Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Role of Metalloproteinases in Diabetes-associated Mild Cognitive Impairment

In Press, (this is not the final "Version of Record"). Available online 01 January, 1970
Author(s): Vitoria Mattos Pereira, Suyasha Pradhanang, Jonathan F. Prather* and Sreejayan Nair*
Abstract

Diabetes has been linked to an increased risk of mild cognitive impairment (MCI), a condition characterized by a subtle cognitive decline that may precede the development of dementia. The underlying mechanisms connecting diabetes and MCI involve complex interactions between metabolic dysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes and MCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in diabetes, can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of which can exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved in regulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and release TNF-α from its membrane-bound precursor and cause it to become activated. These processes, in turn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, and JAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabetes and neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease, suggesting a shared mechanism and implicating inflammation as a possible contributor to much broader forms of pathology and pointing to a possible link between inflammation and the emergence of MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associated mild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17 and associated pathways may influence the emergence of mild cognitive impairment.

[1]
World health day 2016: Beat diabetes. 2016. Available from: https://www.who.int/news-room/events/detail/2016/04/07/default-calendar/world-health-day-2016 (Accessed on: 27 April 2023).
[2]
New American Diabetes Association report finds annual costs of diabetes to be $412.9 billion. Available from: https://diabetes.org/about-us/statistics/cost-diabetes (Accessed on: 27 April 2023).
[3]
Profenno, L.A.; Porsteinsson, A.P.; Faraone, S.V. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol. Psychiatry, 2010, 67(6), 505-512.
[http://dx.doi.org/10.1016/j.biopsych.2009.02.013] [PMID: 19358976]
[4]
Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol., 2006, 5(1), 64-74.
[http://dx.doi.org/10.1016/S1474-4422(05)70284-2] [PMID: 16361024]
[5]
You, Y.; Liu, Z.; Chen, Y.; Xu, Y.; Qin, J.; Guo, S.; Huang, J.; Tao, J. The prevalence of mild cognitive impairment in type 2 diabetes mellitus patients: A systematic review and meta-analysis. Acta Diabetol., 2021, 58(6), 671-685.
[http://dx.doi.org/10.1007/s00592-020-01648-9] [PMID: 33417039]
[6]
Dementia statistics. Available from: https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/ (Accessed on: 27 April 2023).
[7]
Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 2001, 286(3), 327-334.
[http://dx.doi.org/10.1001/jama.286.3.327] [PMID: 11466099]
[8]
Thorand, B.; Löwel, H.; Schneider, A.; Kolb, H.; Meisinger, C.; Fröhlich, M.; Koenig, W. C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: Results from the MONICA Augsburg cohort study, 1984-1998. Arch. Intern. Med., 2003, 163(1), 93-99.
[http://dx.doi.org/10.1001/archinte.163.1.93] [PMID: 12523922]
[9]
Okdahl, T.; Wegeberg, A.M.; Pociot, F.; Brock, B.; Størling, J.; Brock, C. Low-grade inflammation in type 2 diabetes: A cross-sectional study from a Danish diabetes outpatient clinic. BMJ Open, 2022, 12(12), e062188.
[http://dx.doi.org/10.1136/bmjopen-2022-062188] [PMID: 36517105]
[10]
Stomnaroska, R.D.; Nejashmikj, R.V.; Papazova, M. Role of inflammation in the pathogenesis of diabetic peripheral neuropathy. Open Access Maced. J. Med. Sci., 2019, 7(14), 2267-2270.
[http://dx.doi.org/10.3889/oamjms.2019.646] [PMID: 31592273]
[11]
Stino, A.M.; Rumora, A.E.; Kim, B.; Feldman, E.L. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J. Peripher. Nerv. Syst., 2020, 25(2), 76-84.
[http://dx.doi.org/10.1111/jns.12387] [PMID: 32412144]
[12]
Donate-Correa, J.; Ferri, C.M.; Sánchez-Quintana, F.; Pérez-Castro, A.; González-Luis, A.; Martín-Núñez, E.; Mora-Fernández, C.; González, N.J.F. Inflammatory cytokines in diabetic kidney disease: Pathophysiologic and therapeutic implications. Front. Med., 2021, 7, 628289.
[http://dx.doi.org/10.3389/fmed.2020.628289] [PMID: 33553221]
[13]
Hofherr, A.; Williams, J.; Gan, L.M.; Söderberg, M.; Hansen, P.B.L.; Woollard, K.J. Targeting inflammation for the treatment of Diabetic Kidney Disease: A five-compartment mechanistic model. BMC Nephrol., 2022, 23(1), 208.
[http://dx.doi.org/10.1186/s12882-022-02794-8] [PMID: 35698028]
[14]
Gomułka, K.; Ruta, M. The role of inflammation and therapeutic concepts in diabetic retinopathy—A short review. Int. J. Mol. Sci., 2023, 24(2), 1024.
[http://dx.doi.org/10.3390/ijms24021024] [PMID: 36674535]
[15]
Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy. Circ. Res., 2018, 122(4), 624-638.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311586] [PMID: 29449364]
[16]
Ramesh, P.; Yeo, J.L.; Brady, E.M.; McCann, G.P. Role of inflammation in diabetic cardiomyopathy. Ther. Adv. Endocrinol. Metab., 2022, 13, 20420188221083530.
[http://dx.doi.org/10.1177/20420188221083530] [PMID: 35308180]
[17]
Sharif, S.; Van der Graaf, Y.; Cramer, M.J.; Kapelle, L.J.; de Borst, G.J.; Visseren, F.L.J.; Westerink, J.; van Petersen, R.; Dinther, B.G.F.; Algra, A.; van der Graaf, Y.; Grobbee, D.E.; Rutten, G.E.H.M.; Visseren, F.L.J.; de Borst, G.J.; Kappelle, L.J.; Leiner, T.; Nathoe, H.M. Low-grade inflammation as a risk factor for cardiovascular events and all-cause mortality in patients with type 2 diabetes. Cardiovasc. Diabetol., 2021, 20(1), 220.
[http://dx.doi.org/10.1186/s12933-021-01409-0] [PMID: 34753497]
[18]
Lowe, G.; Woodward, M.; Hillis, G.; Rumley, A.; Li, Q.; Harrap, S.; Marre, M.; Hamet, P.; Patel, A.; Poulter, N.; Chalmers, J. Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: The ADVANCE study. Diabetes, 2014, 63(3), 1115-1123.
[http://dx.doi.org/10.2337/db12-1625] [PMID: 24222348]
[19]
van Sloten, T.T.; Sedaghat, S.; Carnethon, M.R.; Launer, L.J.; Stehouwer, C.D.A. Cerebral microvascular complications of type 2 diabetes: Stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol., 2020, 8(4), 325-336.
[http://dx.doi.org/10.1016/S2213-8587(19)30405-X] [PMID: 32135131]
[20]
Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; de la Monte, S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis., 2005, 7(1), 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[21]
Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol., 2020, 16, 377-390.
[http://dx.doi.org/10.1038/s41581-020-0278-5]
[22]
Kirvalidze, M.; Hodkinson, A.; Storman, D.; Fairchild, T.J.; Bała, M.M.; Beridze, G.; Zuriaga, A.; Brudasca, N.I.; Brini, S. The role of glucose in cognition, risk of dementia, and related biomarkers in individuals without type 2 diabetes mellitus or the metabolic syndrome: A systematic review of observational studies. Neurosci. Biobehav. Rev., 2022, 135, 104551.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104551] [PMID: 35104494]
[23]
Cheng, G.; Huang, C.; Deng, H.; Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta‐analysis of longitudinal studies. Intern. Med. J., 2012, 42(5), 484-491.
[http://dx.doi.org/10.1111/j.1445-5994.2012.02758.x] [PMID: 22372522]
[24]
Muriach, M.; Bellver, F.M.; Romero, F.J.; Barcia, J.M. Diabetes and the brain: Oxidative stress, inflammation, and autophagy. Oxid. Med. Cell. Longev., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/102158] [PMID: 25215171]
[25]
Beckman, K.B.; Ames, B.N. The free radical theory of aging matures. Physiol. Rev., 1998, 78(2), 547-581.
