Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Research Article

Chitosan-incorporated Bioceramic-based Nanomaterials for Localized Release of Therapeutics and Bone Regeneration: An Overview of Recent Advances and Progresses

Author(s): Sajad Safarzadeh, M.R. Mozafari and Seyed Morteza Naghib*

Volume 28, Issue 15, 2024

Published on: 13 May, 2024

Page: [1190 - 1214] Pages: 25

DOI: 10.2174/0113852728304647240426201554

Price: $65

Abstract

The usage of nanoparticles in tissue engineering applications has increased significantly in the last several years. Functional tissues are developed by regulating cell proliferation, differentiation, and migration on nanostructured scaffolds containing cells. These scaffolds provide an environment that is more structurally supportive than the microarchitecture of natural bone. Given its exceptional properties, such as its osteogenic potential, biocompatibility, and biodegradability, chitosan is a good and promising biomaterial. Unfortunately, chitosan's low mechanical strength makes it unsuitable for load-bearing applications. By mixing chitosan with other biomaterials, this drawback might be mitigated. Bone tissue engineering uses both bioresorbable materials like tricalcium phosphate and bioactive materials like hydroxyapatite and bioglass. Alumina and titanium are examples of bioinert materials that are part of these bioceramics. When produced at nanoscale scales, these materials have a larger surface area and better cell adhesion. This review paper will go into great detail on the bioinert, bioresorbable, and bioactive nanoceramics-reinforced chitosan scaffolds for bone tissue engineering.

Graphical Abstract

[1]
Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T.; Marei, H. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomedicine, 2018, 13, 5637-5655.
[http://dx.doi.org/10.2147/IJN.S153758] [PMID: 30288038]
[2]
Sahoo, S.K.; Dilnawaz, F. Graphene oxide/reduced graphene oxide nanomaterials for targeted photothermal cancer therapy. Curr. Org. Chem., 2023, 27(10), 844-851.
[http://dx.doi.org/10.2174/1385272827666230821102638]
[3]
Sharma, S.; Singh, A. Synthesis of graphene-based nanomaterials for medicinal applications: A mini-review. Curr. Org. Chem., 2022, 26(11), 1112-1118.
[http://dx.doi.org/10.2174/1385272826666220621141128]
[4]
Zhang, W.; Chen, Y. Recently published patents on janus base nanomaterials for RNA delivery. Curr. Org. Chem., 2023, 27(19), 1738-1740.
[http://dx.doi.org/10.2174/0113852728266064231017181717]
[5]
Zhao, H.; Liu, M.; Zhang, Y.; Yin, J.; Pei, R. Nanocomposite hydrogels for tissue engineering applications. Nanoscale, 2020, 12(28), 14976-14995.
[http://dx.doi.org/10.1039/D0NR03785K] [PMID: 32644089]
[6]
Banerjee, B.; Singh, A.; Sharma, A.; Priya, A.; Kaur, M.; Kaur, G. Ultrasound-assisted synthesis of biologically promising organoselenium scaffolds. Curr. Org. Chem., 2023, 27(7), 568-579.
[http://dx.doi.org/10.2174/1385272827666230522151128]
[7]
Bhatt, K.; Patel, D.; Rathod, M.; Patel, A.; Shah, D. An update on the recent green synthetic approaches for imidazo[1,2-a] pyridine: A privileged scaffold. Curr. Org. Chem., 2023, 26(22), 2016-2054.
[http://dx.doi.org/10.2174/1385272827666230123124441]
[8]
Ratnani, S.; Bargujar, S.; Khulbe, M.; Kathuria, A. Applications of choline chloride-based deep eutectic solvents as sustainable media and catalyst in the synthesis of heterocyclic scaffolds. Curr. Org. Chem., 2022, 26(8), 745-755.
[http://dx.doi.org/10.2174/1385272826666220602105646]
[9]
Ahmed, S. Annu; Ali, A.; Sheikh, J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol., 2018, 116, 849-862.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.176] [PMID: 29730001]
[10]
Tamay, D.G.; Dursun Usal, T.; Alagoz, A.S.; Yucel, D.; Hasirci, N.; Hasirci, V. 3D and 4D printing of polymers for tissue engineering applications. Front. Bioeng. Biotechnol., 2019, 7, 164.
[http://dx.doi.org/10.3389/fbioe.2019.00164] [PMID: 31338366]
[11]
Khare, D.; Basu, B.; Dubey, A.K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials, 2020, 258, 120280.
[PMID: 32810650]
[12]
Chopra, H.; Gandhi, S.; Gautam, R.K.; Kamal, M.A. Bacterial nanocellulose based wound dressings: Current and future prospects. Curr. Pharm. Des., 2022, 28(7), 570-580.
[http://dx.doi.org/10.2174/1381612827666211021162828] [PMID: 34674616]
[13]
Alka; Verma, A.; Mishra, N.; Singh, N.; Singh, P.; Nisha, R.; Pal, R.R.; Saraf, S.A. Polymeric gel scaffolds and biomimetic environments for wound healing. Curr. Pharm. Des., 2023, 29(40), 3221-3239.
[http://dx.doi.org/10.2174/1381612829666230816100631] [PMID: 37584354]
[14]
Sithole, M.N.; Mndlovu, H.; du Toit, L.C.; Choonara, Y.E. Advances in stimuli-responsive hydrogels for tissue engineering and regenerative medicine applications: A review towards improving structural design for 3D printing. Curr. Pharm. Des., 2023, 29(40), 3187-3205.
[http://dx.doi.org/10.2174/0113816128246888230920060802] [PMID: 37779402]
[15]
Jayachandran, V.; Murugan, S.S.; Dalavi, P.A.; Vishalakshi, G.Y.D.; Seong, G.H. Alginate-based composite microspheres: PSreparations and applications for bone tissue engineering. Curr. Pharm. Des., 2022, 28(13), 1067-1081.
[http://dx.doi.org/10.2174/1381612828666220518142911] [PMID: 35593346]
[16]
Soliman, A.M.; Teoh, S.L.; Das, S. Fish gelatin: Current nutritional, medicinal, tissue repair applications, and as a carrier of drug delivery. Curr. Pharm. Des., 2022, 28(12), 1019-1030.
[http://dx.doi.org/10.2174/1381612828666220128103725] [PMID: 35088658]
[17]
Zarrintaj, P.; Seidi, F.; Azarfam, Y.M.; Yazdi, K.M.; Erfani, A.; Barani, M.; Chauhan, N.P.S.; Rabiee, N.; Kuang, T.; Lipka, K.J.; Saeb, M.R.; Mozafari, M. Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. Compos., Part B Eng., 2023, 258, 110701.
[http://dx.doi.org/10.1016/j.compositesb.2023.110701]
[18]
Farahzadi, R.; Adibkia, K.; Ehsani, A.; Jodaei, A.; Jalali, B.M.; Fathi, E. Nanomaterials and stem cell differentiation potential: An overview of biological aspects and biomedical efficacy. Curr. Med. Chem., 2022, 29(10), 1804-1823.
[http://dx.doi.org/10.2174/0929867328666210712193113] [PMID: 34254903]
[19]
Müller, C.; Hank, E.; Giera, M.; Bracher, F. Dehydrocholesterol reductase 24 (DHCR24): Medicinal chemistry, pharmacology and novel therapeutic options. Curr. Med. Chem., 2022, 29(23), 4005-4025.
[http://dx.doi.org/10.2174/0929867328666211115121832] [PMID: 34781860]
[20]
Pina, C.D.; Falletta, E. Advances in polyaniline for biomedical applications. Curr. Med. Chem., 2022, 29(2), 329-357.
[http://dx.doi.org/10.2174/0929867328666210419135519] [PMID: 33874868]
[21]
Sahoo, B.M.; Banik, B.K.; Kumar, B.V.V.R.; Panda, K.C.; Tiwari, A.; Tiwari, V.; Singh, S.; Kumar, M. Microwave induced green synthesis: Sustainable technology for efficient development of bioactive pyrimidine scaffolds. Curr. Med. Chem., 2023, 30(9), 1029-1059.
[http://dx.doi.org/10.2174/0929867329666220622150013] [PMID: 35733315]
[22]
Tang, Z.; Tan, Y.; Chen, H.; Wan, Y. Benzoxazine: A privileged scaffold in medicinal chemistry. Curr. Med. Chem., 2023, 30(4), 372-389.
[http://dx.doi.org/10.2174/0929867329666220705140846] [PMID: 35792127]
[23]
Min, J.; Patel, M.; Koh, W.G. Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers, 2018, 10(10), 1078.
[http://dx.doi.org/10.3390/polym10101078] [PMID: 30961003]
[24]
Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Sadeghianmaryan, A.; Jalalvand, M.; Hossain, M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int. J. Biol. Macromol., 2022, 218, 930-968.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.140] [PMID: 35896130]
[25]
Kumar, R.; Sharma, R.; Sharma, D.K.; Pyrazole, A. Privileged scaffold of medicinal chemistry: A comprehensive review. Curr. Top. Med. Chem., 2023, 23(22), 2097-2115.
[http://dx.doi.org/10.2174/1568026623666230714161726] [PMID: 37455456]
[26]
Li, W.; Zhang, J.; Wang, M.; Dong, R.; Zhou, X.; Zheng, X.; Sun, L. Pyrimidine-fused dinitrogenous penta-heterocycles as a privileged scaffold for anti-cancer drug discovery. Curr. Top. Med. Chem., 2022, 22(4), 284-304.
[http://dx.doi.org/10.2174/1568026622666220111143949] [PMID: 35021973]
[27]
Madaan, R.; Singla, R.K.; Kumar, S.; Dubey, A.K.; Kumar, D.; Sharma, P.; Bala, R.; Singla, S.; Shen, B. Bergenin-a biologically active scaffold: Nanotechnological perspectives. Curr. Top. Med. Chem., 2022, 22(2), 132-149.
[http://dx.doi.org/10.2174/1568026621666211015092654] [PMID: 34649489]
[28]
Saxena, P.; Gambhir, S.; Dixit, M. Insight into tumor hypoxia: Radionuclide-based biomarker as diagnostic tools. Curr. Top. Med. Chem., 2023, 23(12), 1136-1154.
[http://dx.doi.org/10.2174/1568026623666230515154442] [PMID: 37190811]
[29]
Sharma, A.; Piplani, P. Acridine: A scaffold for the development of drugs for Alzheimer’s disease. Curr. Top. Med. Chem., 2023, 23(13), 1260-1276.
[http://dx.doi.org/10.2174/1568026623666230203141543] [PMID: 36740790]
[30]
Han, F.; Wang, J.; Ding, L.; Hu, Y.; Li, W.; Yuan, Z.; Guo, Q.; Zhu, C.; Yu, L.; Wang, H.; Zhao, Z.; Jia, L.; Li, J.; Yu, Y.; Zhang, W.; Chu, G.; Chen, S.; Li, B. Tissue engineering and regenerative medicine: Achievements, future, and sustainability in Asia. Front. Bioeng. Biotechnol., 2020, 8, 83.
[http://dx.doi.org/10.3389/fbioe.2020.00083] [PMID: 32266221]
[31]
Hama, R.; Ulziibayar, A.; Reinhardt, J.W.; Watanabe, T.; Kelly, J.; Shinoka, T. Recent developments in biopolymer-based hydrogels for tissue engineering applications. Biomolecules, 2023, 13(2), 280.
[http://dx.doi.org/10.3390/biom13020280] [PMID: 36830649]
[32]
Bian, Y. Bone tissue engineering for treating osteonecrosis of the femoral head. Exploration, 2023, 3(2), 20210105.
[33]
Dibazar, Z.E.; Nie, L.; Azizi, M.; Nekounam, H.; Hamidi, M.; Shavandi, A.; Izadi, Z.; Delattre, C. Bioceramics/electrospun polymeric nanofibrous and carbon nanofibrous scaffolds for bone tissue engineering applications. Materials, 2023, 16(7), 2799.
[http://dx.doi.org/10.3390/ma16072799] [PMID: 37049093]
[34]
Zhang, Y.; Zhang, C.; Li, Y.; Zhou, L.; Dan, N.; Min, J.; Chen, Y.; Wang, Y. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int. J. Biol. Macromol., 2023, 246, 125672.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125672] [PMID: 37406920]
[35]
Haider, M.T.; Ridlmaier, N.; Smit, D.J.; Taipaleenmäki, H. Interleukins as mediators of the tumor cell-bone cell crosstalk during the initiation of breast cancer bone metastasis. Int. J. Mol. Sci., 2021, 22(6), 2898.
[http://dx.doi.org/10.3390/ijms22062898] [PMID: 33809315]
[36]
Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater., 2021, 31(21), 2010609.
[http://dx.doi.org/10.1002/adfm.202010609]
[37]
Chen, H.; Liu, Y.; Wang, C.; Zhang, A.; Chen, B.; Han, Q.; Wang, J. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput. Biol. Med., 2021, 130, 104241.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104241] [PMID: 33529844]
[38]
Hussain, Z. Decoding bone-inspired and cell-instructive cues of scaffolds for bone tissue engineering. Engineered. Regenerat., 2023, 5(1), 21-44.
[39]
Qin, D.; Wang, N.; You, X.G.; Zhang, A.D.; Chen, X.G.; Liu, Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: Ongoing research and perspectives. Biomater. Sci., 2022, 10(2), 318-353.
[http://dx.doi.org/10.1039/D1BM01294K] [PMID: 34783809]
[40]
Uppstu, P. Bioresorbable polymer-bioactive glass composite scaffolds for bone regeneration. Thesis; Åbo Akademi University, 2024.
[41]
Lekhavadhani, S.; Shanmugavadivu, A.; Selvamurugan, N. Role and architectural significance of porous chitosan-based scaffolds in bone tissue engineering. Int. J. Biol. Macromol., 2023, 251, 126238.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126238] [PMID: 37567529]
[42]
Manzini, B.M.; Machado, L.M.R.; Noritomi, P.Y.; da Silva, J.V.L. Advances in Bone tissue engineering: A fundamental review. J. Biosci., 2021, 46(1), 17.
[http://dx.doi.org/10.1007/s12038-020-00122-6] [PMID: 33737501]
[43]
Thangavel, M.; Selvam, E.R. Review of physical, mechanical, and biological characteristics of 3D-printed bioceramic scaffolds for bone tissue engineering applications. ACS Biomater. Sci. Eng., 2022, 8(12), 5060-5093.
[http://dx.doi.org/10.1021/acsbiomaterials.2c00793] [PMID: 36415173]
[44]
Karmakar, R.; Dey, S.; Alam, A.; Khandelwal, M.; Pati, F.; Rengan, A.K. Attributes of nanomaterials and nanotopographies for improved bone tissue engineering and regeneration. ACS Appl. Bio Mater., 2023, 6(10), 4020-4041.
[http://dx.doi.org/10.1021/acsabm.3c00549] [PMID: 37691480]
[45]
Mondal, S.; Nguyen, T.P.; Pham, V.H.; Hoang, G.; Manivasagan, P.; Kim, M.H.; Nam, S.Y.; Oh, J. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram. Int., 2020, 46(3), 3443-3455.
[http://dx.doi.org/10.1016/j.ceramint.2019.10.057]
[46]
Preethi Soundarya, S.; Haritha Menon, A.; Viji Chandran, S.; Selvamurugan, N. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int. J. Biol. Macromol., 2018, 119, 1228-1239.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.056] [PMID: 30107161]
[47]
Kazimierczak, P.; Wessely-Szponder, J.; Palka, K.; Barylyak, A.; Zinchenko, V.; Przekora, A. Hydroxyapatite or fluorapatite-which bioceramic is better as a base for the production of bone scaffold?-A comprehensive comparative study. Int. J. Mol. Sci., 2023, 24(6), 5576.
[http://dx.doi.org/10.3390/ijms24065576] [PMID: 36982648]
[48]
Sezer, N.; Evis, Z.; Koç, M. Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. J. Magnes. Alloys, 2021, 9(2), 392-415.
[http://dx.doi.org/10.1016/j.jma.2020.09.014]
[49]
Zhao, C.; Liu, W.; Zhu, M.; Wu, C.; Zhu, Y. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioact. Mater., 2022, 18, 383-398.
[http://dx.doi.org/10.1016/j.bioactmat.2022.02.010] [PMID: 35415311]
[50]
Safari, B.; Aghanejad, A.; Roshangar, L.; Davaran, S. Osteogenic effects of the bioactive small molecules and minerals in the scaffold-based bone tissue engineering. Colloids Surf. B Biointerfaces, 2021, 198, 111462.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111462] [PMID: 33239252]
[51]
Pádua, A.S.; Figueiredo, L.; Silva, J.C.; Borges, J.P. Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Prog. Biomater., 2023, 12(2), 137-153.
[http://dx.doi.org/10.1007/s40204-023-00217-x] [PMID: 36757613]
[52]
Soni, B. Surface-modified biomaterials in medical device development. Engineered Biomaterials: Synthesis and Applications; Springer, 2023, pp. 465-494.
[http://dx.doi.org/10.1007/978-981-99-6698-1_15]
[53]
Agrawal, R. A role of biomaterials in tissue engineering and drug encapsulation. Proceedings of the Institution of Mechanical Engineers, 2023.
[http://dx.doi.org/10.1177/09544089221150740]
[54]
Macías, I.; Alcorta-Sevillano, N.; Infante, A.; Rodríguez, C.I. Cutting edge endogenous promoting and exogenous driven strategies for bone regeneration. Int. J. Mol. Sci., 2021, 22(14), 7724.
[http://dx.doi.org/10.3390/ijms22147724] [PMID: 34299344]
[55]
Li, N.; Cui, J.; Chi, M.; Thieringer, F.M.; Sharma, N. Building a better bone: The synergy of 2D nanomaterials and 3D printing for bone tissue engineering. Mater. Des., 2023, 234, 112362.
[http://dx.doi.org/10.1016/j.matdes.2023.112362]
[56]
Miron, R.J. Optimized bone grafting. Periodontol., 2020, 2023, prd.12517.
[http://dx.doi.org/10.1111/prd.12517] [PMID: 37610202]
[57]
Salehi Abar, E.; Vandghanooni, S.; Torab, A.; Jaymand, M.; Eskandani, M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int. J. Biol. Macromol., 2024, 254(Pt 1), 127556.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127556] [PMID: 37884249]
[58]
Khan, M.U.A.; Aslam, M.A.; Abdullah, B.M.F.; Hasan, A.; Shah, S.A.; Stojanović, G.M. Recent perspective of polymeric biomaterial in tissue engineering- A review. Mater. Today Chem., 2023, 34, 101818.
[http://dx.doi.org/10.1016/j.mtchem.2023.101818]
[59]
Mashak, A.; Bazraee, S.; Mobedi, H. Advances in drug delivery and biomedical applications of hydroxyapatite-based systems: A review. Bull. Mater. Sci., 2022, 45(4), 183.
[http://dx.doi.org/10.1007/s12034-022-02758-6]
[60]
Oni, O.P. Syntheses and applications of mesoporous hydroxyapatite: A review. Mater. Chem. Front., 2023, 7, 9-43.
[http://dx.doi.org/10.1039/D2QM00686C]
[61]
Jirofti, N.; Hashemi, M.; Moradi, A.; Kalalinia, F. Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications. Int. J. Biol. Macromol., 2023, 252, 126279.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126279] [PMID: 37572811]
[62]
Kumar, R.; Pattanayak, I.; Dash, P.A.; Mohanty, S. Bioceramics: A review on design concepts toward tailor-made (multi)-functional materials for tissue engineering applications. J. Mater. Sci., 2023, 58(8), 3460-3484.
[http://dx.doi.org/10.1007/s10853-023-08226-8]
[63]
Khalid, H.; Chaudhry, A.A. Basics of hydroxyapatite-structure, synthesis, properties, and clinical applications. Handbook of Ionic Substituted Hydroxyapatites; Elsevier, 2020, pp. 85-115.
[http://dx.doi.org/10.1016/B978-0-08-102834-6.00004-5]
[64]
Shi, H.; Zhou, Z.; Li, W.; Fan, Y.; Li, Z.; Wei, J. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals, 2021, 11(2), 149.
[http://dx.doi.org/10.3390/cryst11020149]
[65]
Abdul Halim, N.A.; Hussein, M.Z.; Kandar, M.K. Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery. Int. J. Nanomedicine, 2021, 16, 6477-6496.
[http://dx.doi.org/10.2147/IJN.S298936] [PMID: 34584412]
[66]
Bhat, S.; Uthappa, U.T.; Altalhi, T.; Jung, H.Y.; Kurkuri, M.D. Functionalized porous hydroxyapatite scaffolds for tissue engineering applications: A focused review. ACS Biomater. Sci. Eng., 2022, 8(10), 4039-4076.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00438] [PMID: 34499471]
[67]
Madhavasarma, P.; Veeraragavan, P.; Kumaravel, S.; Sridevi, M. Studies on physiochemical modifications on biologically important hydroxyapatite materials and their characterization for medical applications. Biophys. Chem., 2020, 267, 106474.
[http://dx.doi.org/10.1016/j.bpc.2020.106474] [PMID: 32987323]
[68]
El-Habashy, S.E.; Eltaher, H.M.; Gaballah, A.; Zaki, E.I.; Mehanna, R.A.; Kamel, E.A.H. Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis. Mater. Sci. Eng. C, 2021, 119, 111599.
[http://dx.doi.org/10.1016/j.msec.2020.111599] [PMID: 33321643]
[69]
Gao, Y.; Moshayedi, A.J.; Sanatizadeh, E.; Behfarnia, P.; Kolamroudi, M.K.; Semirumi, D.T.; Yusof, M.Y.P.M. Analysis of amorphous structure with polycaprolactone-hydroxyapatite nanoparticles fabricated by 3D bioprinter technique for bone tissue engineering. Ceram. Int., 2023, 49(10), 16053-16060.
[http://dx.doi.org/10.1016/j.ceramint.2023.01.203]
[70]
Biedrzycka, A.; Skwarek, E.; Osypiuk, D.; Cristóvao, B. Synthesis of hydroxyapatite/iron oxide composite and comparison of selected structural, surface, and electrochemical properties. Materials, 2022, 15(3), 1139.
[http://dx.doi.org/10.3390/ma15031139] [PMID: 35161081]
[71]
Gomes, D.S.; Santos, A.M.C.; Neves, G.A.; Menezes, R.R. A brief review on hydroxyapatite production and use in biomedicine. Ceramica, 2019, 65(374), 282-302.
[http://dx.doi.org/10.1590/0366-69132019653742706]
[72]
Farkas, N.I.; Turdean, G.L.; Bizo, L.; Marincaș, L.; Cadar, O.; Tudoran, B.L.; Réka, B. The effect of chemical composition and morphology on the drug delivery properties of hydroxyapatite-based biomaterials. Ceram. Int., 2023, 49(15), 25156-25169.
[http://dx.doi.org/10.1016/j.ceramint.2023.05.047]
[73]
Liu, D.; Liu, Z.; Zou, J.; Li, L.; Sui, X.; Wang, B.; Yang, N.; Wang, B. Synthesis and characterization of a hydroxyapatite-sodium alginate-chitosan scaffold for bone regeneration. Front. Mater., 2021, 8, 648980.
[http://dx.doi.org/10.3389/fmats.2021.648980]
[74]
Arokiasamy, P.; Abdullah, A.B.M.M.; Abd Rahim, S.Z.; Luhar, S.; Sandu, A.V.; Jamil, N.H.; Nabiałek, M. Synthesis methods of hydroxyapatite from natural sources: A review. Ceram. Int., 2022, 48(11), 14959-14979.
[http://dx.doi.org/10.1016/j.ceramint.2022.03.064]
[75]
Mohd Pu’ad, N.A.S.; Abdul Haq, R.H.; Mohd Noh, H.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Synthesis method of hydroxyapatite: A review. Mater. Today Proc., 2020, 29, 233-239.
[http://dx.doi.org/10.1016/j.matpr.2020.05.536]
[76]
San Thian, E.; Ahmad, Z.; Huang, J.; Edirisinghe, M.J.; Jayasinghe, S.N.; Ireland, D.C.; Brooks, R.A.; Rushton, N.; Bonfield, W.; Best, S.M. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials, 2008, 29(12), 1833-1843.
[http://dx.doi.org/10.1016/j.biomaterials.2008.01.007] [PMID: 18255136]
[77]
Teshima, K.; Lee, S.H.; Sakurai, M.; Kameno, Y.; Yubuta, K.; Suzuki, T.; Shishido, T.; Endo, M.; Oishi, S. Well-formed one-dimensional hydroxyapatite crystals grown by an environmentally friendly flux method. Cryst. Growth Des., 2009, 9(6), 2937-2940.
[http://dx.doi.org/10.1021/cg900159j]
[78]
Sasikumar, S.; Vijayaraghavan, R. Solution combustion synthesis of bioceramic calcium phosphates by single and mixed fuels-A comparative study. Ceram. Int., 2008, 34(6), 1373-1379.
[http://dx.doi.org/10.1016/j.ceramint.2007.03.009]
[79]
Sossa, P.A.F.; Giraldo, B.S.; Garcia, B.C.G.; Parra, E.R.; Arango, P.J.A. Comparative study between natural and synthetic hydroxyapatite: Structural, morphological and bioactivity properties. Materia, 2018, 23(4), 23.
[http://dx.doi.org/10.1590/s1517-707620180004.0551]
[80]
Dridi, A.; Riahi, K.Z.; Somrani, S. Mechanism of apatite formation on a poorly crystallized calcium phosphate in a simulated body fluid (SBF) at 37°C. J. Phys. Chem. Solids, 2021, 156, 110122.
[http://dx.doi.org/10.1016/j.jpcs.2021.110122]
[81]
Prakash, C.A.V.; Venda, I.; Thamizharasi, V. Synthesis and characterization of surfactant assisted hydroxyapatite powder using microemulsion method. Mater. Today Proc., 2022, 51, 1788-1792.
[http://dx.doi.org/10.1016/j.matpr.2021.05.059]
[82]
Karunakaran, G.; Cho, E-B.; Kumar, G.S.; Kolesnikov, E.; Dmitry, A.; Ali, S. Microwave-assisted synthesis of superparamagnetic mesoporous Co-doped hydroxyapatite nanorods for various biomedical applications. Ceram. Int., 2021, 47(6), 8642-8652.
[http://dx.doi.org/10.1016/j.ceramint.2020.11.234]
[83]
Sebastiammal, S.; Fathima, A.S.L.; Al-Ghanim, K.A.; Nicoletti, M.; Baskar, G.; Iyyappan, J.; Govindarajan, M. Synthesis and characterisation of magnesium-wrapped hydroxyapatite nanomaterials for biomedical applications. Surf. Interfaces, 2024, 44, 103779.
[http://dx.doi.org/10.1016/j.surfin.2023.103779]
[84]
Arantes, T.; Coimbra, L.; Cristovan, F.; Arantes, T.; Rosa, G.; Lião, L. Synthesis and optimization of colloidal hydroxyapatite nanoparticles by hydrothermal processes. J. Braz. Chem. Soc., 2018, 29, 1894-1903.
[http://dx.doi.org/10.21577/0103-5053.20180065]
[85]
Zhou, Y.; Li, S.; Wang, D.; Han, X. Electrospinning synthesis of hydroxyapatite nanofibers assembled from nanorods and their adsorption for heavy metal ions. Pol. J. Environ. Stud., 2018, 28(2), 981-988.
[http://dx.doi.org/10.15244/pjoes/85123]
[86]
Mohd Pu’ad, N.A.S.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of hydroxyapatite from natural sources. Heliyon, 2019, 5(5), e01588.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01588] [PMID: 31080905]
[87]
Budiatin, A.S. Samirah; Gani, M.A.; Nilamsari, W.P.; Ardianto, C.; Khotib, J. The characterization of bovine bone-derived hydroxyapatite isolated using novel non-hazardous method. J. Biomimet. Biomater. Biomed. Eng., 2020, 45, 49-56.
[http://dx.doi.org/10.4028/www.scientific.net/JBBBE.45.49]
[88]
Firdaus Hussin, M.S.; Abdullah, H.Z.; Idris, M.I.; Wahap, A.M.A. Extraction of natural hydroxyapatite for biomedical applications-A review. Heliyon, 2022, 8(8), e10356.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10356] [PMID: 36082327]
[89]
Teoh, M.W.; Ng, C.K.; Lee, K.Y.S.; Singh, R.; Ting, C.H.; Chuah, Y.D.; Lim, Y.I.; Tan, C.Y.; Yeo, W.H. Synthesis and characterization of chicken bone‐derived hydroxyapatite incorporating pectin. Chem. Eng. Technol., 2023, 46(12), 2504-2512.
[http://dx.doi.org/10.1002/ceat.202300019]
[90]
Vijayaraghavan, P.; Rathi, M.A.; Almaary, K.S.; Alkhattaf, F.S.; Elbadawi, Y.B.; Chang, S.W.; Ravindran, B. Preparation and antibacterial application of hydroxyapatite doped Silver nanoparticles derived from chicken bone. J. King Saud Univ. Sci., 2022, 34(2), 101749.
[http://dx.doi.org/10.1016/j.jksus.2021.101749]
[91]
Osuchukwu, O.A.; Salihi, A.; Abdullahi, I.; Obada, D.O. Experimental data on the characterization of hydroxyapatite produced from a novel mixture of biowastes. Data Brief, 2022, 42, 108305.
[http://dx.doi.org/10.1016/j.dib.2022.108305] [PMID: 35664658]
[92]
Horta, M.K.S.; Westin, C.; Rocha, D.N.; Campos, J.B.; Souza, R.F.M.; Aguilar, M.S.; Moura, F.J. Hydroxyapatite from biowaste for biomedical applications: Obtainment, characterization and in vitro assays. Mater. Res., 2023, 26, e20220466.
[http://dx.doi.org/10.1590/1980-5373-mr-2022-0466]
[93]
Abdullah, H.Z. Natural hydroxyapatite from black tilapia fish bones and scales for biomedical applications. In: Sustainable Material for Biomedical Engineering Application; Zaman, W.S, W.K.W.S; Abdullah, N.A., Ed.; Springer: Singapore, 2023.
[94]
Surya, P.; Nithin, A.; Sundaramanickam, A.; Sathish, M. Synthesis and characterization of nano-hydroxyapatite from Sardinella longiceps fish bone and its effects on human osteoblast bone cells. J. Mech. Behav. Biomed. Mater., 2021, 119, 104501.
[http://dx.doi.org/10.1016/j.jmbbm.2021.104501] [PMID: 33865069]
[95]
Biedrzycka, A.; Skwarek, E.; Hanna, U.M. Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Adv. Colloid Interface Sci., 2021, 291, 102401.
[http://dx.doi.org/10.1016/j.cis.2021.102401] [PMID: 33773102]
[96]
Türk, S.; Altınsoy, İ.; Efe, C.G.; Ipek, M.; Özacar, M.; Bindal, C. Effect of solution and calcination time on sol-gel synthesis of hydroxyapatite. J. Bionics Eng., 2019, 16(2), 311-318.
[http://dx.doi.org/10.1007/s42235-019-0026-3]
[97]
Osuchukwu, O.A.; Salihi, A.; Abdullahi, I.; Obada, D.O. Synthesis and characterization of sol-gel derived hydroxyapatite from a novel mix of two natural biowastes and their potentials for biomedical applications. Mater. Today Proc., 2022, 62, 4182-4187.
[http://dx.doi.org/10.1016/j.matpr.2022.04.696]
[98]
Feng, P.; Zhao, R.; Yang, L.; Chen, S.; Wang, D.; Pan, H.; Shuai, C. Hydrothermal synthesis of hydroxyapatite nanorods and their use in PCL bone scaffold. Ceram. Int., 2022, 48(22), 33682-33692.
[http://dx.doi.org/10.1016/j.ceramint.2022.07.314]
[99]
Daryan, S.H.; Khavandi, A.; Javadpour, J. Surface engineered hollow hydroxyapatite microspheres: Hydrothermal synthesis and growth mechanisms. Solid State Sci., 2020, 106, 106301.
[http://dx.doi.org/10.1016/j.solidstatesciences.2020.106301]
[100]
Yoshimura, M.; Suda, H. Hydrothermal processing of hydroxyapatite: Past, present, and future. Hydroxyapatite and related materials; CRC press, 2017, pp. 45-72.
[http://dx.doi.org/10.1201/9780203751367-3]
[101]
Hoai, T.T.; Nga, N.K.; Giang, L.T.; Huy, T.Q.; Tuan, P.N.M.; Binh, B.T.T. Hydrothermal synthesis of hydroxyapatite nanorods for rapid formation of bone-like mineralization. J. Electron. Mater., 2017, 46(8), 5064-5072.
[http://dx.doi.org/10.1007/s11664-017-5509-6]
[102]
Niu, J.L. Hydrothermal synthesis of nano-crystalline hydroxyapatite. Key Eng. Mater., 2007, 330-332, 247-250.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.330-332.247]
[103]
Ruffini, A. Synthesis of nanostructured hydroxyapatite via controlled hydrothermal route. In: Biomaterial-supported Tissue Reconstruction or Regeneration; IntechOpen, 2019; p. 10.
[http://dx.doi.org/10.5772/intechopen.85091]
[104]
Chen, W.; Long, T.; Guo, Y-J.; Zhu, Z-A.; Guo, Y-P. Hydrothermal synthesis of hydroxyapatite coatings with oriented nanorod arrays. RSC Advances, 2014, 4(1), 185-191.
[http://dx.doi.org/10.1039/C3RA43664K] [PMID: 32261393]
[105]
Wang, Y.; Zhang, S.; Wei, K.; Zhao, N.; Chen, J.; Wang, X. Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater. Lett., 2006, 60(12), 1484-1487.
[http://dx.doi.org/10.1016/j.matlet.2005.11.053]
[106]
Zubieta-Otero, L.F.; Garcia, R.M.E. Obtention and characterization of nano bio-hydroxyapatite particles by combined hydrothermal alkaline and ultrasonic wet milling methods. Next Mater., 2023, 1(3), 100019.
[http://dx.doi.org/10.1016/j.nxmate.2023.100019]
[107]
Davila, C.D.F.; Paz, C.A.M.; Restrepo, L.S.M.; Pfeiffer, H.; Bon, R.R.R.; Garcia, R.R.M.E. Study of the coalescence phenomena in biogenic nano-hydroxyapatite produced by controlled calcination processes at low temperature. Ceram. Int., 2023, 49(11), 17524-17533.
[http://dx.doi.org/10.1016/j.ceramint.2023.02.119]
[108]
Alsharif, S.A.; Badran, M.I.; Moustafa, M.H.; Meshref, R.A.; Mohamed, E.I. Hydrothermal extraction and physicochemical characterization of biogenic hydroxyapatite nanoparticles from buffalo waste bones for in vivo xenograft in experimental rats. Sci. Rep., 2023, 13(1), 17490.
[http://dx.doi.org/10.1038/s41598-023-43989-9] [PMID: 37840064]
[109]
Kumar, G.S.; Karunakaran, G.; Girija, E.K.; Kolesnikov, E.; Minh, N.V.; Gorshenkov, M.V.; Kuznetsov, D. Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method. Ceram. Int., 2018, 44(10), 11257-11264.
[http://dx.doi.org/10.1016/j.ceramint.2018.03.170]
[110]
Kati, N. Effect of reaction time and heat treatment in the production of hydroxyapatite by hydrothermal synthesis. J. Therm. Anal. Calorim., 2022, 147, 13059-13071.
[http://dx.doi.org/10.24425/amm.2022.141070]
[111]
Bezzi, G.; Celotti, G.; Landi, E.; La Torretta, T.M.G.; Sopyan, I.; Tampieri, A. A novel sol-gel technique for hydroxyapatite preparation. Mater. Chem. Phys., 2003, 78(3), 816-824.
[http://dx.doi.org/10.1016/S0254-0584(02)00392-9]
[112]
Choi, G.; Choi, A.H.; Evans, L.A.; Akyol, S.; Ben-Nissan, B. A review: Recent advances in sol‐gel‐derived hydroxyapatite nanocoatings for clinical applications. J. Am. Ceram. Soc., 2020, 103(10), 5442-5453.
[http://dx.doi.org/10.1111/jace.17118]
[113]
Negrila, C.; Predoi, M.; Iconaru, S.; Predoi, D. Development of zinc-doped hydroxyapatite by sol-gel method for medical applications. Molecules, 2018, 23(11), 2986.
[http://dx.doi.org/10.3390/molecules23112986] [PMID: 30445754]
[114]
Ali, S.I.; Dutta, D.; Das, A.; Mandal, S.; Mandal, C.A. Understanding the structure-property correlation of tin oxide nanoparticles synthesized through the sol-gel technique. J. Lumin., 2023, 253, 119465.
[http://dx.doi.org/10.1016/j.jlumin.2022.119465]
[115]
Perveen, R.; Shujaat, S.; Qureshi, Z.; Nawaz, S.; Khan, M.I.; Iqbal, M. Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. J. Mater. Res. Technol., 2020, 9(4), 7817-7827.
[http://dx.doi.org/10.1016/j.jmrt.2020.05.004]
[116]
Kumar, A. Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor. J. Mol. Struct., 2020, 1220, 128654.
[http://dx.doi.org/10.1016/j.molstruc.2020.128654]
[117]
Ahmad, M.M.; Mushtaq, S.; Al Qahtani, H.S.; Sedky, A.; Alam, M.W. Investigation of TiO2 nanoparticles synthesized by sol-gel method for effectual photodegradation, oxidation and reduction reaction. Crystals, 2021, 11(12), 1456.
[http://dx.doi.org/10.3390/cryst11121456]
[118]
Verma, R.; Mishra, S.R.; Gadore, V.; Ahmaruzzaman, M. Hydroxyapatite-based composites: Excellent materials for environmental remediation and biomedical applications. Adv. Colloid Interface Sci., 2023, 315, 102890.
[http://dx.doi.org/10.1016/j.cis.2023.102890] [PMID: 37054653]
[119]
Zhang, K.; Zhou, Y.; Xiao, C.; Zhao, W.; Wu, H.; Tang, J.; Li, Z.; Yu, S.; Li, X.; Min, L.; Yu, Z.; Wang, G.; Wang, L.; Zhang, K.; Yang, X.; Zhu, X.; Tu, C.; Zhang, X. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Sci. Adv., 2019, 5(8), eaax6946.
[http://dx.doi.org/10.1126/sciadv.aax6946] [PMID: 31414050]
[120]
Munir, M.U.; Salman, S.; Ihsan, A.; Elsaman, T. Synthesis, characterization, functionalization and bio-applications of hydroxyapatite nanomaterials: An overview. Int. J. Nanomedicine, 2022, 17, 1903-1925.
[http://dx.doi.org/10.2147/IJN.S360670] [PMID: 35530974]
[121]
Ochoa, L.S.; Lara, O.W.; Beltrán, G.C.E. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications. Pharmaceutics, 2021, 13(10), 1642.
[http://dx.doi.org/10.3390/pharmaceutics13101642] [PMID: 34683935]
[122]
Kargozar, S.; Mollazadeh, S.; Kermani, F.; Webster, T.J.; Nazarnezhad, S.; Hamzehlou, S.; Baino, F. Hydroxyapatite nanoparticles for improved cancer theranostics. J. Funct. Biomater., 2022, 13(3), 100.
[http://dx.doi.org/10.3390/jfb13030100] [PMID: 35893468]
[123]
Han, K.; Sathiyaseelan, A. A novel fabrication and characterization of PEGylated hydroxyapatite-zirconia oxide nanoparticles for biomedical application. Mater. Today Commun., 2023, 2023, 107617.
[124]
Liu, H.; Chen, F.; Xi, P.; Chen, B.; Huang, L.; Cheng, J.; Shao, C.; Wang, J.; Bai, D.; Zeng, Z. Biocompatible fluorescent hydroxyapatite: Synthesis and live cell imaging applications. J. Phys. Chem. C, 2011, 115(38), 18538-18544.
[http://dx.doi.org/10.1021/jp206843w]
[125]
Padovini, D.S.S.; de Azevedo-Silva, L.J.; Ferrairo, B.M.; Pereira, L.F.; Minim, P.R.; Pontes, F.M.L.; Fortulan, C.A.; Borges, A.F.S. Hydroxyapatite/ZrO2@SiO2 bioceramic composite: Producing a promising biomaterial from natural sources. MRS Commun., 2023, 13(4), 657-663.
[http://dx.doi.org/10.1557/s43579-023-00408-4]
[126]
Lin, C.; Hsu, F.Y.; Lin, W.T.; Cha, C.Y.; Ho, Y.C.; Mi, F.L. Biodegradable nanoparticles prepared from chitosan and casein for delivery of bioactive polysaccharides. Polymers, 2022, 14(14), 2966.
[http://dx.doi.org/10.3390/polym14142966] [PMID: 35890742]
[127]
Gooneh-Farahani, S.; Naghib, S.M.; Naimi-Jamal, M.R. A novel and inexpensive method based on modified ionic gelation for pH-responsive controlled drug release of homogeneously distributed chitosan nanoparticles with a high encapsulation efficiency. Fibers Polym., 2020, 21(9), 1917-1926.
[http://dx.doi.org/10.1007/s12221-020-1095-y]
[128]
Farahani, G.S.; Naghib, S.M.; Jamal, N.M.R.; Seyfoori, A. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents. Sci. Rep., 2021, 11(1), 17404.
[http://dx.doi.org/10.1038/s41598-021-97081-1] [PMID: 34465842]
[129]
Gooneh-Farahani, S.; Naimi-Jamal, M.R.; Naghib, S.M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: A review. Expert Opin. Drug Deliv., 2019, 16(1), 79-99.
[http://dx.doi.org/10.1080/17425247.2019.1556257] [PMID: 30514124]
[130]
Escobar, G.O.R.; Castañeda, S.P.; Almazán, A.E.; Durán, V.A.; Juárez, P.M.C.; Graziano, V.R.; Florido, M.M.I.; Perez, R.B.; Cruz, R.I.M.; Calderón, M.J.E.; Chávez, E.J.J. Chitosan nanoparticles as oral drug carriers. Int. J. Mol. Sci., 2023, 24(5), 4289.
[http://dx.doi.org/10.3390/ijms24054289] [PMID: 36901719]
[131]
Baharlouei, P.; Rahman, A. Chitin and chitosan: Prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Mar. Drugs, 2022, 20(7), 460.
[http://dx.doi.org/10.3390/md20070460] [PMID: 35877753]
[132]
Liu, Z.; Wang, K.; Peng, X.; Zhang, L. Chitosan-based drug delivery systems: Current strategic design and potential application in human hard tissue repair. Eur. Polym. J., 2022, 166, 110979.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110979]
[133]
Li, X.; Wang, Y.; Feng, C.; Chen, H.; Gao, Y. Chemical modification of chitosan for developing cancer nanotheranostics. Biomacromolecules, 2022, 23(6), 2197-2218.
[http://dx.doi.org/10.1021/acs.biomac.2c00184] [PMID: 35522524]
[134]
Bharathi, R.; Ganesh, S.S.; Harini, G.; Vatsala, K.; Anushikaa, R.; Aravind, S.; Abinaya, S.; Selvamurugan, N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int. J. Biol. Macromol., 2022, 222(Pt A), 132-153.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.058] [PMID: 36108752]
[135]
Aghazadeh Asl, E.; Pooresmaeil, M.; Namazi, H. Chitosan coated MOF/GO nanohybrid as a co-anticancer drug delivery vehicle: Synthesis, characterization, and drug delivery application. Mater. Chem. Phys., 2023, 293, 126933.
[http://dx.doi.org/10.1016/j.matchemphys.2022.126933]
[136]
Desai, N.; Rana, D.; Salave, S.; Gupta, R.; Patel, P.; Karunakaran, B.; Sharma, A.; Giri, J.; Benival, D.; Kommineni, N. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics, 2023, 15(4), 1313.
[http://dx.doi.org/10.3390/pharmaceutics15041313] [PMID: 37111795]
[137]
Celesti, C.; Iannazzo, D.; Espro, C.; Visco, A.; Legnani, L.; Veltri, L.; Visalli, G.; Di Pietro, A.; Bottino, P.; Chiacchio, M.A. Chitosan/POSS hybrid hydrogels for bone tissue engineering. Materials, 2022, 15(22), 8208.
[http://dx.doi.org/10.3390/ma15228208] [PMID: 36431692]
[138]
Agarwal, T.; Chiesa, I.; Costantini, M.; Lopamarda, A.; Tirelli, M.C.; Borra, O.P.; Varshapally, S.V.S.; Kumar, Y.A.V.; Reddy, K.G.; De Maria, C.; Zhang, L.G.; Maiti, T.K. Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications. Int. J. Biol. Macromol., 2023, 246, 125669.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125669] [PMID: 37406901]
[139]
Ganesh, S.S.; Anushikaa, R.; Swetha Victoria, V.S.; Lavanya, K.; Shanmugavadivu, A.; Selvamurugan, N. Recent advancements in electrospun chitin and chitosan nanofibers for bone tissue engineering applications. J. Funct. Biomater., 2023, 14(5), 288.
[http://dx.doi.org/10.3390/jfb14050288] [PMID: 37233398]
[140]
Peers, S.; Montembault, A.; Ladavière, C. Chitosan hydrogels incorporating colloids for sustained drug delivery. Carbohydr. Polym., 2022, 275, 118689.
[http://dx.doi.org/10.1016/j.carbpol.2021.118689] [PMID: 34742416]
[141]
Mikušová, V.; Mikuš, P. Advances in chitosan-based nanoparticles for drug delivery. Int. J. Mol. Sci., 2021, 22(17), 9652.
[http://dx.doi.org/10.3390/ijms22179652] [PMID: 34502560]
[142]
Kumari, S.; Kishor, R. Chitin and chitosan: Origin, properties, and applications. Handbook of Chitin and Chitosan; Elsevier, 2020, pp. 1-33.
[http://dx.doi.org/10.1016/B978-0-12-817970-3.00001-8]
[143]
Terkula Iber, B.; Azman Kasan, N.; Torsabo, D.; Omuwa, W.J. A review of various sources of chitin and chitosan in nature. J. Renew. Mater., 2022, 10(4), 1097-1123.
[http://dx.doi.org/10.32604/jrm.2022.018142]
[144]
Ho, M-H.; Liao, M.H.; Lin, Y.L.; Lai, C.H.; Lin, P.I.; Chen, R.M. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation. Int. J. Nanomedicine, 2014, 9, 4293-4304.
[PMID: 25246786]
[145]
Sedghi, R.; Shaabani, A.; Sayyari, N. Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydr. Polym., 2020, 230, 115707.
[http://dx.doi.org/10.1016/j.carbpol.2019.115707] [PMID: 31887957]
[146]
Romero, R.; Chubb, L.; Travers, J.K.; Gonzales, T.R.; Ehrhart, N.P.; Kipper, M.J. Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin. Carbohydr. Polym., 2015, 122, 144-151.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.015] [PMID: 25817653]
[147]
Martins, A.F.; Vlcek, J.; Wigmosta, T.; Hedayati, M.; Reynolds, M.M.; Popat, K.C.; Kipper, M.J. Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer scaffolds with antiadhesive and bactericidal properties. Appl. Surf. Sci., 2020, 502, 144282.
[http://dx.doi.org/10.1016/j.apsusc.2019.144282]
[148]
Yang, Y.; Yang, S.; Wang, Y.; Yu, Z.; Ao, H.; Zhang, H.; Qin, L.; Guillaume, O.; Eglin, D.; Richards, R.G.; Tang, T. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomater., 2016, 46, 112-128.
[http://dx.doi.org/10.1016/j.actbio.2016.09.035] [PMID: 27686039]
[149]
Kodama, J.; Chen, H.; Zhou, T.; Kushioka, J.; Okada, R.; Tsukazaki, H.; Tateiwa, D.; Nakagawa, S.; Ukon, Y.; Bal, Z.; Tian, H.; Zhao, J.; Kaito, T. Antibacterial efficacy of quaternized chitosan coating on 3D printed titanium cage in rat intervertebral disc space. Spine J., 2021, 21(7), 1217-1228.
[http://dx.doi.org/10.1016/j.spinee.2021.02.016] [PMID: 33621666]
[150]
Liu, T.; Feng, Z.; Li, Z.; Lin, Z.; Chen, L.; Li, B.; Chen, Z.; Wu, Z.; Zeng, J.; Zhang, J.; Hong, J.; Xia, H.; Li, L.; Ye, X.; Zhang, Y. Carboxymethyl chitosan/sodium alginate hydrogels with polydopamine coatings as promising dressings for eliminating biofilm and multidrug-resistant bacteria induced wound healing. Int. J. Biol. Macromol., 2023, 225, 923-937.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.11.156] [PMID: 36427613]
[151]
Ghosh, T.; Deveswaran, R.; Bharath, S. Copper crosslinked carboxymethyl chitosan-gelatin scaffolds: A potential antibacterial and cytocompatible material for biomedical applications. Mater. Today Proc., 2022, 59, 31-38.
[http://dx.doi.org/10.1016/j.matpr.2021.10.140]
[152]
Lu, Y.; Li, L.; Zhu, Y.; Wang, X.; Li, M.; Lin, Z.; Hu, X.; Zhang, Y.; Yin, Q.; Xia, H.; Mao, C. Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS Appl. Mater. Interfaces, 2018, 10(1), 127-138.
[http://dx.doi.org/10.1021/acsami.7b13750] [PMID: 29256580]
[153]
Yu, Y.; Chen, R.; Yuan, Y.; Wang, J.; Liu, C. Affinity-selected polysaccharide for rhBMP-2-induced osteogenesis via BMP receptor activation. Appl. Mater. Today, 2020, 20, 100681.
[http://dx.doi.org/10.1016/j.apmt.2020.100681]
[154]
Kim, S.; Fan, J.; Lee, C.S.; Chen, C.; Bubukina, K.; Lee, M. Heparinized chitosan stabilizes the bioactivity of BMP-2 and potentiates the osteogenic efficacy of demineralized bone matrix. J. Biol. Eng., 2020, 14(1), 6.
[http://dx.doi.org/10.1186/s13036-020-0231-y] [PMID: 32165922]
[155]
Cao, L.; Werkmeister, J.A.; Wang, J.; Glattauer, V.; McLean, K.M.; Liu, C. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials, 2014, 35(9), 2730-2742.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.028] [PMID: 24438908]
[156]
Chen, S.; Lau, P.; Lei, M.; Peng, J.; Tang, T.; Wang, X.; Qin, L.; Kumta, S.M. Segmental composite porous scaffolds with either osteogenesis or anti-bone resorption properties tested in a rabbit ulna defect model. J. Tissue Eng. Regen. Med., 2017, 11(1), 34-43.
[http://dx.doi.org/10.1002/term.1828] [PMID: 24668843]
[157]
Hixon, K.R.; Miller, A.N. Animal models of impaired long bone healing and tissue engineering‐ and cell‐based in vivo interventions. J. Orthop. Res., 2022, 40(4), 767-778.
[http://dx.doi.org/10.1002/jor.25277] [PMID: 35072292]
[158]
Kadhim, I.A.U.; Sallal, H.A.; Al-Khafaji, Z.S. A review in investigation of marine biopolymer (chitosan) for bioapplications. ES Mater. Manufact., 2023, 21, 828.
[http://dx.doi.org/10.30919/esmm5f828]
[159]
Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol., 2006, 8(3), 203-226.
[http://dx.doi.org/10.1007/s10126-005-0097-5] [PMID: 16532368]
[160]
Islam, N.; Hoque, M.; Taharat, S.F. Recent advances in extraction of chitin and chitosan. World J. Microbiol. Biotechnol., 2023, 39(1), 28.
[http://dx.doi.org/10.1007/s11274-022-03468-1] [PMID: 36437390]
[161]
Ahuekwe, E.F. Nanochitosan derived from marine bacteria. Next Generation Nanochitosan; Elsevier, 2023, pp. 147-168.
[http://dx.doi.org/10.1016/B978-0-323-85593-8.00033-3]
[162]
Pathak, R.; Bhatt, S.; Punetha, V.D.; Punetha, M. Chitosan nanoparticles and based composites as a biocompatible vehicle for drug delivery: A review. Int. J. Biol. Macromol., 2023, 253(Pt 7), 127369.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127369] [PMID: 37839608]
[163]
Sahoo, S. Chitin/chitosan based superabsorbent polymers. In: Bio-based Superabsorbents: Recent Trends, Types, Applications and Recycling; Springer, 2023; pp. 77-91.
[http://dx.doi.org/10.1007/978-981-99-3094-4_5]
[164]
Hamdan, Y.A.; Elouali, S.; Eladlani, N.; Lefeuvre, B.; Oudadesse, H.; Rhazi, M. Investigation on Akis granulifera (Coleoptera, Sahlberg, 1823) as a potential source of chitin and chitosan: Extraction, characterization and hydrogel formation. Int. J. Biol. Macromol., 2023, 252, 126292.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126292] [PMID: 37573901]
[165]
Ali, G. Applications of chitin and chitosan as natural biopolymer: Potential sources, pretreatments, and degradation pathways. Biomass Convers. Biorefin., 2022, 14, 4567-4581.
[166]
Mohan, K.; Ganesan, A.R.; Ezhilarasi, P.N.; Kondamareddy, K.K.; Rajan, D.K.; Sathishkumar, P.; Rajarajeswaran, J.; Conterno, L. Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr. Polym., 2022, 287, 119349.
[http://dx.doi.org/10.1016/j.carbpol.2022.119349] [PMID: 35422296]
[167]
Pakizeh, M.; Moradi, A.; Ghassemi, T. Chemical extraction and modification of chitin and chitosan from shrimp shells. Eur. Polym. J., 2021, 159, 110709.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110709]
[168]
Kozma, M.; Acharya, B.; Bissessur, R. Chitin, chitosan, and nanochitin: Extraction, synthesis, and applications. Polymers, 2022, 14(19), 3989.
[http://dx.doi.org/10.3390/polym14193989] [PMID: 36235937]
[169]
Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol., 2020, 105, 17-42.
[http://dx.doi.org/10.1016/j.tifs.2020.08.016] [PMID: 32901176]
[170]
Huq, T.; Khan, A.; Brown, D.; Dhayagude, N.; He, Z.; Ni, Y. Sources, production and commercial applications of fungal chitosan: A review. J. Biores. Bioprod., 2022, 7(2), 85-98.
[http://dx.doi.org/10.1016/j.jobab.2022.01.002]
[171]
Araújo, D.; Ferreira, I.C.; Torres, C.A.V.; Neves, L.; Freitas, F. Chitinous polymers: Extraction from fungal sources, characterization and processing towards value‐added applications. J. Chem. Technol. Biotechnol., 2020, 95(5), 1277-1289.
[http://dx.doi.org/10.1002/jctb.6325]
[172]
Tan, Y.N.; Lee, P.P.; Chen, W.N. Dual extraction of crustacean and fungal chitosan from a single Mucor circinelloides fermentation. Fermentation, 2020, 6(2), 40.
[http://dx.doi.org/10.3390/fermentation6020040]
[173]
Hisham, F. Biopolymer chitosan: Potential sources, extraction methods, and emerging applications. Ain Shams Eng. J., 2023, 15, 102424.
[174]
Alimi, B.A.; Pathania, S.; Wilson, J.; Duffy, B.; Frias, J.M.C. Extraction, quantification, characterization, and application in food packaging of chitin and chitosan from mushrooms: A review. Int. J. Biol. Macromol., 2023, 237, 124195.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124195] [PMID: 36972819]
[175]
Broquá, J. Methods of chitin production a short review. Am. J. Biomed. Sci. Res., 2019, 3(4), 307-314.
[176]
Abdou, E.S.; Nagy, K.S.A.; Elsabee, M.Z. Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol., 2008, 99(5), 1359-1367.
[http://dx.doi.org/10.1016/j.biortech.2007.01.051] [PMID: 17383869]
[177]
Kou, S.G.; Peters, L.M.; Mucalo, M.R. Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol., 2021, 169, 85-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.005] [PMID: 33279563]
[178]
Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biotechnol., 2020, 95(11), 2775-2795.
[http://dx.doi.org/10.1002/jctb.6533]
[179]
Rakshit, S.; Pal, K.; Mondal, S.; Jana, A.; Mondal, K.C.; Halder, S.K. Extraction of chitosan from biologically-derived chitin by bacterial chitin deacetylase: Process optimization and product quality assessment. Int. J. Biol. Macromol., 2023, 244, 125389.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125389] [PMID: 37331539]
[180]
Suresh, S.; Umesh, M.; Santosh, A.S. Biological extraction of chitin from fish scale waste using proteolytic bacteria Stenotrophomonas koreensis and its possible application as an active packaging material. Biomass Convers. Biorefin., 2023, 2023, 1-11.
[http://dx.doi.org/10.1007/s13399-023-03865-y]
[181]
Novikov, V.Y.; Rysakova, K.S.; Shumskaya, N.V.; Mukhortova, A.M.; Kesarev, K.A. King crab gills as a new source of chitin/chitosan and protein hydrolysates. Int. J. Biol. Macromol., 2023, 232, 123346.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123346] [PMID: 36682662]
[182]
Sixto-Berrocal, A.M.; Vázquez-Aldana, M.; Miranda-Castro, S.P.; Trujillo, M.M.A.; Cruz-Díaz, M.R. Chitin/chitosan extraction from shrimp shell waste by a completely biotechnological process. Int. J. Biol. Macromol., 2023, 230, 123204.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123204] [PMID: 36634792]
[183]
Muzzarelli, C.; Muzzarelli, R.A.A. Natural and artificial chitosan-inorganic composites. J. Inorg. Biochem., 2002, 92(2), 89-94.
[http://dx.doi.org/10.1016/S0162-0134(02)00486-5] [PMID: 12459153]
[184]
Rahman, M.M.; Maniruzzaman, M. A new route of production of the meso-porous chitosan with well-organized honeycomb surface microstructure from shrimp waste without destroying the original structure of native shells: Extraction, modification and characterization study. Res. Eng., 2023, 19, 101362.
[http://dx.doi.org/10.1016/j.rineng.2023.101362]
[185]
Zhang, Z. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. J. Adv. Res., 2023, 2023
[PMID: 37931655 ]
[186]
Islam, S.; Lutfor Rahman, M.; Rassel Moni, M.; Biswas, B.; Ahmed, F.M.; Sharmin, N. Impacts of annealing temperature on microstructure, optical and electromagnetic properties of zinc ferrites nanoparticles synthesized by polymer assisted sol-gel method. Arab. J. Chem., 2023, 16(10), 105186.
[http://dx.doi.org/10.1016/j.arabjc.2023.105186]
[187]
Hisham, F.; Akmal, M.M.H.; Ahmad, F.B.; Ahmad, K. Facile extraction of chitin and chitosan from shrimp shell. Mater. Today Proc., 2021, 42, 2369-2373.
[http://dx.doi.org/10.1016/j.matpr.2020.12.329]
[188]
Rakshit, S.; Mondal, S.; Pal, K.; Jana, A.; Soren, J.P.; Barman, P.; Mondal, K.C.; Halder, S.K. Extraction of chitin from Litopenaeus vannamei shell and its subsequent characterization: An approach of waste valorization through microbial bioprocessing. Bioprocess Biosyst. Eng., 2021, 44(9), 1943-1956.
[http://dx.doi.org/10.1007/s00449-021-02574-y] [PMID: 33956220]
[189]
Marzieh, M.N.; Zahra, F.; Tahereh, E.; Sara, K.N. Comparison of the physicochemical and structural characteristics of enzymatic produced chitin and commercial chitin. Int. J. Biol. Macromol., 2019, 139, 270-276.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.217] [PMID: 31376451]
[190]
Kaya, M.; Baublys, V.; Šatkauskienė, I.; Akyuz, B.; Bulut, E.; Tubelytė, V. First chitin extraction from Plumatella repens (Bryozoa) with comparison to chitins of insect and fungal origin. Int. J. Biol. Macromol., 2015, 79, 126-132.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.066] [PMID: 25940531]
[191]
Tolesa, L.D.; Gupta, B.S.; Lee, M.J. Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. Int. J. Biol. Macromol., 2019, 130, 818-826.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.018] [PMID: 30840869]
[192]
Hulla, J.E.; Sahu, S.C.; Hayes, A.W. Nanotechnology. Hum. Exp. Toxicol., 2015, 34(12), 1318-1321.
[http://dx.doi.org/10.1177/0960327115603588] [PMID: 26614822]
[193]
Loretan, C.; Müller, A. Nano, bits, and Feynman’s dream: There’s plenty of room at the (molecular) bottom. J. Chem. Educ., 2023, 100(3), 1366-1370.
[http://dx.doi.org/10.1021/acs.jchemed.2c00941]
[194]
Dar, T.B. Nanotechnology and nanomedicine. In: Fundamentals and Advances in Medical Biotechnology; Springer, 2022; pp. 325-361.
[195]
Malik, S.; Muhammad, K.; Waheed, Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules, 2023, 28(18), 6624.
[http://dx.doi.org/10.3390/molecules28186624] [PMID: 37764400]
[196]
Tundisi, L.L.; Ataide, J.A.; Costa, J.S.R.; Coêlho, D.F.; Liszbinski, R.B.; Lopes, A.M.; Nascimento, O.L.; de Jesus, M.B.; Jozala, A.F.; Ehrhardt, C.; Mazzola, P.G. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf. B Biointerfaces, 2023, 222, 113043.
[http://dx.doi.org/10.1016/j.colsurfb.2022.113043] [PMID: 36455361]
[197]
Onugwu, A.L.; Nwagwu, C.S.; Onugwu, O.S.; Echezona, A.C.; Agbo, C.P.; Ihim, S.A.; Emeh, P.; Nnamani, P.O.; Attama, A.A.; Khutoryanskiy, V.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release, 2023, 354, 465-488.
[http://dx.doi.org/10.1016/j.jconrel.2023.01.018] [PMID: 36642250]
[198]
Mukherjee, C.; Varghese, D.; Krishna, J.S.; Boominathan, T.; Rakeshkumar, R.; Dineshkumar, S.; Brahmananda Rao, C.V.S.; Sivaramakrishna, A. Recent advances in biodegradable polymers - Properties, applications and future prospects. Eur. Polym. J., 2023, 192, 112068.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112068]
[199]
Khan, M.I.; Hossain, M.I.; Hossain, M.K.; Rubel, M.H.K.; Hossain, K.M.; Mahfuz, A.M.U.B.; Anik, M.I. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review. ACS Appl. Bio Mater., 2022, 5(3), 971-1012.
[http://dx.doi.org/10.1021/acsabm.2c00002] [PMID: 35226465]
[200]
Contera, S. Biotechnology, nanotechnology and medicine. Emerg. Top. Life Sci., 2020, 4(6), 551-554.
[201]
Jian, W.; Hui, D.; Lau, D. Nanoengineering in biomedicine: Current development and future perspectives. Nanotechnol. Rev., 2020, 9(1), 700-715.
[http://dx.doi.org/10.1515/ntrev-2020-0053]
[202]
Akgöl, S.; Karnak, U.F. kuru, C.İ.; Kuşat, K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol. Bioeng., 2021, 118(8), 2906-2922.
[http://dx.doi.org/10.1002/bit.27843] [PMID: 34050923]
[203]
Diez-Pascual, A.M.; Rahdar, A. Functional nanomaterials in biomedicine: Current uses and potential applications. ChemMedChem, 2022, 17(16), e202200142.
[http://dx.doi.org/10.1002/cmdc.202200142] [PMID: 35729066]
[204]
Jalali, R. Application of nanotechnology in biomedicine. Acad. J. Environ. Biol, 2022, 3(3), 44-51.
[205]
Kedir, W.M.; Abdi, G.F.; Goro, M.M.; Tolesa, L.D. Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review. Heliyon, 2022, 8(8), e10196.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10196] [PMID: 36042744]
[206]
Sahu, T.; Ratre, Y.K.; Chauhan, S.; Bhaskar, L.V.K.S.; Nair, M.P.; Verma, H.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J. Drug Deliv. Sci. Technol., 2021, 63, 102487.
[http://dx.doi.org/10.1016/j.jddst.2021.102487]
[207]
Khiev, D.; Mohamed, Z.A.; Vichare, R.; Paulson, R.; Bhatia, S.; Mohapatra, S.; Lobo, G.P.; Valapala, M.; Kerur, N.; Passaglia, C.L.; Mohapatra, S.S.; Biswal, M.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials, 2021, 11(1), 173.
[http://dx.doi.org/10.3390/nano11010173] [PMID: 33445545]
[208]
Chakravarty, M.; Vora, A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res., 2021, 11(3), 748-787.
[http://dx.doi.org/10.1007/s13346-020-00818-0] [PMID: 32748035]
[209]
Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials, 2022, 12(3), 457.
[http://dx.doi.org/10.3390/nano12030457] [PMID: 35159802]
[210]
Hajiali, H.; Ouyang, L.; Llopis-Hernandez, V.; Dobre, O.; Rose, F.R.A.J. Review of emerging nanotechnology in bone regeneration: Progress, challenges, and perspectives. Nanoscale, 2021, 13(23), 10266-10280.
[http://dx.doi.org/10.1039/D1NR01371H] [PMID: 34085085]
[211]
Raj, S. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars in Cancer Biology; Elsevier, 2021.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002]
[212]
Laird, N.Z.; Acri, T.M.; Chakka, J.L.; Quarterman, J.C.; Malkawi, W.I.; Elangovan, S.; Salem, A.K. Applications of nanotechnology in 3D printed tissue engineering scaffolds. Eur. J. Pharm. Biopharm., 2021, 161, 15-28.
[http://dx.doi.org/10.1016/j.ejpb.2021.01.018] [PMID: 33549706]
[213]
Kaliannagounder, V.; Hossain, M.; Kim, J.H.; Thangavelu, M.; Adithan, A. Magnetic hydroxyapatite composite nanoparticles for augmented differentiation of MC3T3-E1 cells for bone tissue engineering. Mar. Drugs, 2023, 21(2), 85.
[http://dx.doi.org/10.3390/md21020085] [PMID: 36827126]
[214]
Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater., 2022, 5(6), 1593-1615.
[http://dx.doi.org/10.1007/s42247-021-00335-x] [PMID: 35005431]
[215]
Khalaf, E.M.; Abood, N.A.; Atta, R.Z.; Ramírez-Coronel, A.A.; Alazragi, R.; Parra, R.M.R.; Abed, O.H.; Abosaooda, M.; Jalil, A.T.; Mustafa, Y.F.; Narmani, A.; Farhood, B. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int. J. Biol. Macromol., 2023, 231, 123354.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123354] [PMID: 36681228]
[216]
Shetty, K.; Bhandari, A.; Yadav, K.S. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system. J. Control. Release, 2022, 350, 421-434.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.035] [PMID: 36002053]
[217]
Ibrahim, M.A.; Alhalafi, M.H.; Emam, E.A.M.; Ibrahim, H.; Mosaad, R.M. A review of chitosan and chitosan nanofiber0: Preparation, characterization, and its potential applications. Polymers, 2023, 15(13), 2820.
[http://dx.doi.org/10.3390/polym15132820] [PMID: 37447465]
[218]
Arthi, C.; Jayakumar, R. Electrospinning of carboxymethyl chitosan derivatives-based nanofibers and its applications. In: Multifaceted Carboxymethyl Chitosan Derivatives: Properties and Biomedical Applications. Advances in Polymer Science; Jayakumar, R., Ed.; Springer, 2023; p. 292.
[http://dx.doi.org/10.1007/12_2023_160]
[219]
Borsagli, F.G.M. Carboxymethyl chitosan and its derivatives in tissue engineering. Multifaceted Carboxymethyl Chitosan Derivatives. Properties and Biomedical Applications, 2023, 292, 257-280.
[220]
Kazeminava, F.; Javanbakht, S.; Nouri, M.; Adibkia, K.; Ganbarov, K.; Yousefi, M.; Ahmadi, M.; Gholizadeh, P.; Kafil, H.S. Electrospun nanofibers based on carboxymethyl cellulose/polyvinyl alcohol as a potential antimicrobial wound dressing. Int. J. Biol. Macromol., 2022, 214, 111-119.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.175] [PMID: 35640851]
[221]
Li, X.; Wang, C.; Yang, S.; Liu, P.; Zhang, B. Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. Int. J. Nanomedicine, 2018, 13, 5287-5299.
[http://dx.doi.org/10.2147/IJN.S177256] [PMID: 30237715]
[222]
Chen, S.; Tian, H.; Mao, J.; Ma, F.; Zhang, M.; Chen, F.; Yang, P. Preparation and application of chitosan-based medical electrospun nanofibers. Int. J. Biol. Macromol., 2023, 226, 410-422.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.056] [PMID: 36502949]
[223]
Ding, X.; Li, X.; Li, C.; Qi, M.; Zhang, Z.; Sun, X.; Wang, L.; Zhou, Y. Chitosan/dextran hydrogel constructs containing strontium-doped hydroxyapatite with enhanced osteogenic potential in rat cranium. ACS Biomater. Sci. Eng., 2019, 5(9), 4574-4586.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00584] [PMID: 33448831]
[224]
Mo, X.; Zhang, D.; Liu, K.; Zhao, X.; Li, X.; Wang, W. Nano-hydroxyapatite composite scaffolds loaded with bioactive factors and drugs for bone tissue engineering. Int. J. Mol. Sci., 2023, 24(2), 1291.
[http://dx.doi.org/10.3390/ijms24021291] [PMID: 36674810]
[225]
Sagadevan, S.; Schirhagl, R.; Rahman, M.Z.; Ismail, B.M.F.; Lett, J.A.; Fatimah, I.; Mohd Kaus, N.H.; Oh, W-C. Recent advancements in polymer matrix nanocomposites for bone tissue engineering applications. J. Drug Deliv. Sci. Technol., 2023, 82, 104313.
[http://dx.doi.org/10.1016/j.jddst.2023.104313]
[226]
Hogan, K.J.; Perez, M.R.; Mikos, A.G. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J. Control. Release, 2023, 360, 888-912.
[http://dx.doi.org/10.1016/j.jconrel.2023.07.034] [PMID: 37482344]
[227]
Gomathi, T. Fabrication of micro and nano devices for tissue engineering applications. Nanobiomaterials; CRC Press, 2023, pp. 71-89.
[http://dx.doi.org/10.1201/9780429057038-7]
[228]
Zielińska, A.; Karczewski, J.; Eder, P.; Kolanowski, T.; Szalata, M.; Wielgus, K.; Szalata, M.; Kim, D.; Shin, S.R.; Słomski, R.; Souto, E.B. Scaffolds for drug delivery and tissue engineering: The role of genetics. J. Control. Release, 2023, 359, 207-223.
[http://dx.doi.org/10.1016/j.jconrel.2023.05.042] [PMID: 37286137]
[229]
Maadani, A.M.; Davoodian, F.; Salahinejad, E. Effects of PLGA coating on biological and mechanical behaviors of tissue engineering scaffolds. Prog. Org. Coat., 2023, 176, 107406.
[http://dx.doi.org/10.1016/j.porgcoat.2023.107406]
[230]
Mohammadalizadeh, Z.; Toloue, B.E.; Karbasi, S. Synthetic-based blended electrospun scaffolds in tissue engineering applications. J. Mater. Sci., 2022, 57(6), 4020-4079.
[http://dx.doi.org/10.1007/s10853-021-06826-w]
[231]
Sharma, S.; Sudhakara, P.; Singh, J.; Ilyas, R.A.; Asyraf, M.R.M.; Razman, M.R. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers, 2021, 13(16), 2623.
[http://dx.doi.org/10.3390/polym13162623] [PMID: 34451161]
[232]
Mondal, S.; Pal, U. 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101131.
[http://dx.doi.org/10.1016/j.jddst.2019.101131]
[233]
Pourentezari, M.; Dortaj, H.; Hashemibeni, B.; Yadegari, M.; Shahedi, A. An overview of the application of poly(lactic-co-glycolic) acid (PLGA)-based scaffold for drug delivery in cartilage tissue engineering. Int. J. Med. Lab., 2021, 8(2), 78-95.
[http://dx.doi.org/10.18502/ijml.v8i2.6270]
[234]
Alipour, A.; Kalashgarani, M.Y. Nano protein and peptides for drug delivery and anticancer agents. Adv. Appl. NanoBio-Technol., 2022, 3(1), 60-64.
[235]
Sharma, P.; Pal, V.K.; Kaur, H.; Roy, S. Exploring the TEMPO-oxidized nanofibrillar cellulose and short ionic-complementary peptide composite hydrogel as biofunctional cellular scaffolds. Biomacromolecules, 2022, 23(6), 2496-2511.
[http://dx.doi.org/10.1021/acs.biomac.2c00234] [PMID: 35522599]
[236]
Batool, S.; Nabipour, H.; Ramakrishna, S.; Mozafari, M. Nanotechnology and quantum science enabled advances in neurological medical applications: Diagnostics and treatments. Med. Biol. Eng. Comput., 2022, 60(12), 3341-3356.
[http://dx.doi.org/10.1007/s11517-022-02664-3] [PMID: 36207564]
[237]
Malviya, R.; Chauhan, A.; Alam, M.A.; Kaur, A. Advancements and utilizations of scaffolds in tissue engineering and drug delivery. Curr. Drug Targets, 2023, 24(1), 13-40.
[http://dx.doi.org/10.2174/1389450123666221011100235] [PMID: 36221880]
[238]
Sedighi, M.; Shrestha, N.; Mahmoudi, Z.; Khademi, Z.; Ghasempour, A.; Dehghan, H.; Talebi, S.F.; Toolabi, M.; Préat, V.; Chen, B.; Guo, X.; Shahbazi, M.A. Multifunctional self-assembled peptide hydrogels for biomedical applications. Polymers, 2023, 15(5), 1160.
[http://dx.doi.org/10.3390/polym15051160] [PMID: 36904404]
[239]
Otsuka, H. Nanofabrication technologies to control cell and tissue function in three-dimension. Gels, 2023, 9(3), 203.
[http://dx.doi.org/10.3390/gels9030203] [PMID: 36975652]
[240]
Abaszadeh, F.; Ashoub, M.H.; Khajouie, G.; Amiri, M. Nanotechnology development in surgical applications: Recent trends and developments. Eur. J. Med. Res., 2023, 28(1), 537.
[http://dx.doi.org/10.1186/s40001-023-01429-4] [PMID: 38001554]
[241]
Gong, D.; Sun, L.; Li, X.; Zhang, W.; Zhang, D.; Cai, J. Micro/nanofabrication, assembly, and actuation based on microorganisms: Recent advances and perspectives. Small Struct., 2023, 4(9), 2200356.
[http://dx.doi.org/10.1002/sstr.202200356]
[242]
Ouyang, J.; Zhang, Z.; Deng, B.; Liu, J.; Wang, L.; Liu, H.; Koo, S.; Chen, S.; Li, Y.; Yaremenko, A.V.; Huang, X.; Chen, W.; Lee, Y.; Tao, W. Oral drug delivery platforms for biomedical applications. Mater. Today, 2023, 62, 296-326.
[http://dx.doi.org/10.1016/j.mattod.2023.01.002]
[243]
Tan, L.; Ye, Z.; Zhuang, W.; Mao, B.; Li, H.; Li, X.; Wu, J.; Sang, H. 3D printed PLGA/MgO/PDA composite scaffold by low-temperature deposition manufacturing for bone tissue engineering applications. Regen. Ther., 2023, 24, 617-629.
[http://dx.doi.org/10.1016/j.reth.2023.09.015] [PMID: 38034857]
[244]
Hu, Y.; Zhang, H.; Wei, H.; Cheng, H.; Cai, J.; Chen, X.; Xia, L.; Wang, H.; Chai, R. Scaffolds with anisotropic structure for neural tissue engineering. Engineer. Regenerat., 2022, 3(2), 154-162.
[http://dx.doi.org/10.1016/j.engreg.2022.04.001]
[245]
Sun, F.; Sun, X.; Wang, H.; Li, C.; Zhao, Y.; Tian, J.; Lin, Y. Application of 3D-printed, PLGA-based scaffolds in bone tissue engineering. Int. J. Mol. Sci., 2022, 23(10), 5831.
[http://dx.doi.org/10.3390/ijms23105831] [PMID: 35628638]
[246]
Niu, Y.Q.; Liu, J.H.; Aymonier, C.; Fermani, S.; Kralj, D.; Falini, G.; Zhou, C.H. Calcium carbonate: Controlled synthesis, surface functionalization, and nanostructured materials. Chem. Soc. Rev., 2022, 51(18), 7883-7943.
[http://dx.doi.org/10.1039/D1CS00519G] [PMID: 35993776]
[247]
Rial, R.; Liu, Z.; Messina, P.; Ruso, J.M. Role of nanostructured materials in hard tissue engineering. Adv. Colloid Interface Sci., 2022, 304, 102682.
[http://dx.doi.org/10.1016/j.cis.2022.102682] [PMID: 35489142]
[248]
Deo, K.A.; Lokhande, G.; Gaharwar, A.K. Nanostructured hydrogels for tissue engineering and regenerative medicine. Refer. Module. Biomed. Sci., 2019, 2019, 21-32.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.11114-6]
[249]
Marew, T.; Birhanu, G. Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regen. Ther., 2021, 18, 102-111.
[http://dx.doi.org/10.1016/j.reth.2021.05.001] [PMID: 34141834]
[250]
Mahanta, A.K.; Patel, D.K.; Maiti, P. Nanohybrid scaffold of chitosan and functionalized graphene oxide for controlled drug delivery and bone regeneration. ACS Biomater. Sci. Eng., 2019, 5(10), 5139-5149.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00829] [PMID: 33455220]
[251]
Feng, Z.; Jin, M.; Liang, J.; Kang, J.; Yang, H.; Guo, S.; Sun, X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater., 2023, 164, 1-14.
[http://dx.doi.org/10.1016/j.actbio.2023.03.032] [PMID: 36972808]
[252]
Wang, J.; Zhu, M.; Hu, Y.; Chen, R.; Hao, Z.; Wang, Y.; Li, J. Exosome‐hydrogel system in bone tissue engineering: A promising therapeutic strategy. Macromol. Biosci., 2023, 23(4), 2200496.
[http://dx.doi.org/10.1002/mabi.202200496] [PMID: 36573715]
[253]
Wang, J.; Zhang, Y.; Cao, J.; Wang, Y.; Anwar, N.; Zhang, Z.; Zhang, D.; Ma, Y.; Xiao, Y.; Xiao, L.; Wang, X. The role of autophagy in bone metabolism and clinical significance. Autophagy, 2023, 19(9), 2409-2427.
[http://dx.doi.org/10.1080/15548627.2023.2186112] [PMID: 36858962]
[254]
Catheline, S.E.; Kaiser, E.; Eliseev, R.A. Mitochondrial genetics and function as determinants of bone phenotype and aging. Curr. Osteoporos. Rep., 2023, 21(5), 540-551.
[http://dx.doi.org/10.1007/s11914-023-00816-4] [PMID: 37542684]
[255]
Scalera, F.; Pereira, S.I.A.; Bucciarelli, A.; Tobaldi, D.M.; Quarta, A.; Gervaso, F.; Castro, P.M.L.; Polini, A.; Piccirillo, C. Chitosan-hydroxyapatite composites made from sustainable sources: A morphology and antibacterial study. Mater. Today Sustain., 2023, 21, 100334.
[http://dx.doi.org/10.1016/j.mtsust.2023.100334]
[256]
Ghosh, S.; Thongmee, S.; Webster, T.J. Chitosan-based functionalized scaffolds for nanobone tissue regeneration. In: Nanomedicine; Elsevier, 2023; pp. 501-532.
[http://dx.doi.org/10.1016/B978-0-12-818627-5.00023-3]
[257]
Abdollahi, A.; Malek-Khatabi, A.; Razavi, M.S.; Sheikhi, M.; Abbaspour, K.; Rezagholi, Z.; Atashi, A.; Rahimzadegan, M.; Sadeghi, M.; Javar, H.A. The recent advancement in the chitosan-based thermosensitive hydrogel for tissue regeneration. J. Drug Deliv. Sci. Technol., 2023, 86, 104627.
[http://dx.doi.org/10.1016/j.jddst.2023.104627]
[258]
Li, Y.; Meng, Y.; Wang, Y.; Wang, Y.; Wang, Z. Application of mineralized chitosan scaffolds in bone tissue engineering. Coatings, 2023, 13(9), 1644.
[http://dx.doi.org/10.3390/coatings13091644]
[259]
Venkatesan, J. Chitosan based nanobioceramics in bone tissue engineering application. In: Nanobiomaterials; CRC Press, 2023; pp. 161-181.
[http://dx.doi.org/10.1201/9780429057038-13]
[260]
Przekora, A.; Ginalska, G. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Biomed. Mater., 2015, 10(1), 015009.
[http://dx.doi.org/10.1088/1748-6041/10/1/015009] [PMID: 25586067]
[261]
Patil, J.H.; Vishnumurthy, K.A.; Kusanur, R.; Melavanki, R. Synthesis and characterization of chitosan-hydroxyapatite composite for bone graft applications. J. Indian Chem. Soc., 2022, 99(1), 100308.
[http://dx.doi.org/10.1016/j.jics.2021.100308]
[262]
Abdian, N.; Etminanfar, M.; Sheykholeslami, S.O.R.; Hamishehkar, H.; Allafi, K.J. Preparation and characterization of chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA for drug delivery applications. Mater. Chem. Phys., 2023, 301, 127672.
[http://dx.doi.org/10.1016/j.matchemphys.2023.127672]
[263]
Ghaedamini, S.l. Recent innovations in strategies for breast cancer therapy by electrospun scaffolds: A review. J. Polym. Environ., 2023, 32, 1001-1027.
[264]
Gupta, P.; Sharma, S.; Jabin, S.; Jadoun, S. Chitosan nanocomposite for tissue engineering and regenerative medicine: A review. Int. J. Biol. Macromol., 2024, 254(Pt 1), 127660.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127660] [PMID: 37907176]
[265]
Damiri, F. Chitosan nanocomposites as scaffolds for bone tissue regeneration. Chitosan Nanocomposites: Bionanomechanical Applications; Springer, 2023, pp. 377-394.
[http://dx.doi.org/10.1007/978-981-19-9646-7_16]
[266]
Mondal, S.; Park, S.; Choi, J.; Vu, T.T.H.; Doan, V.H.M.; Vo, T.T.; Lee, B.; Oh, J. Hydroxyapatite: A journey from biomaterials to advanced functional materials. Adv. Colloid Interface Sci., 2023, 321, 103013.
[http://dx.doi.org/10.1016/j.cis.2023.103013] [PMID: 37839281]
[267]
Amiryaghoubi, N. Advanced nanoscale drug delivery systems for bone cancer therapy. Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869(6), 166739.
[http://dx.doi.org/10.1016/j.bbadis.2023.166739]
[268]
Geng, Y.; Xue, H.; Zhang, Z.; Panayi, A.C.; Knoedler, S.; Zhou, W.; Mi, B.; Liu, G. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr. Polym., 2023, 305, 120555.
[http://dx.doi.org/10.1016/j.carbpol.2023.120555] [PMID: 36737218]
[269]
Hu, D.; Ren, Q.; Li, Z.; Zhang, L. Chitosan-based biomimetically mineralized composite materials in human hard tissue repair. Molecules, 2020, 25(20), 4785.
[http://dx.doi.org/10.3390/molecules25204785] [PMID: 33086470]
[270]
Zhao, Y.; Zhao, S.; Ma, Z.; Ding, C.; Chen, J.; Li, J. Chitosan-based scaffolds for facilitated endogenous bone re-generation. Pharmaceuticals, 2022, 15(8), 1023.
[http://dx.doi.org/10.3390/ph15081023] [PMID: 36015171]
[271]
Harini, G. Nanoceramics-reinforced chitosan scaffolds for bone tissue engineering. Mater. Adv., 2023, 4, 3907-3928.
[http://dx.doi.org/10.1039/D3MA00422H]
[272]
Goyal, S.; Thirumal, D.; Rana, J.; Gupta, A.K.; Kumar, A.; Babu, M.A.; Kumar, P.; Sindhu, R.K. Chitosan based nanocarriers as a promising tool in treatment and management of inflammatory diseases. Carbohyd. Polym. Technol. Appl., 2024, 7, 100442.
[http://dx.doi.org/10.1016/j.carpta.2024.100442]
[273]
Abdelaziz, A.G.; Nageh, H.; Abdo, S.M.; Abdalla, M.S.; Amer, A.A.; Abdal-hay, A.; Barhoum, A. A review of 3D polymeric scaffolds for bone tissue engineering: Principles, fabrication techniques, immunomodulatory roles, and challenges. Bioengineering, 2023, 10(2), 204.
[http://dx.doi.org/10.3390/bioengineering10020204] [PMID: 36829698]
[274]
Pauline, S.A. Nanoceramics: Synthesis, characterizations and applications. In: Nanomaterials and Their Biomedical Applications; Springer Series in Biomaterials Science and Engineering; Santra, T.S.; Mohan, L. Springer: Singapore, 2021; 16, pp. 131-156.
[275]
Singh, Z. Nanoceramics in bone tissue engineering: The future lies ahead. Trends J. Sci. Res., 2018, 3(3), 120-123.
[http://dx.doi.org/10.31586/Nanomaterials.0303.03]
[276]
Gao, C.; Deng, Y.; Feng, P.; Mao, Z.; Li, P.; Yang, B.; Deng, J.; Cao, Y.; Shuai, C.; Peng, S. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int. J. Mol. Sci., 2014, 15(3), 4714-4732.
[http://dx.doi.org/10.3390/ijms15034714] [PMID: 24646912]
[277]
Liu, X.; Li, M.; Zhu, Y.; Yeung, K.W.K.; Chu, P.K.; Wu, S. The modulation of stem cell behaviors by functionalized nanoceramic coatings on Ti-based implants. Bioact. Mater., 2016, 1(1), 65-76.
[http://dx.doi.org/10.1016/j.bioactmat.2016.09.001] [PMID: 29744396]
[278]
Regí, V.M. Bioceramics: From bone substitutes to nanoparticles for drug delivery. Pure Appl. Chem., 2019, 91(4), 687-706.
[http://dx.doi.org/10.1515/pac-2018-0505] [PMID: 31371837]
[279]
Wu, H.; Xie, L.; He, M.; Zhang, R.; Tian, Y.; Liu, S.; Gong, T.; Huo, F.; Yang, T.; Zhang, Q.; Guo, S.; Tian, W. A wear-resistant TiO2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues. Acta Biomater., 2019, 97, 597-607.
[http://dx.doi.org/10.1016/j.actbio.2019.08.009] [PMID: 31398472]
[280]
Ikono, R.; Li, N.; Pratama, N.H.; Vibriani, A.; Yuniarni, D.R.; Luthfansyah, M.; Bachtiar, B.M.; Bachtiar, E.W.; Mulia, K.; Nasikin, M.; Kagami, H.; Li, X.; Mardliyati, E.; Rochman, N.T.; Nagamura-Inoue, T.; Tojo, A. Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles. Biotechnol. Rep., 2019, 24, e00350.
[http://dx.doi.org/10.1016/j.btre.2019.e00350] [PMID: 31304101]
[281]
Guo, S.; Zhang, Z.; Cao, L.; Wu, T.; Li, B.; Cui, Y. Nanocomposites containing ZnO-TiO2-Chitosan and berbamine promote osteoblast differentiation, proliferation, and calcium mineralization in MG63 osteoblasts. Process Biochem., 2023, 124, 63-70.
[http://dx.doi.org/10.1016/j.procbio.2022.11.004]
[282]
Lan, H.; Zhang, M.; Chen, X.; Huang, Z.; Yin, G. Designing a novel CaO-MgO-SiO2-based multiphase bioceramic with adjustable ion dissolution behavior for enhancing osteogenesis. Smart Mater. Med., 2022, 3, 94-103.
[http://dx.doi.org/10.1016/j.smaim.2021.09.002]
[283]
Kumar, S.; Nehra, M.; Kedia, D.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Mater. Sci. Eng. C, 2020, 106, 110154.
[http://dx.doi.org/10.1016/j.msec.2019.110154] [PMID: 31753376]
[284]
Pourmadadi, M.; Farokh, A.; Rahmani, E.; Shamsabadipour, A.; Eshaghi, M.M.; Rahdar, A.; Ferreira, L.F.R. Porous alumina as potential nanostructures for drug delivery applications, synthesis and characteristics. J. Drug Deliv. Sci. Technol., 2022, 77, 103877.
[http://dx.doi.org/10.1016/j.jddst.2022.103877]
[285]
Shishir, R.; Lokeshkumar, E.; Manojkumar, P.; Nasiruddin, U.; Premchand, C.; Ponnilavan, V.; Rameshbabu, N. Development of biocompatible and corrosion-resistant plasma electrolytic oxidation coating over zinc for orthopedic implant applications. Surf. Coat. Tech., 2022, 450, 128990.
[http://dx.doi.org/10.1016/j.surfcoat.2022.128990]
[286]
Toloue, E.B.; Karbasi, S.; Salehi, H.; Rafienia, M. Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Mater. Sci. Eng. C, 2019, 99, 1075-1091.
[http://dx.doi.org/10.1016/j.msec.2019.02.062] [PMID: 30889640]
[287]
Suib, S.L. A review of nanoceramic materials for use in ceramic matrix composites. In: Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications; Springer: Cham, 2017; pp. 185-230.
[288]
Tavassoli, H.; Javadpour, J.; Taheri, M.; Mehrjou, M.; Koushki, N.; Arianpour, F.; Majidi, M.; Izadi-Mobarakeh, J.; Negahdari, B.; Chan, P.; Warkiani, E.M.; Bonakdar, S. Incorporation of nanoalumina improves mechanical properties and osteogenesis of hydroxyapatite bioceramics. ACS Biomater. Sci. Eng., 2018, 4(4), 1324-1336.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00754] [PMID: 33418663]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy