Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Non-enzymatic Glucose Detection by Fe2O3 Nanorods-reduced Graphene under Physiological pH

Author(s): Jiacai Yu, Xianglu Shan, Dengfa Zhou, Xueqin Zhao* and Weiqin Sheng*

Volume 20, Issue 4, 2024

Published on: 13 May, 2024

Page: [275 - 282] Pages: 8

DOI: 10.2174/0115734129286138240503050903

Price: $65

Abstract

Background: Non-enzymatic detection has become a research hotspot because of its alternativity in solving problems compared to enzymatic biosensors, but most of those sensors require a strong basic pH environment (higher than 10) to active their surface, restricting their use in clinical detection because the pH of body fluid is around 7.4. Furthermore, metal oxide sensors with specific morphologies are reported to have a fast electrocatalytic response. Therefore, Fe2O3 nanocomposites with porous structure are selected for glucose detection research in a physiological pH environment.

Objective: The study aimed to assess the potential use of porous reduced graphene oxide-Fe2O3 nanorods in glucose detection in a physiological pH environment.

Method: Hydrothermal method was used to prepare porous Fe2O3-rGO NRs (Nanorods) and hollow Fe2O3/C nanoparticles. Cyclic voltammetry and electrochemical impedance spectroscopy were used to evaluate the performance of our materials.

Results: Porous-reduced graphene oxide-Fe2O3 nanorods have exhibited better performance than hollow carbon-Fe2O3 core-shell nanoparticles for glucose detection in a physiological pH environment.

Conclusion: Non-enzymatic glucose sensing based upon cavity Fe2O3-rGO NRs under a physiological pH environment has been successfully realized, attributing to their high electron mobility and large specific surface area. Furthermore, the results of this work indicate that the glucose sensor prepared here has shown good repeatability and stability, which suggests its potential use in clinical detection.

Graphical Abstract

[1]
Sud, M.; Wang, X.; Austin, P.C.; Lipscombe, L.L.; Newton, G.E.; Tu, J.V.; Vasan, R.S.; Lee, D.S. Presentation blood glucose and death, hospitalization, and future diabetes risk in patients with acute heart failure syndromes. Eur. Heart J., 2015, 36(15), 924-931.
[http://dx.doi.org/10.1093/eurheartj/ehu462] [PMID: 25572328]
[2]
Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2020, 63(2), 221-228.
[http://dx.doi.org/10.1007/s00125-019-05039-w] [PMID: 31853556]
[3]
Babu, J.K.; Sheet, S.; Lee, Y.S.; kumar, G.G. Three-dimensional dendrite Cu–Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain. Chem.& Eng., 2018, 6(2), 1909-1918.
[http://dx.doi.org/10.1021/acssuschemeng.7b03314]
[4]
Bilal, S.; Ullah, W.; Ali Shah, A-H. Polyaniline@CuNi nanocomposite: A highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim. Acta, 2018, 284, 382-391.
[http://dx.doi.org/10.1016/j.electacta.2018.07.165]
[5]
Gopalan, A.I.; Muthuchamy, N.; Komathi, S.; Lee, K-P. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens. Bioelectron., 2016, 84, 53-63.
[http://dx.doi.org/10.1016/j.bios.2015.10.079] [PMID: 26584775]
[7]
Nechiyil, D.; Prakash, J.; Dey, A.; Alexander, R.; Uppal, S.; Bahadur, J.; Dasgupta, K. A highly porous and flexible carbon nanotube array coated with gold nanoparticles: Application in non-enzymatic ultrasensitive detection and monitoring of blood/saliva glucose. ChemistrySelect, 2023, 8(17), e202300029.
[http://dx.doi.org/10.1002/slct.202300029]
[8]
Deng, W.; Dai, R.; You, C.; Hu, P.; Sun, X.; Xiong, X.; Huang, K.; Huo, F. In situ formation of a 3D amorphous cobalt-borate nanoarray: An efficient non-noble metal catalytic electrode for non-enzyme glucose detection. ChemistrySelect, 2018, 3(38), 10580-10584.
[http://dx.doi.org/10.1002/slct.201800646]
[9]
Wang, Q.; Jiao, C.; Wang, X.; Wang, Y.; Sun, K.; Li, L.; Fan, Y.; Hu, L. A hydrogel-based biosensor for stable detection of glucose. Biosens. Bioelectron., 2023, 221, 114908.
[http://dx.doi.org/10.1016/j.bios.2022.114908] [PMID: 36450168]
[10]
Thatikayala, D.; Ponnamma, D.; Sadasivuni, K. K.; Cabibihan, J.-J.; Al-Ali, A. K.; Malik, R. A.; Min, B. Progress of advanced nanomaterials in the non-enzymatic electrochemical sensing of glucose and H2O2. Biosensors, 2020, 10(11), 151.
[http://dx.doi.org/10.3390/bios10110151]
[11]
Cheng, S.; DelaCruz, S.; Chen, C.; Tang, Z.; Shi, T.; Carraro, C.; Maboudian, R. Hierarchical Co3O4/CuO nanorod array supported on carbon cloth for highly sensitive non-enzymatic glucose biosensing. Sens. Actuators B Chem., 2019, 298, 126860.
[http://dx.doi.org/10.1016/j.snb.2019.126860]
[12]
Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors, 2017, 17(8), 1866.
[http://dx.doi.org/10.3390/s17081866] [PMID: 28805693]
[13]
Rodbard, D. Continuous glucose monitoring: A review of successes, challenges, and opportunities. Diabetes Technol. Ther., 2016, 18(S2), S2-3-, S2-13.
[http://dx.doi.org/10.1089/dia.2015.0417] [PMID: 26784127]
[14]
Jarnda, K.V.; Wang, D.; Ain, Q.U.R.; Anaman, R.; Johnson, V.E.; Roberts, G.P.; Johnson, P.S.; Jallawide, B.W., Jr; Kai, T.; Ding, P. Recent advances in electrochemical non-enzymatic glucose sensor for the detection of glucose in tears and saliva: A Review. Sens. Actuators A Phys., 2023, 363, 114778.
[http://dx.doi.org/10.1016/j.sna.2023.114778]
[15]
Akhtar, N.; El-Safty, S.A.; Abdelsalam, M.E.; Shenashen, M.A.; Kawarada, H. Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood. Biosens. Bioelectron., 2016, 77, 656-665.
[http://dx.doi.org/10.1016/j.bios.2015.10.023] [PMID: 26496219]
[16]
Mohammed, N.; Baidya, A.; Murugesan, V.; Kumar, A.A.; Ganayee, M.A.; Mohanty, J.S.; Tam, K.C.; Pradeep, T. Diffusion-controlled simultaneous sensing and scavenging of heavy metal ions in water using atomically precise cluster–cellulose nanocrystal composites. ACS Sustain. Chem.& Eng., 2016, 4(11), 6167-6176.
[http://dx.doi.org/10.1021/acssuschemeng.6b01674]
[17]
Kim, J.; Campbell, A.S.; Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta, 2018, 177, 163-170.
[http://dx.doi.org/10.1016/j.talanta.2017.08.077] [PMID: 29108571]
[18]
Hwang, D.W.; Lee, S.; Seo, M.; Chung, T.D. Recent advances in electrochemical non-enzymatic glucose sensors – A review. Anal. Chim. Acta, 2018, 1033, 1-34.
[http://dx.doi.org/10.1016/j.aca.2018.05.051] [PMID: 30172314]
[19]
Fu, L. Advances in electrochemical methods for the analysis of pharmaceuticals. Curr. Pharm. Anal., 2022, 18(1), 2-3.
[http://dx.doi.org/10.2174/157341291801210910120232]
[20]
Long, W.; Xie, Y.; Shi, H.; Ying, J.; Yang, J.; Huang, Y.; Zhang, H.; Fu, L. Preparation of nitrogen-doped hollow carbon spheres for sensitive catechol electrochemical sensing. Fuller. Nanotub. Carbon Nanostruct., 2018, 26(12), 856-862.
[http://dx.doi.org/10.1080/1536383X.2018.1512973]
[21]
Long, W.; Fu, L. Hydrothermal synthesis of ZnO flower-reduced graphene oxide composite for electrochemical determination of ascorbic acid. Fuller. Nanotub. Carbon Nanostruct., 2017, 25(7), 404-409.
[http://dx.doi.org/10.1080/1536383X.2017.1324952]
[22]
Si, P.; Huang, Y.; Wang, T.; Ma, J. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Advances, 2013, 3(11), 3487-3502.
[http://dx.doi.org/10.1039/c2ra22360k]
[23]
Wang, G.; He, X.; Wang, L.; Gu, A.; Huang, Y.; Fang, B.; Geng, B.; Zhang, X. Non-enzymatic electrochemical sensing of glucose. Mikrochim. Acta, 2013, 180(3-4), 161-186.
[http://dx.doi.org/10.1007/s00604-012-0923-1]
[24]
Jiang, D.; Chu, Z.; Peng, J.; Luo, J.; Mao, Y.; Yang, P.; Jin, W. One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection. Electrochim. Acta, 2018, 270, 147-155.
[http://dx.doi.org/10.1016/j.electacta.2018.03.066]
[25]
Mao, Y.; Mei, Z.; Liang, L.; Zhou, B.; Tian, Y. Robust and magnetically recoverable dual-sensor particles: Real-time monitoring of glucose and dissolved oxygen. Sens. Actuators B Chem., 2018, 262, 371-379.
[http://dx.doi.org/10.1016/j.snb.2018.02.024]
[26]
Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun., 2020, 56(93), 14553-14569.
[http://dx.doi.org/10.1039/D0CC05650B] [PMID: 33118566]
[27]
Niu, X.; Li, X.; Pan, J.; He, Y.; Qiu, F.; Yan, Y. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: Opportunities and challenges. RSC Advances, 2016, 6(88), 84893-84905.
[http://dx.doi.org/10.1039/C6RA12506A]
[28]
Rahman, M.M.; Ahammad, A.J.S.; Jin, J.H.; Ahn, S.J.; Lee, J.J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors, 2010, 10(5), 4855-4886.
[http://dx.doi.org/10.3390/s100504855] [PMID: 22399911]
[29]
Chen, K.; Zhang, R.; Li, Y.; Jiang, M.; Wang, W.; Cui, Z. Synthesis of hollow nanospherical Cuprous oxide supported by nitrogen-doped reduced graphene oxide and its application to enzyme-free glucose sensing. ChemistrySelect, 2019, 4(23), 7027-7034.
[http://dx.doi.org/10.1002/slct.201900596]
[30]
Mousavizadegan, M.; Asiabi, A.P.; Hosseini, M.; Khoobi, M. Synthesis of magnetic silk nanostructures with peroxidase-like activity as an approach for the detection of glucose. ChemistrySelect, 2020, 5(27), 8093-8098.
[http://dx.doi.org/10.1002/slct.202002136]
[31]
Chakraborty, P.; Majumder, T.; Dhar, S.; Mondal, S.P. Non-enzymatic glucose sensing using hydrothermally grown ZnO nanorods: Sensitivity augmentation by carbon doping and carbon functionalization. Mater. Res. Express, 2018, 5(9), 095011.
[http://dx.doi.org/10.1088/2053-1591/aad5be]
[32]
Ma, S.; Yuan, X.; Yin, X.; Yang, Y.; Ren, L. A silver nanowire aerogel for non-enzymatic glucose detection. Microchem. J., 2023, 195, 109324.
[http://dx.doi.org/10.1016/j.microc.2023.109324]
[33]
Sonia, J.; Gokul, P.C.; Venkadesh, A.; Kumara, B.N.; Prasad, K.S. Nano Au decorated hybrid Cu2O cubes for non-enzymatic glucose sensing in beverages. J. Appl. Electrochem., 2024, 54(1), 137-145.
[http://dx.doi.org/10.1007/s10800-023-01948-2]
[34]
Pak, M.; Moshaii, A.; Nikkhah, M.; Abbasian, S.; Siampour, H. Nickel-gold bimetallic nanostructures with the improved electrochemical performance for non-enzymatic glucose determination. J. Electroanal. Chem., 2021, 900, 115729.
[http://dx.doi.org/10.1016/j.jelechem.2021.115729]
[35]
Zang, G.; Hao, W.; Li, X.; Huang, S.; Gan, J.; Luo, Z.; Zhang, Y. Copper nanowires-MOFs-graphene oxide hybrid nanocomposite targeting glucose electro-oxidation in neutral medium. Electrochim. Acta, 2018, 277, 176-184.
[http://dx.doi.org/10.1016/j.electacta.2018.05.016]
[36]
Jia, L.; Wei, X.; Lv, L.; Zhang, X.; Duan, X.; Xu, Y.; Liu, K.; Wang, J. Electrodeposition of hydroxyapatite on nickel foam and further modification with conductive polyaniline for non-enzymatic glucose sensing. Electrochim. Acta, 2018, 280, 315-322.
[http://dx.doi.org/10.1016/j.electacta.2018.05.130]
[37]
Yoon, H.; Xuan, X.; Jeong, S.; Park, J.Y. Wearable, robust, non-enzymatic continuous glucose monitoring system and its in vivo investigation. Biosens. Bioelectron., 2018, 117, 267-275.
[http://dx.doi.org/10.1016/j.bios.2018.06.008] [PMID: 29909198]
[38]
Naikoo, G.A.; Salim, H.; Hassan, I.U.; Awan, T.; Arshad, F.; Pedram, M.Z.; Ahmed, W.; Qurashi, A. Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management- A review. Front Chem., 2021, 9, 748957.
[http://dx.doi.org/10.3389/fchem.2021.748957] [PMID: 34631670]
[39]
Ngo, Y.L.T.; Choi, W.M.; Chung, J.S.; Hur, S.H. Highly biocompatible phenylboronic acid-functionalized graphitic carbon nitride quantum dots for the selective glucose sensor. Sens. Actuators B Chem., 2019, 282, 36-44.
[http://dx.doi.org/10.1016/j.snb.2018.11.031]
[40]
Largeaud, F.; Kokoh, K.B.; Beden, B.; Lamy, C. On the electrochemical reactivity of anomers: Electrocatalytic oxidation of α- and β-d-glucose on platinum electrodes in acid and basic media. J. Electroanal. Chem., 1995, 397(1-2), 261-269.
[http://dx.doi.org/10.1016/0022-0728(95)04139-8]
[41]
Zhai, Y.J.; Li, J.H.; Chu, X.Y.; Xu, M.Z.; Jin, F.J.; Li, X.; Fang, X.; Wei, Z.P.; Wang, X.H. MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection. J. Alloys Compd., 2016, 672, 600-608.
[http://dx.doi.org/10.1016/j.jallcom.2016.02.130]
[42]
Dong, Q.; Ryu, H.; Lei, Y. Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim. Acta, 2021, 370, 137744.
[http://dx.doi.org/10.1016/j.electacta.2021.137744]
[43]
Masoomi-Godarzi, S.; Khodadadi, A.A.; Vesali-Naseh, M.; Mortazavi, Y. Highly stable and selective non-enzymatic glucose biosensor using carbon nanotubes decorated by Fe3O4 nanoparticles. J. Electrochem. Soc., 2014, 161(1), B19-B25.
[http://dx.doi.org/10.1149/2.057401jes]
[44]
Zhou, D.; Cao, X.; Wang, Z.; Hao, S.; Hou, X.; Qu, F.; Du, G.; Asiri, A.M.; Zheng, C.; Sun, X. Fe3N-Co2N nanowires array: A non-noble-metal bifunctional catalyst electrode for high-performance glucose oxidation and H2O2 reduction toward non-enzymatic sensing applications. Chemistry, 2017, 23(22), 5214-5218.
[http://dx.doi.org/10.1002/chem.201700594] [PMID: 28266077]
[45]
Cummings, C.Y.; Bonné, M.J.; Edler, K.J.; Helton, M.; McKee, A.; Marken, F. Direct reversible voltammetry and electrocatalysis with surface-stabilised Fe2O3 redox states. Electrochem. Commun., 2008, 10(11), 1773-1776.
[http://dx.doi.org/10.1016/j.elecom.2008.09.018]
[46]
Naghib, S.M.; Rahmanian, M.; Majidzadeh-A, K.; Asiaei, S.; Vahidi, O. Novel magnetic nanocomposites comprising reduced graphene oxide/Fe3O4/gelatin utilized in ultrasensitive non-enzymatic biosensing. Int. J. Electrochem. Sci., 2016, 11(12), 10256-10269.
[http://dx.doi.org/10.20964/2016.12.29]
[47]
Wang, F.; Liu, L.; Li, W.J. Graphene-based glucose sensors: A brief review. IEEE Trans. Nanobiosci., 2015, 14(8), 818-834.
[http://dx.doi.org/10.1109/TNB.2015.2475338] [PMID: 26571535]
[48]
Sheng, W.; Zhu, G.; Lu, Q.; Kaplan, D.L. Metal oxide nanomaterials with nitrogen-doped graphene-silk nanofiber complexes as templates. Part. Part. Syst. Charact., 2016, 33(5), 286-292.
[http://dx.doi.org/10.1002/ppsc.201600019]
[49]
Sheng, W.; Zhu, G.; Kaplan, D.L.; Cao, C.; Zhu, H.; Lu, Q. Silk-regulated hierarchical hollow magnetite/carbon nanocomposite spheroids for lithium-ion battery anodes. Nanotechnology, 2015, 26(11), 115603.
[http://dx.doi.org/10.1088/0957-4484/26/11/115603] [PMID: 25706314]
[50]
Zhang, C.; Qian, L.; Zhang, K.; Yuan, S.; Xiao, J.; Wang, S. Hierarchical porous Ni/NiO core–shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(19), 10519-10525.
[http://dx.doi.org/10.1039/C5TA01071C]
[51]
Ni, Y.; Sun, Z.; Zeng, Z.; Liu, F.; Qin, J. Hydrothermal fabrication of hierarchical CuO nanoflowers for dual-function amperometric sensing of hydrogen peroxide and glucose. New J. Chem., 2019, 43(47), 18629-18636.
[http://dx.doi.org/10.1039/C9NJ04236A]
[52]
Chakraborty, P.; Dhar, S.; Debnath, K.; Mondal, S.P. Glucose and hydrogen peroxide dual-mode electrochemical sensing using hydrothermally grown CuO nanorods. J. Electroanal. Chem., 2019, 833, 213-220.
[http://dx.doi.org/10.1016/j.jelechem.2018.11.060]
[53]
Hou, C.; Xu, Q.; Yin, L.; Hu, X. Metal–organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. Analyst, 2012, 137(24), 5803-5808.
[http://dx.doi.org/10.1039/c2an35954e] [PMID: 23095860]
[54]
Jana, S.; Mondal, G.; Mitra, B.C.; Bera, P.; Chakraborty, B.; Mondal, A.; Ghosh, A. Facile synthesis of nickel oxide thin films from PVP encapsulated nickel sulfide thin films: An efficient material for electrochemical sensing of glucose, hydrogen peroxide and photodegradation of dye. New J. Chem., 2017, 41(24), 14985-14994.
[http://dx.doi.org/10.1039/C7NJ02985C]
[55]
Wang, D.; Zheng, C.; Li, Y.; Han, C.; Fang, H.; Fang, X.; Zhao, H. Sensitive non-invasive electrochemical sensing of glucose in saliva using amorphous SnOx decorated one-dimensional CuO nanorods rich in oxygen vacancy defects. Appl. Surf. Sci., 2022, 592, 153349.
[http://dx.doi.org/10.1016/j.apsusc.2022.153349]
[56]
Zhang, W.; Li, X.; Zou, R.; Wu, H.; Shi, H.; Yu, S.; Liu, Y. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Sci. Rep., 2015, 5(1), 11129.
[http://dx.doi.org/10.1038/srep11129] [PMID: 26052919]
[57]
Zhang, C.; Ni, H.; Chen, R.; Zhan, W.; Zhang, B.; Lei, R.; Xiao, T.; Zha, Y. Enzyme-free glucose sensing based on Fe3O4 nanorod arrays. Mikrochim. Acta, 2015, 182(9-10), 1811-1818.
[http://dx.doi.org/10.1007/s00604-015-1511-y]
[58]
Wang, D.; Cai, D.; Wang, C.; Liu, B.; Wang, L.; Liu, Y.; Li, H.; Wang, Y.; Li, Q.; Wang, T. Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors. Nanotechnology, 2016, 27(25), 255501.
[http://dx.doi.org/10.1088/0957-4484/27/25/255501] [PMID: 27181988]
[59]
Dar, G.N.; Umar, A.; Zaidi, S.A.; Baskoutas, S.; Kim, S.H.; Abaker, M.; Hajry, A.A.; Sayari, A.S.A. Fabrication of highly sensitive non-enzymatic glucose biosensor based on ZnO nanorods. Sci. Adv. Mater., 2011, 3(6), 901-906.
[http://dx.doi.org/10.1166/sam.2011.1242]

© 2025 Bentham Science Publishers | Privacy Policy