[http://dx.doi.org/10.1152/physrev.1998.78.2.547] [PMID: 9562038]
[26]
Rousselot, B.D. Glucose and reactive oxygen species. Curr. Opin. Clin. Nutr. Metab. Care, 2002, 5(5), 561-568.
[http://dx.doi.org/10.1097/00075197-200209000-00016] [PMID: 12172481]
[27]
Belfiore, A.; Frasca, F.; Pandini, G.; Sciacca, L.; Vigneri, R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev., 2009, 30(6), 586-623.
[http://dx.doi.org/10.1210/er.2008-0047] [PMID: 19752219]
[28]
Vinuesa, A.; Pomilio, C.; Gregosa, A.; Bentivegna, M.; Presa, J.; Bellotto, M.; Saravia, F.; Beauquis, J. Inflammation and insulin resistance as risk factors and potential therapeutic targets for Alzheimer’s disease. Front. Neurosci., 2021, 15, 653651.
[http://dx.doi.org/10.3389/fnins.2021.653651] [PMID: 33967682]
[29]
Tucsek, Z.; Toth, P.; Sosnowska, D.; Gautam, T.; Mitschelen, M.; Koller, A.; Szalai, G.; Sonntag, W.E.; Ungvari, Z.; Csiszar, A. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: Effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(10), 1212-1226.
[http://dx.doi.org/10.1093/gerona/glt177] [PMID: 24269929]
[30]
Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol., 2018, 14(10), 576-590.
[http://dx.doi.org/10.1038/s41574-018-0059-4] [PMID: 30046148]
[31]
Saad, M.I.; Jenkins, B.J. The protease ADAM17 at the crossroads of disease: Revisiting its significance in inflammation, cancer, and beyond. FEBS J., 2024, 291(1), 10-24.
[http://dx.doi.org/10.1111/febs.16923] [PMID: 37540030]
[32]
Rui, L.; Aguirre, V.; Kim, J.K.; Shulman, G.I.; Lee, A.; Corbould, A.; Dunaif, A.; White, M.F. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J. Clin. Invest., 2001, 107(2), 181-189.
[http://dx.doi.org/10.1172/JCI10934] [PMID: 11160134]
[33]
Schumacher, N.; Rose-John, S. ADAM17 orchestrates Interleukin-6, TNFα and EGF-R signaling in inflammation and cancer. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(1), 119141.
[http://dx.doi.org/10.1016/j.bbamcr.2021.119141] [PMID: 34610348]
[34]
Ishii, S.; Isozaki, T.; Furuya, H.; Takeuchi, H.; Tsubokura, Y.; Inagaki, K.; Kasama, T. ADAM-17 is expressed on rheumatoid arthritis fibroblast-like synoviocytes and regulates proinflammatory mediator expression and monocyte adhesion. Arthritis Res. Ther., 2018, 20(1), 159.
[http://dx.doi.org/10.1186/s13075-018-1657-1] [PMID: 30071898]
[35]
Kawaguchi, M.; Mitsuhashi, Y.; Kondo, S. Overexpression of tumour necrosis factor-alpha-converting enzyme in psoriasis. Br. J. Dermatol., 2005, 152(5), 915-919.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06440.x] [PMID: 15888146]
[36]
Cesaro, A.; Abakar-Mahamat, A.; Brest, P.; Lassalle, S.; Selva, E.; Filippi, J.; Hébuterne, X.; Hugot, J.P.; Doglio, A.; Galland, F.; Naquet, P.; Craviari, V.V.; Mograbi, B.; Hofman, P.M. Differential expression and regulation of ADAM17 and TIMP3 in acute inflamed intestinal epithelia. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(6), G1332-G1343.
[http://dx.doi.org/10.1152/ajpgi.90641.2008] [PMID: 19299578]
[37]
Li, R.; Uttarwar, L.; Gao, B.; Charbonneau, M.; Shi, Y.; Chan, J.S.D.; Dubois, C.M.; Krepinsky, J.C. High glucose up-regulates ADAM17 through HIF-1α in mesangial cells. J. Biol. Chem., 2015, 290(35), 21603-21614.
[http://dx.doi.org/10.1074/jbc.M115.651604] [PMID: 26175156]
[38]
Matthews, J.; Villescas, S.; Herat, L.; Schlaich, M.; Matthews, V. Implications of ADAM17 activation for hyperglycaemia, obesity and type 2 diabetes. Biosci. Rep., 2021, 41(5), BSR20210029.
[http://dx.doi.org/10.1042/BSR20210029] [PMID: 33904577]
[39]
Ghiarone, T.; Gonzalez, C.J.A.; Foote, C.A.; Perez, R.F.I.; Santos, F.L.; Amador, C.F.J.; de la Torre, R.; Ganga, R.R.; Wheeler, A.A.; Acevedo, M.C.; Padilla, J.; Lemus, M.L.A. ADAM17 cleaves the insulin receptor ectodomain on endothelial cells and causes vascular insulin resistance. Am. J. Physiol. Heart Circ. Physiol., 2022, 323(4), H688-H701.
[http://dx.doi.org/10.1152/ajpheart.00039.2022] [PMID: 36018759]
[40]
Chen, X.; Yao, J.; Lai, J.; Lin, L.; Chen, Y.; Lin, Y.; Fang, W.; Ding, C.; Kang, D. ADAM17 aggravates the inflammatory response by modulating microglia polarization through the TGF-β1/Smad pathway following experimental traumatic brain injury. J. Neurotrauma, 2023, 40(13-14), 1495-1509.
[http://dx.doi.org/10.1089/neu.2022.0373] [PMID: 37029898]
[41]
Hsia, H.E.; Tüshaus, J.; Brummer, T.; Zheng, Y.; Scilabra, S.D.; Lichtenthaler, S.F. Functions of ‘A disintegrin and metalloproteases (ADAMs)’ in the mammalian nervous system. Cell. Mol. Life Sci., 2019, 76(16), 3055-3081.
[http://dx.doi.org/10.1007/s00018-019-03173-7] [PMID: 31236626]
[42]
Rossello, A.; Nuti, E.; Ferrini, S.; Fabbi, M. Targeting ADAM17 sheddase activity in cancer. Curr. Drug Targets, 2016, 17(16), 1908-1927.
[http://dx.doi.org/10.2174/1389450117666160727143618] [PMID: 27469341]
[43]
Taylor, P.C.; Feldmann, M. Anti-TNF biologic agents: Still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol., 2009, 5(10), 578-582.
[http://dx.doi.org/10.1038/nrrheum.2009.181] [PMID: 19798034]
[44]
Zunke, F.; Rose-John, S. The shedding protease ADAM17: Physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11), 2059-2070.
[http://dx.doi.org/10.1016/j.bbamcr.2017.07.001] [PMID: 28705384]
[45]
Calligaris, M.; Cuffaro, D.; Bonelli, S.; Spanò, D.P.; Rossello, A.; Nuti, E.; Scilabra, S.D. Strategies to target ADAM17 in disease: From its discovery to the iRhom revolution. Molecules, 2021, 26(4), 944.
[http://dx.doi.org/10.3390/molecules26040944] [PMID: 33579029]
[46]
Lorenzen, I.; Lokau, J.; Korpys, Y.; Oldefest, M.; Flynn, C.M.; Künzel, U.; Garbers, C.; Freeman, M.; Grötzinger, J.; Düsterhöft, S. Control of ADAM17 activity by regulation of its cellular localisation. Sci. Rep., 2016, 6(1), 35067.
[http://dx.doi.org/10.1038/srep35067] [PMID: 27731361]
[47]
Lambrecht, B.N.; Vanderkerken, M.; Hammad, H. The emerging role of ADAM metalloproteinases in immunity. Nat. Rev. Immunol., 2018, 18(12), 745-758.
[http://dx.doi.org/10.1038/s41577-018-0068-5] [PMID: 30242265]
[48]
Srour, N.; Lebel, A.; McMahon, S.; Fournier, I.; Fugère, M.; Day, R.; Dubois, C.M. TACE/ADAM‐17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett., 2003, 554(3), 275-283.
[http://dx.doi.org/10.1016/S0014-5793(03)01159-1] [PMID: 14623079]
[49]
Christova, Y.; Adrain, C.; Bambrough, P.; Ibrahim, A.; Freeman, M. Mammalian iRhoms have distinct physiological functions including an essential role in TACE regulation. EMBO Rep., 2013, 14(10), 884-890.
[http://dx.doi.org/10.1038/embor.2013.128] [PMID: 23969955]
[50]
Li, X.; Maretzky, T.; Weskamp, G.; Monette, S.; Qing, X.; Issuree, P.D.A.; Crawford, H.C.; McIlwain, D.R.; Mak, T.W.; Salmon, J.E.; Blobel, C.P. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl. Acad. Sci., 2015, 112(19), 6080-6085.
[http://dx.doi.org/10.1073/pnas.1505649112] [PMID: 25918388]
[51]
Xu, P.; Derynck, R. Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol. Cell, 2010, 37(4), 551-566.
[http://dx.doi.org/10.1016/j.molcel.2010.01.034] [PMID: 20188673]
[52]
Le Gall, S.M.; Maretzky, T.; Issuree, P.D.A.; Niu, X.D.; Reiss, K.; Saftig, P.; Khokha, R.; Lundell, D.; Blobel, C.P. ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J. Cell Sci., 2010, 123(22), 3913-3922.
[http://dx.doi.org/10.1242/jcs.069997] [PMID: 20980382]
[53]
Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 55-71.
[http://dx.doi.org/10.1016/j.bbamcr.2010.01.003] [PMID: 20080133]
[54]
Wisniewska, M.; Goettig, P.; Maskos, K.; Belouski, E.; Winters, D.; Hecht, R.; Black, R.; Bode, W. Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. J. Mol. Biol., 2008, 381(5), 1307-1319.
[http://dx.doi.org/10.1016/j.jmb.2008.06.088] [PMID: 18638486]
[55]
Adrain, C.; Zettl, M.; Christova, Y.; Taylor, N.; Freeman, M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science, 2012, 335(6065), 225-228.
[http://dx.doi.org/10.1126/science.1214400] [PMID: 22246777]
[56]
Grieve, A.G.; Xu, H.; Kü, U.; Bambrough, P.; Sieber, B.; Freeman, M. Phosphorylation of IRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling. eLife, 2017, 6, e23968.
[57]
Dombernowsky, S.L.; Petersen, S.J.; Petersen, C.H.; Instrell, R.; Hedegaard, A.M.B.; Thomas, L.; Atkins, K.M.; Auclair, S.; Albrechtsen, R.; Mygind, K.J.; Fröhlich, C.; Howell, M.; Parker, P.; Thomas, G.; Kveiborg, M. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17. Nat. Commun., 2015, 6(1), 7518.
[http://dx.doi.org/10.1038/ncomms8518] [PMID: 26108729]
[58]
Babendreyer, A.; Rojas-González, D.M.; Giese, A.A.; Fellendorf, S.; Düsterhöft, S.; Mela, P.; Ludwig, A. Differential induction of the ADAM17 regulators iRhom1 and 2 in endothelial cells. Front. Cardiovasc. Med., 2020, 7, 610344.
[http://dx.doi.org/10.3389/fcvm.2020.610344] [PMID: 33335915]
[59]
Maretzky, T.; McIlwain, D.R.; Issuree, P.D.A.; Li, X.; Malapeira, J.; Amin, S.; Lang, P.A.; Mak, T.W.; Blobel, C.P. iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc. Natl. Acad. Sci., 2013, 110(28), 11433-11438.
[http://dx.doi.org/10.1073/pnas.1302553110] [PMID: 23801765]
[60]
Qian, M.; Shen, X.; Wang, H. The distinct role of ADAM17 in APP proteolysis and microglial activation related to Alzheimer’s Disease. Cell. Mol. Neurobiol., 2016, 36(4), 471-482.
[http://dx.doi.org/10.1007/s10571-015-0232-4] [PMID: 26119306]
[61]
Peschon, J.J.; Slack, J.L.; Reddy, P.; Stocking, K.L.; Sunnarborg, S.W.; Lee, D.C.; Russell, W.E.; Castner, B.J.; Johnson, R.S.; Fitzner, J.N.; Boyce, R.W.; Nelson, N.; Kozlosky, C.J.; Wolfson, M.F.; Rauch, C.T.; Cerretti, D.P.; Paxton, R.J.; March, C.J.; Black, R.A. An essential role for ectodomain shedding in mammalian development. Science, 1998, 282(5392), 1281-1284.
[http://dx.doi.org/10.1126/science.282.5392.1281] [PMID: 9812885]
[62]
Black, R.A.; Rauch, C.T.; Kozlosky, C.J.; Peschon, J.J.; Slack, J.L.; Wolfson, M.F.; Castner, B.J.; Stocking, K.L.; Reddy, P.; Srinivasan, S. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature, 1997, 385, 729-733.
[http://dx.doi.org/10.1038/385729a0]
[63]
Chalaris, A.; Adam, N.; Sina, C.; Rosenstiel, P.; Lehmann-Koch, J.; Schirmacher, P.; Hartmann, D.; Cichy, J.; Gavrilova, O.; Schreiber, S.; Jostock, T.; Matthews, V.; Häsler, R.; Becker, C.; Neurath, M.F.; Reiß, K.; Saftig, P.; Scheller, J.; John, R.S. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J. Exp. Med., 2010, 207(8), 1617-1624.
[http://dx.doi.org/10.1084/jem.20092366] [PMID: 20603312]
[64]
Scheller, J.; Chalaris, A.; Garbers, C.; John, R.S. ADAM17: A molecular switch to control inflammation and tissue regeneration. Trends Immunol., 2011, 32(8), 380-387.
[http://dx.doi.org/10.1016/j.it.2011.05.005] [PMID: 21752713]
[65]
Van Hauwermeiren, F.; Vandenbroucke, R.E.; Libert, C. Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1. Cytokine Growth Factor Rev., 2011, 22(5-6), 311-319.
[http://dx.doi.org/10.1016/j.cytogfr.2011.09.004] [PMID: 21962830]
[66]
Schwarz, J.; Schmidt, S.; Will, O.; Koudelka, T.; Köhler, K.; Boss, M.; Rabe, B.; Tholey, A.; Scheller, J.; Schmidt-Arras, D.; Schwake, M.; Rose-John, S.; Chalaris, A. Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor α ectodomain shedding. J. Biol. Chem., 2014, 289(5), 3080-3093.
[http://dx.doi.org/10.1074/jbc.M113.536847] [PMID: 24338472]
[67]
Maney, S.K.; McIlwain, D.R.; Polz, R.; Pandyra, A.A.; Sundaram, B.; Wolff, D.; Ohishi, K.; Maretzky, T.; Brooke, M.A.; Evers, A.; Vasudevan, A.A.J.; Aghaeepour, N.; Scheller, J.; Münk, C.; Häussinger, D.; Mak, T.W.; Nolan, G.P.; Kelsell, D.P.; Blobel, C.P.; Lang, K.S.; Lang, P.A. Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17. Sci. Signal., 2015, 8(401), ra109.
[http://dx.doi.org/10.1126/scisignal.aac5356] [PMID: 26535007]
[68]
Blobel, C.P. ADAMs: Key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol., 2005, 6(1), 32-43.
[http://dx.doi.org/10.1038/nrm1548] [PMID: 15688065]
[69]
Seals, D.F.; Courtneidge, S.A. The ADAMs family of metalloproteases: Multidomain proteins with multiple functions. Genes Dev., 2003, 17(1), 7-30.
[http://dx.doi.org/10.1101/gad.1039703] [PMID: 12514095]
[70]
Kraakman, M.J.; Kammoun, H.L.; Allen, T.L.; Deswaerte, V.; Henstridge, D.C.; Estevez, E.; Matthews, V.B.; Neill, B.; White, D.A.; Murphy, A.J.; Peijs, L.; Yang, C.; Risis, S.; Bruce, C.R.; Du, X.J.; Bobik, A.; Lee-Young, R.S.; Kingwell, B.A.; Vasanthakumar, A.; Shi, W.; Kallies, A.; Lancaster, G.I.; Rose-John, S.; Febbraio, M.A. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab., 2015, 21(3), 403-416.
[http://dx.doi.org/10.1016/j.cmet.2015.02.006] [PMID: 25738456]
[71]
Rehman, K.; Akash, M.S.H.; Liaqat, A.; Kamal, S.; Qadir, M.I.; Rasul, A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit. Rev. Eukaryot. Gene Expr., 2017, 27, 229-236.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2017019712]
[72]
Uchikawa, S.; Yoda, M.; Tohmonda, T.; Kanaji, A.; Matsumoto, M.; Toyama, Y.; Horiuchi, K. ADAM17 regulates IL-1 signaling by selectively releasing IL-1 receptor type 2 from the cell surface. Cytokine, 2015, 71(2), 238-245.
[http://dx.doi.org/10.1016/j.cyto.2014.10.032] [PMID: 25461404]
[73]
Wang, Y.; Kim, K.A.; Kim, J.H.; Sul, H.S. Pref-1, a preadipocyte secreted factor that inhibits adipogenesis. J. Nutr., 2006, 136(12), 2953-2956.
[http://dx.doi.org/10.1093/jn/136.12.2953] [PMID: 17116701]
[74]
Monroy, A.; Kamath, S.; Chavez, A.O.; Centonze, V.E.; Veerasamy, M.; Barrentine, A.; Wewer, J.J.; Coletta, D.K.; Jenkinson, C.; Jhingan, R.M.; Smokler, D.; Reyna, S.; Musi, N.; Khokka, R.; Federici, M.; Tripathy, D.; DeFronzo, R.A.; Folli, F. Impaired regulation of the TNF-α converting enzyme/tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients: A new mechanism of insulin resistance in humans. Diabetologia, 2009, 52(10), 2169-2181.
[http://dx.doi.org/10.1007/s00125-009-1451-3] [PMID: 19633828]
[75]
de Meijer, V.E.; Le, H.D.; Meisel, J.A.; Sharma, A.K.; Popov, Y.; Puder, M. Tumor necrosis factor α-converting enzyme inhibition reverses hepatic steatosis and improves insulin sensitivity markers and surgical outcome in mice. PLoS One, 2011, 6(9), e25587.
[http://dx.doi.org/10.1371/journal.pone.0025587] [PMID: 21980496]
[76]
Kaneko, H.; Anzai, T.; Horiuchi, K.; Morimoto, K.; Anzai, A.; Nagai, T.; Sugano, Y.; Maekawa, Y.; Itoh, H.; Yoshikawa, T.; Okada, Y.; Ogawa, S.; Fukuda, K. Tumor necrosis factor-α converting enzyme inactivation ameliorates high-fat diet-induced insulin resistance and altered energy homeostasis. Circ. J., 2011, 75(10), 2482-2490.
[http://dx.doi.org/10.1253/circj.CJ-11-0182] [PMID: 21785222]
[77]
Matsui, Y.; Tomaru, U.; Miyoshi, A.; Ito, T.; Fukaya, S.; Miyoshi, H.; Atsumi, T.; Ishizu, A. Overexpression of TNF-α converting enzyme promotes adipose tissue inflammation and fibrosis induced by high fat diet. Exp. Mol. Pathol., 2014, 97(3), 354-358.
[http://dx.doi.org/10.1016/j.yexmp.2014.09.017] [PMID: 25236578]
[78]
Kawasaki, S.; Motoshima, H.; Hanatani, S.; Takaki, Y.; Igata, M.; Tsutsumi, A.; Matsumura, T.; Kondo, T.; Senokuchi, T.; Ishii, N.; Kinoshita, H.; Fukuda, K.; Kawashima, J.; Shimoda, S.; Nishikawa, T.; Araki, E. Regulation of TNFα converting enzyme activity in visceral adipose tissue of obese mice. Biochem. Biophys. Res. Commun., 2013, 430(4), 1189-1194.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.086] [PMID: 23274494]
[79]
Lownik, J.C.; Farrar, J.S.; Pearce, J.V.; Celi, F.S.; Martin, R.K. Adipocyte ADAM17 plays a limited role in metabolic inflammation. Adipocyte, 2020, 9(1), 509-522.
[http://dx.doi.org/10.1080/21623945.2020.1814544] [PMID: 32892692]
[80]
Yong, S.B.; Song, Y.; Kim, Y.H. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes. Biomaterials, 2017, 148, 81-89.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.023] [PMID: 28985514]
[81]
Maekawa, M.; Tadaki, H.; Tomimoto, D.; Okuma, C.; Sano, R.; Ishii, Y.; Katsuda, Y.; Yoshiuchi, H.; Kakefuda, R.; Ohta, T. A novel TNF-α converting enzyme (TACE) selective inhibitor JTP-96193 prevents insulin resistance in KK-Ay type 2 diabetic mice and diabetic peripheral neuropathy in type 1 diabetic mice. Biol. Pharm. Bull., 2019, 42(11), 1906-1912.
[82]
Togashi, N.; Ura, N.; Higashiura, K.; Murakami, H.; Shimamoto, K. Effect of TNF-alpha--converting enzyme inhibitor on insulin resistance in fructose-fed rats. Hypertension, 2002, 39(2), 578-580.
[http://dx.doi.org/10.1161/hy0202.103290] [PMID: 11882611]
[83]
Prasad, M.; Jayaraman, S.; Rajagopal, P.; Veeraraghavan, V.P.; Kumar, P.K.; Piramanayagam, S.; Pari, L. Diosgenin inhibits ER stress-induced inflammation in aorta via iRhom2/TACE mediated signaling in experimental diabetic rats: An in vivo and in silico approach. Chem. Biol. Interact., 2022, 358, 109885.
[http://dx.doi.org/10.1016/j.cbi.2022.109885] [PMID: 35305976]
[84]
Serino, M.; Menghini, R.; Fiorentino, L.; Amoruso, R.; Mauriello, A.; Lauro, D.; Sbraccia, P.; Hribal, M.L.; Lauro, R.; Federici, M. Mice heterozygous for tumor necrosis factor-alpha converting enzyme are protected from obesity-induced insulin resistance and diabetes. Diabetes, 2007, 56(10), 2541-2546.
[http://dx.doi.org/10.2337/db07-0360] [PMID: 17646208]
[85]
Vassar, R.; Bennett, B.D.; Khan, B.S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741.
[http://dx.doi.org/10.1126/science.286.5440.735] [PMID: 10531052]
[86]
Kuhn, P.H.; Wang, H.; Dislich, B.; Colombo, A.; Zeitschel, U.; Ellwart, J.W.; Kremmer, E.; Roßner, S.; Lichtenthaler, S.F. ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J., 2010, 29(17), 3020-3032.
[http://dx.doi.org/10.1038/emboj.2010.167] [PMID: 20676056]
[87]
Lee, H.; Hoe, H.S. Inhibition of CDK4/6 regulates AD pathology, neuroinflammation and cognitive function through DYRK1A/STAT3 signaling. Pharmacol. Res., 2023, 190, 106725.
[http://dx.doi.org/10.1016/j.phrs.2023.106725] [PMID: 36907286]
[88]
Bhardwaj, T.; Giri, R. Potential of ADAM 17 signal peptide to form amyloid aggregates in vitro. ACS Chem. Neurosci., 2023, 14(20), 3818-3825.
[http://dx.doi.org/10.1021/acschemneuro.3c00424] [PMID: 37802503]
[89]
Pietri, M.; Dakowski, C.; Hannaoui, S.; Alleaume-Butaux, A.; Hernandez-Rapp, J.; Ragagnin, A.; Mouillet-Richard, S.; Haik, S.; Bailly, Y.; Peyrin, J.M.; Launay, J.M.; Kellermann, O.; Schneider, B. PDK1 decreases TACE-mediated α-secretase activity and promotes disease progression in prion and Alzheimer’s diseases. Nat. Med., 2013, 19(9), 1124-1131.
[http://dx.doi.org/10.1038/nm.3302] [PMID: 23955714]
[90]
Feuerbach, D.; Schindler, P.; Barske, C.; Joller, S.; Louka, B.E.; Worringer, K.A.; Kommineni, S.; Kaykas, A.; Ho, D.J.; Ye, C.; Welzenbach, K.; Elain, G.; Klein, L.; Brzak, I.; Mir, A.K.; Farady, C.J.; Aichholz, R.; Popp, S.; George, N.; Neumann, U. ADAM17 is the main sheddase for the generation of human triggering receptor expressed in myeloid cells (hTREM2) ectodomain and cleaves TREM2 after Histidine 157. Neurosci. Lett., 2017, 660, 109-114.
[http://dx.doi.org/10.1016/j.neulet.2017.09.034] [PMID: 28923481]
[91]
Kleinberger, G.; Yamanishi, Y.; Suárez-Calvet, M.; Czirr, E.; Lohmann, E.; Cuyvers, E.; Struyfs, H.; Pettkus, N.; Wenninger-Weinzierl, A.; Mazaheri, F.; Tahirovic, S.; Lleó, A.; Alcolea, D.; Fortea, J.; Willem, M.; Lammich, S.; Molinuevo, J.L.; Sánchez-Valle, R.; Antonell, A.; Ramirez, A.; Heneka, M.T.; Sleegers, K.; van der Zee, J.; Martin, J.J.; Engelborghs, S.; Tatlidede, D.A.; Zetterberg, H.; Van Broeckhoven, C.; Gurvit, H.; Coray, W.T.; Hardy, J.; Colonna, M.; Haass, C. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med., 2014, 6(243), 243ra86.
[http://dx.doi.org/10.1126/scitranslmed.3009093] [PMID: 24990881]
[92]
Sun, Q.; Hampel, H.; Blennow, K.; Lista, S.; Levey, A.; Tang, B.; Li, R.; Shen, Y. Increased plasma TACE activity in subjects with mild cognitive impairment and patients with Alzheimer’s disease. J. Alzheimers Dis., 2014, 41(3), 877-886.
[http://dx.doi.org/10.3233/JAD-140177] [PMID: 24685635]
[93]
Skovronsky, D.M.; Fath, S.; Lee, V.M.Y.; Milla, M.E. Neuronal localization of the TNFα converting enzyme (TACE) in brain tissue and its correlation to amyloid plaques. J. Neurobiol., 2001, 49(1), 40-46.
[http://dx.doi.org/10.1002/neu.1064] [PMID: 11536196]
[94]
Sastre, M.; Walter, J.; Gentleman, S.M. Interactions between APP secretases and inflammatory mediators. J. Neuroinflammation, 2008, 5(1), 25.
[http://dx.doi.org/10.1186/1742-2094-5-25] [PMID: 18564425]
[95]
Palazuelos, J.; Crawford, H.C.; Klingener, M.; Sun, B.; Karelis, J.; Raines, E.W.; Aguirre, A. TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination. J. Neurosci., 2014, 34(36), 11884-11896.
[http://dx.doi.org/10.1523/JNEUROSCI.1220-14.2014] [PMID: 25186737]
[96]
Cagnin, A.; Brooks, D.J.; Kennedy, A.M.; Gunn, R.N.; Myers, R.; Turkheimer, F.E.; Jones, T.; Banati, R.B. In-vivo measurement of activated microglia in dementia. Lancet, 2001, 358(9280), 461-467.
[http://dx.doi.org/10.1016/S0140-6736(01)05625-2] [PMID: 11513911]
[97]
Heneka, M.T.; Sastre, M.; Ozimek, D.L.; Dewachter, I.; Walter, J.; Klockgether, T.; Van Leuven, F. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflammation, 2005, 2(1), 22.
[http://dx.doi.org/10.1186/1742-2094-2-22] [PMID: 16212664]
[98]
McAlpine, F.E.; Lee, J.K.; Harms, A.S.; Ruhn, K.A.; Jones, B.M.; Hong, J.; Das, P.; Golde, T.E.; LaFerla, F.M.; Oddo, S.; Blesch, A.; Tansey, M.G. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol. Dis., 2009, 34(1), 163-177.
[http://dx.doi.org/10.1016/j.nbd.2009.01.006] [PMID: 19320056]
[99]
Garton, K.J.; Gough, P.J.; Philalay, J.; Wille, P.T.; Blobel, C.P.; Whitehead, R.H.; Dempsey, P.J.; Raines, E.W. Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-α-converting enzyme (ADAM 17). J. Biol. Chem., 2003, 278(39), 37459-37464.
[http://dx.doi.org/10.1074/jbc.M305877200] [PMID: 12878595]
[100]
Tsakadze, N.L.; Sithu, S.D.; Sen, U.; English, W.R.; Murphy, G.; D’Souza, S.E. Tumor necrosis factor-α-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J. Biol. Chem., 2006, 281(6), 3157-3164.
[http://dx.doi.org/10.1074/jbc.M510797200] [PMID: 16332693]
[101]
Norman, M.U.; James, W.G.; Hickey, M.J. Differential roles of ICAM-1 and VCAM-1 in leukocyte-endothelial cell interactions in skin and brain of MRL/fas lpr mice. J. Leukoc. Biol., 2008, 84(1), 68-76.
[http://dx.doi.org/10.1189/jlb.1107796] [PMID: 18426970]
[102]
Iemmolo, M.; Ghersi, G.; Bivona, G. The cytokine CX3CL1 and ADAMs/MMPs in concerted cross-talk influencing neurodegenerative diseases. Int. J. Mol. Sci., 2023, 24(9), 8026.
[http://dx.doi.org/10.3390/ijms24098026] [PMID: 37175729]
[103]
Qiu, X.; Wang, J.; Zhang, W.; Duan, C.; Chen, T.; Zhang, D.; Su, J.; Gao, L. Disruption of the ADAM17/NF-κB feedback loop in astrocytes ameliorates HIV-1 Tat-induced inflammatory response and neuronal death. J. Neurovirol., 2023, 29(3), 283-296.
[http://dx.doi.org/10.1007/s13365-023-01131-5] [PMID: 37185939]
[104]
Hartl, D.; May, P.; Gu, W.; Mayhaus, M.; Pichler, S.; Spaniol, C.; Glaab, E.; Bobbili, D.R.; Antony, P.; Koegelsberger, S.; Kurz, A.; Grimmer, T.; Morgan, K.; Vardarajan, B.N.; Reitz, C.; Hardy, J.; Bras, J.; Guerreiro, R.; Balling, R.; Schneider, J.G.; Riemenschneider, M. A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease. Mol. Psychiatry, 2020, 25(3), 629-639.
[http://dx.doi.org/10.1038/s41380-018-0091-8] [PMID: 29988083]
[105]
Tian, Y.; Fopiano, K.A.; Buncha, V.; Lang, L.; Suggs, H.A.; Wang, R.; Rudic, R.D.; Filosa, J.A.; Bagi, Z. The role of ADAM17 in cerebrovascular and cognitive function in the APP/PS1 mouse model of Alzheimer’s disease. Front. Mol. Neurosci., 2023, 16, 1125932.
[http://dx.doi.org/10.3389/fnmol.2023.1125932] [PMID: 36937050]
[106]
Zhang, H.; Wei, M.; Sun, N.; Wang, H.; Fan, H. Melatonin attenuates chronic stress-induced hippocampal inflammatory response and apoptosis by inhibiting ADAM17/TNF-α axis. Food Chem. Toxicol., 2022, 169, 113441.
[http://dx.doi.org/10.1016/j.fct.2022.113441] [PMID: 36162616]
[107]
Lichtenthaler, S.F.; O’Hara, B.F.; Blobel, C.P. iRhoms in the brain - A new frontier? Cell Cycle, 2015, 14(19), 3003-3004.
[http://dx.doi.org/10.1080/15384101.2015.1084187] [PMID: 26291882]
[108]
De Jager, P.L.; Srivastava, G.; Lunnon, K.; Burgess, J.; Schalkwyk, L.C.; Yu, L.; Eaton, M.L.; Keenan, B.T.; Ernst, J.; McCabe, C.; Tang, A.; Raj, T.; Replogle, J.; Brodeur, W.; Gabriel, S.; Chai, H.S.; Younkin, C.; Younkin, S.G.; Zou, F.; Szyf, M.; Epstein, C.B.; Schneider, J.A.; Bernstein, B.E.; Meissner, A.; Taner, E.N.; Chibnik, L.B.; Kellis, M.; Mill, J.; Bennett, D.A. Alzheimer’s disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci., 2014, 17(9), 1156-1163.
[http://dx.doi.org/10.1038/nn.3786] [PMID: 25129075]
[109]
Apo, G.E.; Maya, M.A.; Díaz, F.M.; Pereyra, S.J. Structural brain changes associated with overweight and obesity. J. Obes., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/6613385] [PMID: 34327017]
[110]
Yun, J.H.; Lee, D.H.; Jeong, H.S.; Kim, H.S.; Ye, S.K.; Cho, C.H. STAT3 activation in microglia exacerbates hippocampal neuronal apoptosis in diabetic brains. J. Cell. Physiol., 2021, 236(10), 7058-7070.
[http://dx.doi.org/10.1002/jcp.30373] [PMID: 33754353]
[111]
Asslih, S.; Damri, O.; Agam, G. Neuroinflammation as a common denominator of complex diseases (cancer, diabetes type 2, and neuropsychiatric disorders). Int. J. Mol. Sci., 2021, 22(11), 6138.
[http://dx.doi.org/10.3390/ijms22116138] [PMID: 34200240]
[112]
Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: The link between comorbidities, genetics, and Alzheimer’s disease. J. Neuroinflammation, 2018, 15(1), 276.
[http://dx.doi.org/10.1186/s12974-018-1313-3] [PMID: 30249283]
[113]
Pivovarova, O.; Höhn, A.; Grune, T.; Pfeiffer, A.F.H.; Rudovich, N. Insulin-degrading enzyme: New therapeutic target for diabetes and Alzheimer’s disease? Ann. Med., 2016, 48(8), 614-624.
[http://dx.doi.org/10.1080/07853890.2016.1197416] [PMID: 27320287]
[114]
Arnold, S.E.; Arvanitakis, Z.; Rambach, M.S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; Holtzman, D.M.; Nathan, D.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol., 2018, 14(3), 168-181.
[http://dx.doi.org/10.1038/nrneurol.2017.185] [PMID: 29377010]
[115]
Tu, X.; Zhang, H.; Shi, S.; Liang, R.; Wang, C.; Chen, C.; Yang, W. 5-LOX inhibitor zileuton reduces inflammatory reaction and ischemic brain damage through the activation of PI3K/Akt signaling pathway. Neurochem. Res., 2016, 41(10), 2779-2787.
[http://dx.doi.org/10.1007/s11064-016-1994-x] [PMID: 27380038]
[116]
Stoeckel, L.E.; Arvanitakis, Z.; Gandy, S.; Small, D.; Kahn, C.R.; Leone, P.A.; Pawlyk, A.; Sherwin, R.; Smith, P. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction. F1000 Res., 2016, 5, 353.
[http://dx.doi.org/10.12688/f1000research.8300.2] [PMID: 27303627]
[117]
Luchsinger, J.A.; Reitz, C.; Patel, B.; Tang, M.X.; Manly, J.J.; Mayeux, R. Relation of diabetes to mild cognitive impairment. Arch. Neurol., 2007, 64(4), 570-575.
[http://dx.doi.org/10.1001/archneur.64.4.570] [PMID: 17420320]
[118]
Qutub, A.A.; Hunt, C.A. Glucose transport to the brain: A systems model. Brain Res. Brain Res. Rev., 2005, 49(3), 595-617.
[http://dx.doi.org/10.1016/j.brainresrev.2005.03.002] [PMID: 16269321]
[119]
Zhao, R.R.; O’Sullivan, A.J.; Singh, F.M.A. Exercise or physical activity and cognitive function in adults with type 2 diabetes, insulin resistance or impaired glucose tolerance: A systematic review. Eur. Rev. Aging Phys. Act., 2018, 15(1), 1.
[http://dx.doi.org/10.1186/s11556-018-0190-1] [PMID: 29387262]
[120]
Moore, E.M.; Mander, A.G.; Ames, D.; Kotowicz, M.A.; Carne, R.P.; Brodaty, H.; Woodward, M.; Boundy, K.; Ellis, K.A.; Bush, A.I.; Faux, N.G.; Martins, R.; Szoeke, C.; Rowe, C.; Watters, D.A. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care, 2013, 36(10), 2981-2987.
[http://dx.doi.org/10.2337/dc13-0229] [PMID: 24009301]
[121]
Chen, S.; Peng, J.; Sherchan, P.; Ma, Y.; Xiang, S.; Yan, F.; Zhao, H.; Jiang, Y.; Wang, N.; Zhang, J.H.; Zhang, H. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J. Neuroinflammation, 2020, 17(1), 168.
[http://dx.doi.org/10.1186/s12974-020-01853-x] [PMID: 32466767]
[122]
Feldman, E.L.; O’brien, P.D.; Hinder, L.M.; Callaghan, B.C. Neurological consequences of obesity. Lancet Neurol., 2017, 16(6), 465-477.
[123]
Quan, Y.; Du, J.; Wang, X. High glucose stimulates GRO secretion from rat microglia via ROS, PKC, and NF‐κB pathways. J. Neurosci. Res., 2007, 85(14), 3150-3159.
[http://dx.doi.org/10.1002/jnr.21421] [PMID: 17639599]
[124]
Quan, Y.; Jiang, C.; Xue, B.; Zhu, S.; Wang, X. High glucose stimulates TNFα and MCP-1 expression in rat microglia via ROS and NF-κB pathways. Acta Pharmacol. Sin., 2011, 32(2), 188-193.
[http://dx.doi.org/10.1038/aps.2010.174] [PMID: 21293471]
[125]
Vuong, B.; Odero, G.; Rozbacher, S.; Stevenson, M.; Kereliuk, S.M.; Pereira, T.J.; Dolinsky, V.W.; Kauppinen, T.M. Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring. J. Neuroinflammation, 2017, 14(1), 80.
[http://dx.doi.org/10.1186/s12974-017-0859-9] [PMID: 28388927]
[126]
Zhu, S.H.; Liu, B.Q.; Hao, M.J.; Fan, Y.X.; Qian, C.; Teng, P.; Zhou, X.W.; Hu, L.; Liu, W.T.; Yuan, Z.L.; Li, Q.P. Paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy. Inflammation, 2017, 40(5), 1475-1486.
[http://dx.doi.org/10.1007/s10753-017-0571-z] [PMID: 28639050]
[127]
Xu, X.; Zhang, A.; Zhu, Y.; He, W.; Di, W.; Fang, Y.; Shi, X. MFG‐E8 reverses microglial‐induced neurotoxic astrocyte (A1) via NF‐κB and PI3K‐Akt pathways. J. Cell. Physiol., 2019, 234(1), 904-914.
[http://dx.doi.org/10.1002/jcp.26918] [PMID: 30076715]
[128]
Grell, M.; Douni, E.; Wajant, H.; Löhden, M.; Clauss, M.; Maxeiner, B.; Georgopoulos, S.; Lesslauer, W.; Kollias, G.; Pfizenmaier, K.; Scheurich, P. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell, 1995, 83(5), 793-802.
[http://dx.doi.org/10.1016/0092-8674(95)90192-2] [PMID: 8521496]
[129]
Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci., 2007, 8(1), 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[130]
Li, H.; Mei, X-Y.; Wang, M-N.; Zhang, T-Y.; Zhang, Y.; Lu, B.; Sheng, Y-C. Scutellarein alleviates the dysfunction of inner blood-retinal-barrier initiated by hyperglycemia-stimulated microglia cells. Int. J. Ophthalmol., 2020, 13(10), 1538-1545.
[http://dx.doi.org/10.18240/ijo.2020.10.05] [PMID: 33078102]
[131]
Huang, L.; You, J.; Yao, Y.; Xie, M. High glucose induces pyroptosis of retinal microglia through NLPR3 inflammasome signaling. Arq. Bras. Oftalmol., 2021, 84(1), 67-73.
[http://dx.doi.org/10.5935/0004-2749.20210010] [PMID: 33470344]
[132]
von Herrmann, K.M.; Anderson, F.L.; Martinez, E.M.; Young, A.L.; Havrda, M.C. Slc6a3-dependent expression of a CAPS-associated Nlrp3 allele results in progressive behavioral abnormalities and neuroinflammation in aging mice. J. Neuroinflammation, 2020, 17(1), 213.
[http://dx.doi.org/10.1186/s12974-020-01866-6] [PMID: 32680528]
[133]
McGeough, M.D.; Wree, A.; Inzaugarat, M.E.; Haimovich, A.; Johnson, C.D.; Peña, C.A.; Mansky, G.R.; Broderick, L.; Feldstein, A.E.; Hoffman, H.M. TNF regulates transcription of NLRP3 inflammasome components and inflammatory molecules in cryopyrinopathies. J. Clin. Invest., 2017, 127(12), 4488-4497.
[http://dx.doi.org/10.1172/JCI90699] [PMID: 29130929]
[134]
Bogoyevitch, M.A.; Court, N.W. Counting on mitogen-activated protein kinases-ERKs 3, 4, 5, 6, 7 and 8. Cell. Signal., 2004, 16(12), 1345-1354.
[http://dx.doi.org/10.1016/j.cellsig.2004.05.004] [PMID: 15381250]
[135]
Herlaar, E.; Brown, Z. p38 MAPK signalling cascades in inflammatory disease. Mol. Med. Today, 1999, 5(10), 439-447.
[http://dx.doi.org/10.1016/S1357-4310(99)01544-0] [PMID: 10498912]
[136]
Hensley, K.; Floyd, R.A.; Zheng, N.Y.; Nael, R.; Robinson, K.A.; Nguyen, X.; Pye, Q.N.; Stewart, C.A.; Geddes, J.; Markesbery, W.R.; Patel, E.; Johnson, G.V.W.; Bing, G. p38 kinase is activated in the Alzheimer’s disease brain. J. Neurochem., 1999, 72(5), 2053-2058.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0722053.x] [PMID: 10217284]
[137]
Kim, S.H.; Smith, C.J.; Van Eldik, L.J. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1β production. Neurobiol. Aging, 2004, 25(4), 431-439.
[http://dx.doi.org/10.1016/S0197-4580(03)00126-X] [PMID: 15013563]
[138]
Xu, P.; Liu, J.; Yumoto, S.M.; Derynck, R. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci. Signal., 2012, 5(222), ra34.
[http://dx.doi.org/10.1126/scisignal.2002689] [PMID: 22550340]
[139]
Hotamisligil, G.S.; Budavari, A.; Murray, D.; Spiegelman, B.M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J. Clin. Invest., 1994, 94(4), 1543-1549.
[http://dx.doi.org/10.1172/JCI117495] [PMID: 7523453]
[140]
He, P.; Zhong, Z.; Lindholm, K.; Berning, L.; Lee, W.; Lemere, C.; Staufenbiel, M.; Li, R.; Shen, Y. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice. J. Cell Biol., 2007, 178(5), 829-841.
[http://dx.doi.org/10.1083/jcb.200705042] [PMID: 17724122]
[141]
Li, X.; Li, M.; Tian, L.; Chen, J.; Liu, R.; Ning, B. Reactive astrogliosis: Implications in spinal cord injury progression and therapy. Oxid. Med. Cell. Longev., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/9494352] [PMID: 32884625]
[142]
Mülberg, J.; Schooltink, H.; Stoyan, T.; Günther, M.; Graeve, L.; Buse, G.; Mackiewicz, A.; Heinrich, P.C.; Rose-John, S. The soluble interleukin‐6 receptor is generated by shedding. Eur. J. Immunol., 1993, 23(2), 473-480.
[http://dx.doi.org/10.1002/eji.1830230226] [PMID: 8436181]
[143]
Stark, G.R.; Darnell, J.E., Jr The JAK-STAT pathway at twenty. Immunity, 2012, 36(4), 503-514.
[http://dx.doi.org/10.1016/j.immuni.2012.03.013] [PMID: 22520844]
[144]
Lokau, J.; Garbers, C. Activating mutations of the gp130/JAK/STAT pathway in human diseases. Adv. Protein Chem. Struct. Biol., 2019, 116, 283-309.
[http://dx.doi.org/10.1016/bs.apcsb.2018.11.007] [PMID: 31036294]
[145]
Secnik, J.; Xu, H.; Schwertner, E.; Hammar, N.; Alvarsson, M.; Winblad, B.; Eriksdotter, M.; Ptacek, G.S.; Religa, D. The association of antidiabetic medications and Mini-Mental State Examination scores in patients with diabetes and dementia. Alzheimers Res. Ther., 2021, 13(1), 197.
[http://dx.doi.org/10.1186/s13195-021-00934-0] [PMID: 34857046]
[146]
Luo, A.; Xie, Z.; Wang, Y.; Wang, X.; Li, S.; Yan, J.; Zhan, G.; Zhou, Z.; Zhao, Y.; Li, S. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neurosci. Biobehav. Rev., 2022, 137, 104642.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104642] [PMID: 35367221]
[147]
Emmanouilidou, E.; Minakaki, G.; Keramioti, M.V.; Xylaki, M.; Balafas, E.; Piterou, C.M.; Kloukina, I.; Vekrellis, K. GABA transmission via ATP-dependent K+ channels regulates α-synuclein secretion in mouse striatum. Brain, 2016, 139(3), 871-890.
[http://dx.doi.org/10.1093/brain/awv403] [PMID: 26912647]
[148]
Puga, S.K.; Colorado, R.J.; Alcalá, P.R.A.; Ortega, P.F. Subclinical doses of ATP-sensitive potassium channel modulators prevent alterations in memory and synaptic plasticity induced by Amyloid-β. J. Alzheimers Dis., 2017, 57(1), 205-226.
[http://dx.doi.org/10.3233/JAD-160543] [PMID: 28222502]
[149]
Hsu, C.C.; Wahlqvist, M.L.; Lee, M.S.; Tsai, H.N. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J. Alzheimers Dis., 2011, 24(3), 485-493.
[http://dx.doi.org/10.3233/JAD-2011-101524] [PMID: 21297276]
[150]
Flory, J.; Lipska, K. Metformin in 2019. JAMA, 2019, 321(19), 1926-1927.
[http://dx.doi.org/10.1001/jama.2019.3805] [PMID: 31009043]
[151]
Khattar, D.; Khaliq, F.; Vaney, N.; Madhu, S.V. Is metformin-induced vitamin B12 deficiency responsible for cognitive decline in type 2 diabetes? Indian J. Psychol. Med., 2016, 38(4), 285-290.
[http://dx.doi.org/10.4103/0253-7176.185952] [PMID: 27570337]
[152]
Thangthaeng, N.; Rutledge, M.; Wong, J.M.; Vann, P.H.; Forster, M.J.; Sumien, N. Metformin impairs spatial memory and visual acuity in old male mice. Aging Dis., 2017, 8(1), 17-30.
[http://dx.doi.org/10.14336/AD.2016.1010] [PMID: 28203479]
[153]
Pratchayasakul, W.; Jinawong, K.; Pongkan, W.; Jaiwongkam, T.; Arunsak, B.; Chunchai, T.; Tokuda, M.; Chattipakorn, N.; Chattipakorn, S.C. Not only metformin, but also D-allulose, alleviates metabolic disturbance and cognitive decline in prediabetic rats. Nutr. Neurosci., 2022, 25(6), 1115-1127.
[http://dx.doi.org/10.1080/1028415X.2020.1840050] [PMID: 33151133]
[154]
Luchsinger, J.A.; Perez, T.; Chang, H.; Mehta, P.; Steffener, J.; Pradabhan, G.; Ichise, M.; Manly, J.; Devanand, D.P.; Bagiella, E. Metformin in amnestic mild cognitive impairment: Results of a pilot randomized placebo controlled clinical trial. J. Alzheimers Dis., 2016, 51(2), 501-514.
[http://dx.doi.org/10.3233/JAD-150493] [PMID: 26890736]
[155]
Samaras, K.; Makkar, S.; Crawford, J.D.; Kochan, N.A.; Wen, W.; Draper, B.; Trollor, J.N.; Brodaty, H.; Sachdev, P.S. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: The sydney memory and ageing study. Diabetes Care, 2020, 43(11), 2691-2701.
[http://dx.doi.org/10.2337/dc20-0892] [PMID: 32967921]
[156]
Campbell, J.M.; Stephenson, M.D.; de Courten, B.; Chapman, I.; Bellman, S.M.; Aromataris, E. Metformin use associated with reduced risk of dementia in patients with diabetes: A systematic review and meta-analysis. J. Alzheimers Dis., 2018, 65(4), 1225-1236.
[http://dx.doi.org/10.3233/JAD-180263] [PMID: 30149446]
[157]
Malazy, T.O.; Bandarian, F.; Qorbani, M.; Mohseni, S.; Mirsadeghi, S.; Peimani, M.; Larijani, B. The effect of metformin on cognitive function: A systematic review and meta-analysis. J. Psychopharmacol., 2022, 36(6), 666-679.
[http://dx.doi.org/10.1177/02698811211057304] [PMID: 35297284]
[158]
Teng, Z.; Feng, J.; Qi, Q.; Dong, Y.; Xiao, Y.; Xie, X.; Meng, N.; Chen, H.; Zhang, W.; Lv, P. Long-term use of metformin is associated with reduced risk of cognitive impairment with alleviation of cerebral small vessel disease burden in patients with type 2 diabetes. Front. Aging Neurosci., 2021, 13, 773797.
[http://dx.doi.org/10.3389/fnagi.2021.773797] [PMID: 34776938]
[159]
McIntyre, R.S.; Soczynska, J.K.; Woldeyohannes, H.O.; Lewis, G.F.; Leiter, L.A.; MacQueen, G.M.; Miranda, A.; Fulgosi, D.; Konarski, J.Z.; Kennedy, S.H. Thiazolidinediones: Novel treatments for cognitive deficits in mood disorders? Expert Opin. Pharmacother., 2007, 8(11), 1615-1628.
[http://dx.doi.org/10.1517/14656566.8.11.1615] [PMID: 17685880]
[160]
Cortez, I.; Hernandez, C.M.; Dineley, K.T. Enhancement of select cognitive domains with rosiglitazone implicates dorsal hippocampus circuitry sensitive to PPARγ agonism in an Alzheimer’s mouse model. Brain Behav., 2021, 11(2), e01973.
[http://dx.doi.org/10.1002/brb3.1973] [PMID: 33382528]
[161]
Sato, T.; Hanyu, H.; Hirao, K.; Kanetaka, H.; Sakurai, H.; Iwamoto, T. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol. Aging, 2011, 32(9), 1626-1633.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.10.009] [PMID: 19923038]
[162]
Dicker, D. DPP-4 inhibitors. Diabetes Care, 2011, 34(S2), S276-S278.
[http://dx.doi.org/10.2337/dc11-s229] [PMID: 21525468]
[163]
Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; Holst, J.J.; Langhans, W.; Meier, J.J.; Nauck, M.A.; Tilve, P.D.; Pocai, A.; Reimann, F.; Sandoval, D.A.; Schwartz, T.W.; Seeley, R.J.; Stemmer, K.; Christensen, T.M.; Woods, S.C.; DiMarchi, R.D.; Tschöp, M.H. Glucagon-like peptide 1 (GLP-1). Mol. Metab., 2019, 30, 72-130.
[http://dx.doi.org/10.1016/j.molmet.2019.09.010] [PMID: 31767182]
[164]
Jiang, L.Y.; Tang, S.S.; Wang, X.Y.; Liu, L.P.; Long, Y.; Hu, M.; Liao, M.X.; Ding, Q.L.; Hu, W.; Li, J.C.; Hong, H. PPARγ agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus. CNS Neurosci. Ther., 2012, 18(8), 659-666.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00341.x] [PMID: 22620268]
[165]
Femminella, G.D.; Frangou, E.; Love, S.B.; Busza, G.; Holmes, C.; Ritchie, C.; Lawrence, R.; McFarlane, B.; Tadros, G.; Ridha, B.H.; Bannister, C.; Walker, Z.; Archer, H.; Coulthard, E.; Underwood, B.R.; Prasanna, A.; Koranteng, P.; Karim, S.; Junaid, K.; McGuinness, B.; Nilforooshan, R.; Macharouthu, A.; Donaldson, A.; Thacker, S.; Russell, G.; Malik, N.; Mate, V.; Knight, L.; Kshemendran, S.; Harrison, J.; Brooks, D.J.; Passmore, A.P.; Ballard, C.; Edison, P.; Edison, P. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease: Study protocol for a randomised controlled trial (ELAD study). Trials, 2019, 20(1), 191.
[http://dx.doi.org/10.1186/s13063-019-3259-x] [PMID: 30944040]
[166]
Hölscher, C. Protective properties of GLP‐1 and associated peptide hormones in neurodegenerative disorders. Br. J. Pharmacol., 2022, 179(4), 695-714.
[http://dx.doi.org/10.1111/bph.15508] [PMID: 33900631]
[167]
Gault, V.A.; Lennox, R.; Flatt, P.R. Sitagliptin, a dipeptidyl peptidase‐4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline. Diabetes Obes. Metab., 2015, 17(4), 403-413.
[http://dx.doi.org/10.1111/dom.12432] [PMID: 25580570]
[168]
D’Amico, M.; Filippo, D.C.; Marfella, R.; Abbatecola, A.M.; Ferraraccio, F.; Rossi, F.; Paolisso, G. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Exp. Gerontol., 2010, 45(3), 202-207.
[http://dx.doi.org/10.1016/j.exger.2009.12.004] [PMID: 20005285]
[169]
Badawi, G.A.; Abd El Fattah, M.A.; Zaki, H.F.; El Sayed, M.I. Sitagliptin and liraglutide reversed nigrostriatal degeneration of rodent brain in rotenone-induced Parkinson’s disease. Inflammopharmacology, 2017, 25(3), 369-382.
[http://dx.doi.org/10.1007/s10787-017-0331-6] [PMID: 28258522]
[170]
Labandeira, C.M.; Bau, F.A.; Ron, A.D.; Muñoz, A.; Losada, A.G.; Koukoulis, A.; Lopez, R.J.; Perez, R.A.I. Diabetes, insulin and new therapeutic strategies for Parkinson’s disease: Focus on glucagon-like peptide-1 receptor agonists. Front. Neuroendocrinol., 2021, 62, 100914.
[http://dx.doi.org/10.1016/j.yfrne.2021.100914] [PMID: 33845041]
[171]
Freiherr, J.; Hallschmid, M.; Frey, W.H., II; Brünner, Y.F.; Chapman, C.D.; Hölscher, C.; Craft, S.; De Felice, F.G.; Benedict, C. Intranasal insulin as a treatment for Alzheimer’s disease: A review of basic research and clinical evidence. CNS Drugs, 2013, 27(7), 505-514.
[http://dx.doi.org/10.1007/s40263-013-0076-8] [PMID: 23719722]
[172]
Lebovitz, H.E. Insulin: Potential negative consequences of early routine use in patients with type 2 diabetes. Diabetes Care, 2011, 34(S2), S225-S230.
[http://dx.doi.org/10.2337/dc11-s225] [PMID: 21525460]
[173]
Palleria, C.; Leporini, C.; Maida, F.; Succurro, E.; De Sarro, G.; Arturi, F.; Russo, E. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes. Front. Neuroendocrinol., 2016, 42, 76-92.
[http://dx.doi.org/10.1016/j.yfrne.2016.07.002] [PMID: 27521218]
[174]
Mone, P.; Lombardi, A.; Gambardella, J.; Pansini, A.; Macina, G.; Morgante, M.; Frullone, S.; Santulli, G. Empagliflozin improves cognitive impairment in frail older adults with type 2 diabetes and heart failure with preserved ejection fraction. Diabetes Care, 2022, 45(5), 1247-1251.
[http://dx.doi.org/10.2337/dc21-2434] [PMID: 35287171]
[175]
Kuhla, A.; Brichmann, E.; Rühlmann, C.; Thiele, R.; Meuth, L.; Vollmar, B. Metformin therapy aggravates neurodegenerative processes in ApoE–/– mice. J. Alzheimers Dis., 2019, 68(4), 1415-1427.
[http://dx.doi.org/10.3233/JAD-181017] [PMID: 30909226]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy