. Distributed power generation via gasification of biomass and municipal solid waste: A review. J Energy Inst 2020; 93(6): 2293-313.
[http://dx.doi.org/10.1016/j.joei.2020.07.001]
[30]
Colpan C, Dincer I, Hamdullahpur F. Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas. Int J Hydrogen Energy 2007; 32(7): 787-95.
[http://dx.doi.org/10.1016/j.ijhydene.2006.10.059]
[31]
Basu P. Design of Biomass Gasifiers.Biomass Gasification Design Handbook. Elsevier 2010; pp. 167-228.
[http://dx.doi.org/10.1016/B978-0-12-374988-8.00006-4]
[32]
Venkata Mohan S, Nikhil GN, Chiranjeevi P, et al. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour Technol 2016; 215: 2-12.
[http://dx.doi.org/10.1016/j.biortech.2016.03.130] [PMID: 27068056]
[33]
Clark JH, Farmer TJ, Herrero-Davila L, Sherwood J. Circular economy design considerations for research and process development in the chemical sciences. Green Chem 2016; 18(14): 3914-34.
[http://dx.doi.org/10.1039/C6GC00501B]
[34]
Benjaafar S, Li Y, Daskin M. Carbon footprint and the management of supply chains: Insights from simple models. IEEE Trans Autom Sci Eng 2013; 10(1): 99-116.
[http://dx.doi.org/10.1109/TASE.2012.2203304]
[35]
Abad V, Avila R, Vicent T, Font X. Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresour Technol 2019; 283: 10-7.
[http://dx.doi.org/10.1016/j.biortech.2019.03.064] [PMID: 30897388]
[36]
Haas W, Krausmann F, Wiedenhofer D, Heinz M. How circular is the global economy?: An assessment of material flows, waste production, and recycling in the european union and the world in 2005. J Ind Ecol 2015; 19(5): 765-77.
[http://dx.doi.org/10.1111/jiec.12244]
[37]
Dunn JB, Gaines L, Sullivan J, Wang MQ. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ Sci Technol 2012; 46(22): 12704-10.
[http://dx.doi.org/10.1021/es302420z] [PMID: 23075406]
[38]
Vinayak AK, Xu Z, Li G, Wang X. Current trends in sourcing, recycling, and regeneration of spent lithium-ion batteries—A review. Renewables 2023; 1(3): 294-315.
[http://dx.doi.org/10.31635/renewables.023.202200008]
[39]
Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour Technol 2018; 248(Pt A): 37-56.
[http://dx.doi.org/10.1016/j.biortech.2017.06.145] [PMID: 28697976]
[40]
Mazur-Wierzbicka E. Towards circular economy—A comparative analysis of the countries of the European Union. Resources 2021; 10(5): 49.
[http://dx.doi.org/10.3390/resources10050049]
[41]
Pinyol Alberich J, Pansera M, Hartley S. Understanding the EU’s circular economy policies through futures of circularity. J Clean Prod 2023; 385: 135723.
[http://dx.doi.org/10.1016/j.jclepro.2022.135723]
[42]
Chioatto E, Sospiro P. Transition from waste management to circular economy: The European Union roadmap. Environ Dev Sustain 2023; 25(1): 249-76.
[http://dx.doi.org/10.1007/s10668-021-02050-3]
[43]
Ciriminna R, Lomeli-Rodriguez M, Demma Carà P, Lopez-Sanchez JA, Pagliaro M. Limonene: A versatile chemical of the bioeconomy. Chem Commun 2014; 50(97): 15288-96.
[http://dx.doi.org/10.1039/C4CC06147K] [PMID: 25341412]
[44]
Valero A, Valero A. thermodynamic rarity and recyclability of raw materials in the energy transition: The need for an in-spiral economy. Entropy 2019; 21(9): 873.
[http://dx.doi.org/10.3390/e21090873]
[45]
Londoño NAC, Cabezas H. Perspectives on circular economy in the context of chemical engineering and sustainable development. Curr Opin Chem Eng 2021; 34: 100738.
[http://dx.doi.org/10.1016/j.coche.2021.100738]
[46]
Cooper SJG, Giesekam J, Hammond GP, et al. Thermodynamic insights and assessment of the ‘circular economy’. J Clean Prod 2017; 162: 1356-67.
[http://dx.doi.org/10.1016/j.jclepro.2017.06.169]
[47]
Tabelin C, et al. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner Eng 2020; 163: 106743.
[http://dx.doi.org/10.1016/j.mineng.2020.106743]
[48]
Chavez R, Sharma M. Profitability and environmental friendliness of a closed-loop supply chain for PET components: A case study of the Mexican automobile market. Resour Conserv Recycling 2018; 135: 172-89.
[http://dx.doi.org/10.1016/j.resconrec.2017.10.038]
[49]
Ingebrigtsen S, Jakobsen OD. Environment and profitability in the reprocessing of paper in Norway: contradictory research reports in the context of circulation economics. Bus Strategy Environ 2006; 15(6): 389-401.
[http://dx.doi.org/10.1002/bse.455]
[50]
Hodge M, Ochsendorf J, Fernández J. Quantifying potential profit from material recycling: A case study in brick manufacturing. J Clean Prod 2010; 18(12): 1190-9.
[http://dx.doi.org/10.1016/j.jclepro.2010.03.008]
[51]
Vaverková . Landfill impacts on the environment— Review. Geosciences 2019; 9(10): 431.
[http://dx.doi.org/10.3390/geosciences9100431]
[52]
Zhu J, Fan C, Shi H, Shi L. Efforts for a circular economy in China: A comprehensive review of policies. J Ind Ecol 2019; 23(1): 110-8.
[http://dx.doi.org/10.1111/jiec.12754]
[53]
Leal Filho W, Saari U, Fedoruk M, et al. An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. J Clean Prod 2019; 214: 550-8.
[http://dx.doi.org/10.1016/j.jclepro.2018.12.256]
[54]
Gupt Y, Sahay S. Review of extended producer responsibility: A case study approach. Waste Manag Res 2015; 33(7): 595-611.
[http://dx.doi.org/10.1177/0734242X15592275] [PMID: 26185163]
[55]
Corrado L, Fazio A, Pelloni A. Pro-environmental attitudes, local environmental conditions and recycling behavior. J Clean Prod 2022; 362: 132399.
[http://dx.doi.org/10.1016/j.jclepro.2022.132399]
[56]
Derksen L, Gartrell J. The social context of recycling. Am Sociol Rev 1993; 58(3): 434.
[http://dx.doi.org/10.2307/2095910]
[57]
Werner CM, Makela E. Motivations and behaviors that support recycling. J Environ Psychol 1998; 18(4): 373-86.
[http://dx.doi.org/10.1006/jevp.1998.0114]
[58]
Barr S, Ford NJ, Gilg AW. Attitudes towards Recycling Household Waste in Exeter, Devon: Quantitative and qualitative approaches. Local Environ 2003; 8(4): 407-21.
[http://dx.doi.org/10.1080/13549830306667]
[59]
Molino A, Chianese S, Musmarra D. Biomass gasification technology: The state of the art overview. J Energy Chem 2016; 25(1): 10-25.
[http://dx.doi.org/10.1016/j.jechem.2015.11.005]
[60]
Iakovou E, Karagiannidis A, Vlachos D, Toka A, Malamakis A. Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag 2010; 30(10): 1860-70.
[http://dx.doi.org/10.1016/j.wasman.2010.02.030] [PMID: 20231084]
[61]
Gumisiriza R, Hawumba JF, Okure M, Hensel O. Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnol Biofuels 2017; 10(1): 11.
[http://dx.doi.org/10.1186/s13068-016-0689-5] [PMID: 28066511]
[62]
Fatih Demirbas M, Balat M, Balat H. Biowastes-to-biofuels. Energy Convers Manage 2011; 52(4): 1815-28.
[http://dx.doi.org/10.1016/j.enconman.2010.10.041]
[63]
Liu CM, Wu SY. From biomass waste to biofuels and biomaterial building blocks. Renew Energy 2016; 96: 1056-62.
[http://dx.doi.org/10.1016/j.renene.2015.12.059]
[64]
Widjaya ER, Chen G, Bowtell L, Hills C. Gasification of non-woody biomass: A literature review. Renew Sustain Energy Rev 2018; 89: 184-93.
[http://dx.doi.org/10.1016/j.rser.2018.03.023]
[65]
Tripathi M, Sahu JN, Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew Sustain Energy Rev 2016; 55: 467-81.
[http://dx.doi.org/10.1016/j.rser.2015.10.122]
[66]
Wainaina S, Horváth IS, Taherzadeh MJ. Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review. Bioresour Technol 2018; 248(Pt A): 113-21.
[http://dx.doi.org/10.1016/j.biortech.2017.06.075] [PMID: 28651875]
[67]
Li Y, Zhou LW, Wang RZ. Urban biomass and methods of estimating municipal biomass resources. Renew Sustain Energy Rev 2017; 80: 1017-30.
[http://dx.doi.org/10.1016/j.rser.2017.05.214]
[68]
Atay Ş, Akbal F. Classification and effects of sludge disintegration technologies integrated into sludge handling units: An overview. Clean 2016; 44(9): 1198-213.
[http://dx.doi.org/10.1002/clen.201400084]
[69]
Wang Y, Kinoshita CM. Kinetic model of biomass gasification. Sol Energy 1993; 51(1): 19-25.
[http://dx.doi.org/10.1016/0038-092X(93)90037-O]
[70]
Kajitani S, Zhang Y, Umemoto S, Ashizawa M, Hara S. Co-gasification reactivity of coal and woody biomass in high-temperature gasification. Energy Fuels 2010; 24(1): 145-51.
[http://dx.doi.org/10.1021/ef900526h]
[71]
Safarian S, Unnþórsson R, Richter C. A review of biomass gasification modelling. Renew Sustain Energy Rev 2019; 110: 378-91.
[http://dx.doi.org/10.1016/j.rser.2019.05.003]
[72]
Leung DYC, Yin XL, Wu CZ. A review on the development and commercialization of biomass gasification technologies in China. Renew Sustain Energy Rev 2004; 8(6): 565-80.
[http://dx.doi.org/10.1016/j.rser.2003.12.010]
[73]
Mahapatra S, Dasappa S. Off-grid biomass gasification based rural electrification in lieu of grid extension. 19th European Biomass Conference and Exhibition. Berlin, Germany, 6-10 June, 2011, pp. 2203-2208.
[74]
Gurupreetha B, Shruthi S, Prabhu N. A review on production of biofuels from novel biomass. Int Res J Biol Sci 2020; 9(4): 53-64.
[75]
Patra TK, Sheth PN. Biomass gasification models for downdraft gasifier: A state-of-the-art review. Renew Sustain Energy Rev 2015; 50: 583-93.
[http://dx.doi.org/10.1016/j.rser.2015.05.012]
[76]
Sulewski P, Ignaciuk W, Szymańska M, Wąs A. Development of the biomethane market in Europe. Energies 2023; 16(4): 2001.
[http://dx.doi.org/10.3390/en16042001]
[77]
Adnan AI, Ong MY, Nomanbhay S, Chew KW, Show PL. Technologies for biogas upgrading to biomethane: A review. Bioengineering 2019; 6(4): 92.
[http://dx.doi.org/10.3390/bioengineering6040092] [PMID: 31581659]
[78]
Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011; 35(5): 1633-45.
[http://dx.doi.org/10.1016/j.biombioe.2011.02.033]
[79]
Romero-García JM, Niño L, Martínez-Patiño C, Álvarez C, Castro E, Negro MJ. Biorefinery based on olive biomass. State of the art and future trends. Bioresour Technol 2014; 159: 421-32.
[http://dx.doi.org/10.1016/j.biortech.2014.03.062] [PMID: 24713236]
[80]
Gómez-de la Cruz FJ, Casanova-Peláez PJ, Palomar-Carnicero JM, Cruz-Peragón F. Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction. Energy 2014; 75: 146-52.
[http://dx.doi.org/10.1016/j.energy.2014.06.085]
[81]
Hodaifa G, Martínez ME, Sánchez S. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour Technol 2008; 99(5): 1111-7.
[http://dx.doi.org/10.1016/j.biortech.2007.02.020] [PMID: 17434730]
[82]
Kumar A, Kumar N, Baredar P, Shukla A. A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 2015; 45: 530-9.
[http://dx.doi.org/10.1016/j.rser.2015.02.007]
[83]
Nizami AS, Rehan M, Waqas M, et al. Waste biorefineries: Enabling circular economies in developing countries. Bioresour Technol 2017; 241: 1101-17.
[http://dx.doi.org/10.1016/j.biortech.2017.05.097] [PMID: 28579178]
[84]
Manara P, Zabaniotou A. Co-valorization of crude glycerol waste streams with conventional and/or renewable fuels for power generation and industrial symbiosis perspectives. Waste Biomass Valoriz 2016; 7(1): 135-50.
[http://dx.doi.org/10.1007/s12649-015-9439-3]
[85]
Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A Gen 2005; 281(1-2): 225-31.
[http://dx.doi.org/10.1016/j.apcata.2004.11.033]
[86]
Skoulou VK, Zabaniotou AA. Co-gasification of crude glycerol with lignocellulosic biomass for enhanced syngas production. J Anal Appl Pyrolysis 2013; 99: 110-6.
[http://dx.doi.org/10.1016/j.jaap.2012.10.015]
[87]
Đurišić-Mladenović N, Škrbić BD, Zabaniotou A. Chemometric interpretation of different biomass gasification processes based on the syngas quality: Assessment of crude glycerol co-gasification with lignocellulosic biomass. Renew Sustain Energy Rev 2016; 59: 649-61.
[http://dx.doi.org/10.1016/j.rser.2016.01.002]
[88]
Striani R, Stasi E, Giuri A, Seiti M, Ferraris E, Esposito Corcione C. Development of an innovative and green method to obtain nanoparticles in aqueous solution from carbon-based waste ashes. Nanomaterials 2021; 11(3): 577.
[http://dx.doi.org/10.3390/nano11030577] [PMID: 33668967]
[89]
Karmee SK. Noodle waste based biorefinery: An approach to address fuel, waste management and sustainability. Biofuels 2018; 9(3): 395-404.
[http://dx.doi.org/10.1080/17597269.2016.1271631]
[90]
Mirmoshtaghi G. Biomass gasification in fluidized bed gasifiers: Modeling and simulation. PhD Thesis, Mälardalen University. 2016.
[91]
Na JI, Park SJ, Kim YK, Lee JG, Kim JH. Characteristics of oxygen-blown gasification for combustible waste in a fixed-bed gasifier. Appl Energy 2003; 75(3-4): 275-85.
[http://dx.doi.org/10.1016/S0306-2619(03)00041-2]
[92]
Reed TB, Das A. Handbook of Biomass Downdraft Gasifier Engine Systems. Solar Energy Research Institute 1988.
[http://dx.doi.org/10.2172/5206099]
[93]
Brar JS, Singh K, Wang J, Kumar S. Cogasification of coal and biomass: A review. Int J For Res 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/363058]
[94]
Chen JS, Gunkel WW. Modeling and simulation of co-current moving bed gasification reactors — Part II. A detailed gasifier model. Biomass 1987; 14(2): 75-98.
[http://dx.doi.org/10.1016/0144-4565(87)90012-6]
[95]
Armesto L, Bahillo A, Veijonen K, Cabanillas A, Otero J. Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass Bioenergy 2002; 23(3): 171-9.
[http://dx.doi.org/10.1016/S0961-9534(02)00046-6]
[96]
Li X, Grace JR, Watkinson AP, Lim CJ, Ergüdenler A. Equilibrium modeling of gasification: A free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel 2001; 80(2): 195-207.
[http://dx.doi.org/10.1016/S0016-2361(00)00074-0]
[97]
Mirmoshtaghi G, Skvaril J, Campana PE, Li H, Thorin E, Dahlquist E. The influence of different parameters on biomass gasification in circulating fluidized bed gasifiers. Energy Convers Manage 2016; 126: 110-23.
[http://dx.doi.org/10.1016/j.enconman.2016.07.031]
[98]
Govind R, Shah J. Modeling and simulation of an entrained flow coal gasifier. AIChE J 1984; 30(1): 79-92.
[http://dx.doi.org/10.1002/aic.690300113]
[99]
Indian State Forest Report 2019, Forest Survey of India. 2019. Available From : https://ruralindiaonline.org/en/library/resource/india-state-of-forest-report-2019-volume-i/
[100]
Vonk G, Piriou B, Felipe Dos Santos P, Wolbert D, Vaïtilingom G. Comparative analysis of wood and solid recovered fuels gasification in a downdraft fixed bed reactor. Waste Manag 2019; 85: 106-20.
[http://dx.doi.org/10.1016/j.wasman.2018.12.023] [PMID: 30803563]
[101]
Prasertcharoensuk P, Hernandez DA, Bull SJ, Phan AN. Optimisation of a throat downdraft gasifier for hydrogen production. Biomass Bioenergy 2018; 116: 216-26.
[http://dx.doi.org/10.1016/j.biombioe.2018.06.019]
[102]
Sunil , Sinha R, Chaitanya B, et al. Design, fabrication, and performance evaluation of a novel biomass-gasification-based hot water generation system. Energy 2019; 185: 148-57.
[http://dx.doi.org/10.1016/j.energy.2019.06.186]
[103]
Situmorang YA, Zhao Z, Yoshida A, Abudula A, Guan G. Small-scale biomass gasification systems for power generation (<200 kW class): A review. Renew Sustain Energy Rev 2020; 117: 109486.
[http://dx.doi.org/10.1016/j.rser.2019.109486]
[104]
Wu CZ, Huang H, Zheng SP, Yin XL. An economic analysis of biomass gasification and power generation in China. Bioresour Technol 2002; 83(1): 65-70.
[http://dx.doi.org/10.1016/S0960-8524(01)00116-X] [PMID: 12058832]
[105]
Isaacs N, Saville-Smith K, Camilleri M, Burrough L. Energy in New Zealand houses: comfort, physics and consumption. Build Res Inform 2010; 38(5): 470-80.
[http://dx.doi.org/10.1080/09613218.2010.494383]
[106]
Alvarez S, Rubio A. Compound method based on financial accounts versus process-based analysis in product carbon footprint: A comparison using wood pallets. Ecol Indic 2015; 49: 88-94.
[http://dx.doi.org/10.1016/j.ecolind.2014.10.005]
[107]
Bonamente E, Scrucca F, Rinaldi S, Merico MC, Asdrubali F, Lamastra L. Environmental impact of an Italian wine bottle: Carbon and water footprint assessment. Sci Total Environ 2016; 560-561: 274-83.
[http://dx.doi.org/10.1016/j.scitotenv.2016.04.026] [PMID: 27101464]
[108]
Qin L, Wang M, Zhu J, Wei Y, Zhou X, He Z. Towards circular economy through waste to biomass energy in Madagascar. Complexity 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/9160354]
[109]
Torrisi S, Anastasi E, Longhitano S, Clara Longo I, Zerbo A, Borzì G. Circular economy and the benefits of biomass as a renewable energy source. Procedia Environ Sci Eng Manag 2018; 5(4): 175-781.
[110]
Sherwood J. The significance of biomass in a circular economy. Bioresour Technol 2020; 300: 122755.
[http://dx.doi.org/10.1016/j.biortech.2020.122755] [PMID: 31956060]
[111]
Zeng X, Ogunseitan OA, Nakamura S, et al. Reshaping global policies for circular economy. Circular Economy 2022; 1(1): 100003.
[http://dx.doi.org/10.1016/j.cec.2022.100003]
[112]
Khajuria A, Atienza VA, Chavanich S, et al. Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals. Circular Economy 2022; 1(1): 100001.
[http://dx.doi.org/10.1016/j.cec.2022.100001]
[113]
Rodriguez-Anton JM, Rubio-Andrada L, Celemín-Pedroche MS, Alonso-Almeida MDM. Analysis of the relations between circular economy and sustainable development goals. Int J Sustain Dev World Ecol 2019; 26(8): 708-20.
[http://dx.doi.org/10.1080/13504509.2019.1666754]
[114]
Sensitization Workshop Manual on Sub-Megawatt Scale Biomass Power Generation. 2013. Available From : https://www.undp.org/sites/g/files/zskgke326/files/migration/in/sensitization-workshop-manual-on-sub-megawatt-scale-biomass-powe.pdf
[115]
Narnaware SL, Panwar NL. Biomass gasification for climate change mitigation and policy framework in India: A review. Bioresour Technol Rep 2022; 17: 100892.
[http://dx.doi.org/10.1016/j.biteb.2021.100892]
[116]
Palit D, Malhotra R, Kumar A. Sustainable model for financial viability of decentralized biomass gasifier based power projects. Energy Policy 2011; 39(9): 4893-901.
[http://dx.doi.org/10.1016/j.enpol.2011.06.026]
[117]
Purohit P. Economic potential of biomass gasification projects under clean development mechanism in India. J Clean Prod 2009; 17(2): 181-93.
[http://dx.doi.org/10.1016/j.jclepro.2008.04.004]
[118]
Nouni MR, Mullick SC, Kandpal TC. Biomass gasifier projects for decentralized power supply in India: A financial evaluation. Energy Policy 2007; 35(2): 1373-85.
[http://dx.doi.org/10.1016/j.enpol.2006.03.016]
[119]
Chambon CL, Karia T, Sandwell P, Hallett JP. Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India. Renew Energy 2020; 154: 432-44.
[http://dx.doi.org/10.1016/j.renene.2020.03.002]
[120]
Gururaja Rao S, Sridhar HV, Sudarshan MS. Case studies on small scale biomass gasifier based decentralized energy generation systems. 2016. Available From: https://gasifier.bioenergylists.org/iiscHosahallivillage
[121]
Mazzola S, Astolfi M, Macchi E. The potential role of solid biomass for rural electrification: A techno economic analysis for a hybrid microgrid in India. Appl Energy 2016; 169: 370-83.
[http://dx.doi.org/10.1016/j.apenergy.2016.02.051]
[122]
Mahapatra S, Dasappa S. Rural electrification: Optimising the choice between decentralised renewable energy sources and grid extension. Energy Sustain Dev 2012; 16(2): 146-54.
[http://dx.doi.org/10.1016/j.esd.2012.01.006]
[123]
Mandelli S, Barbieri J, Mereu R, Colombo E. Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renew Sustain Energy Rev 2016; 58: 1621-46.
[http://dx.doi.org/10.1016/j.rser.2015.12.338]
[124]
Urpelainen J. Grid and off-grid electrification: An integrated model with applications to India. Energy Sustain Dev 2014; 19: 66-71.
[http://dx.doi.org/10.1016/j.esd.2013.12.008]
[125]
Owen M, Ripken R. Bioenergy for sustainable energy access in Africa - Technology country case study report. 2017. Available From : https://www.gov.uk/research-for-development-outputs/bioenergy-for-sustainable-energy-access-in-africa-technology-country-case-study-report-incorporating-country-scoping-reports
[126]
Yue Q, Li S, Hu X, Zhang Y, Xue M, Wang H. Sustainability analysis of electricity generation technologies based on life‐cycle assessment and life cycle cost—A case study in liaoning province. Energy Technol 2019; 7(7): 1900365.
[http://dx.doi.org/10.1002/ente.201900365]
[127]
Innocenzi V, Cantarini F, Zueva S, et al. Environmental and economic assessment of gasification wastewater treatment by life cycle assessment and life cycle costing approach. Resour Conserv Recycling 2021; 168: 105252.
[http://dx.doi.org/10.1016/j.resconrec.2020.105252]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy