Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Optimization of Microwave-assisted Extraction Of Polysaccharide from Fenugreek (Trigonella foenum-graecum) Seeds

In Press, (this is not the final "Version of Record"). Available online 13 May, 2024
Author(s): Sangita Palai, Abani Roy, Gouhar Jahan Ashraf, Gouranga Nandi, Ranabir Sahu, Paramita Paul and Tarun Kumar Dua*
Published on: 13 May, 2024

DOI: 10.2174/0115734013312926240430105914

Price: $95

Abstract

Introduction: Fenugreek seed polysaccharides have gained significant attention in research due to their availability in different forms, which play a tremendous role in the pharmaceutical industry as a natural excipient like matrix-former, binder, gelling agent, and suspending agent. Extraction of polysaccharides plays a vital role in their purity, cost, etc. In extraction processes, several parameters like time, temperature, pressure, solvent to be used, or the combination of all these can be modified to optimize the process.

Aims and Objective : The aim of this study was to optimize the extraction of the fenugreek seed polysaccharide. In other words, the objective of this study was to optimize the various parameters of the microwave-assisted extraction of polysaccharide content from the fenugreek seed (Trigonella foenum-graecum) using the Box-Behnken design (BBD).

Methods: The response surface methodology (RSM) was used to optimize the extraction of the FSP. This study finds the interactive effects of the independent process variables (irradiation time, power, and solvent-to-solid ratio) on polysaccharide yield (%) by using BBD.

Results: The result showed a 40.11% yield of polysaccharides when ideal conditions were met, such as a 9.95 minute irradiation time, 51.03 solvent-to-solid ratio, and a microwave power of 180.09. The presence of functional groups in polysaccharides was confirmed by the FTIR spectrum of the isolated polysaccharide.

Conclusion: The findings demonstrate that microwave-assisted extraction is a viable method for extracting FSP.

[1]
Ching, F.M. Chinese herbal drug research trends; Nova Publishers, 2007.
[2]
Zheng, Q.; Chen, J.; Yuan, Y.; Zhang, X.; Li, L.; Zhai, Y.; Gong, X.; Li, B. Structural characterization, antioxidant, and anti-inflammatory activity of polysaccharides from Plumula nelumbinis. Int. J. Biol. Macromol., 2022, 212, 111-122.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.097] [PMID: 35594937]
[3]
Khan, S.; Hussain, A.; Attar, F.; Bloukh, S.H.; Edis, Z.; Sharifi, M.; Balali, E.; Nemati, F.; Derakhshankhah, H.; Zeinabad, H.A.; Nabi, F.; Khan, R.H.; Hao, X.; Lin, Y.; Hua, L.; ten Hagen, T.L.M.; Falahati, M. A review of the berberine natural polysaccharide nanostructures as potential anticancer and antibacterial agents. Biomed. Pharmacother., 2022, 146, 112531.
[http://dx.doi.org/10.1016/j.biopha.2021.112531] [PMID: 34906771]
[4]
Kalita, P.; Ahmed, A.B.; Sen, S.; Chakraborty, R. A comprehensive review on polysaccharides with hypolipidemic activity: Occurrence, chemistry and molecular mechanism. Int. J. Biol. Macromol., 2022, 206, 681-698.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.189] [PMID: 35247430]
[5]
Bangar, B.; Shinde, N.; Deshmukh, S.; Kale, B. Natural polymers in drug delivery development. Res. J. Pharm. Dos. Forms Technol., 2014, 6, 54-57.
[6]
Gandhi, K.J.; Deshmane, S.V.; Biyani, K.R. Polymers in pharmaceutical drug delivery system: A review. Int. J. Pharm. Sci. Rev. Res., 2012, 14, 57-66.
[7]
Nayak, A.K.; Pal, D.; Santra, K. Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients. Int. J. Biol. Macromol., 2015, 79, 756-760.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.018] [PMID: 26007663]
[8]
Datta, R.; Bandyopadhyay, A. Development of a new nasal drug delivery system of diazepam with natural mucoadhesive agent from Trigonella foenum-graecum L. J. Sci. Ind. Res., 2005, 64(12), 973-977.
[9]
Rashid, R.; Ahmad, H.; Ahmed, Z.; Rashid, F.; Khalid, N. Clinical investigation to modulate the effect of fenugreek polysaccharides on type-2 diabetes. Bioact Carbo Diet Fib, 2019, 19, 100194.
[http://dx.doi.org/10.1016/j.bcdf.2019.100194]
[10]
Ardiles, P.; Cerezal-Mezquita, P.; Salinas-Fuentes, F.; Órdenes, D.; Renato, G.; Ruiz-Domínguez, M.C. Biochemical composition and phycoerythrin extraction from red microalgae: A comparative study using green extraction technologies. Processes, 2020, 8(12), 1628.
[http://dx.doi.org/10.3390/pr8121628]
[11]
Arasi, M.A.S.; Rao, M.; Bagyalakshmi, J. Optimization of microwave-assisted extraction of polysaccharide from Psidium guajava L. fruits. Int. J. Biol. Macromol., 2016, 91, 227-232.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.039] [PMID: 27180292]
[12]
De Monte, C.; Carradori, S.; Granese, A.; Di Pierro, G.B.; Leonardo, C.; De Nunzio, C. Modern extraction techniques and their impact on the Optimization of microwave-assisted extraction of polysaccharide from Psidium guajava L. fruits pharmacological profile of Serenoa repens extracts for the treatment of lower urinary tract symptoms. BMC Urol., 2014, 14, 1-11.
[http://dx.doi.org/10.1186/1471-2490-14-63]
[13]
Xie, J.H.; Xie, M.Y.; Shen, M.Y.; Nie, S.P.; Li, C.; Wang, Y.X. Optimisation of microwave-assisted extraction of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja using response surface methodology. J. Sci. Food Agric., 2010, 90(8), 1353-1360.
[http://dx.doi.org/10.1002/jsfa.3935] [PMID: 20474055]
[14]
Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacogn. Rev., 2007, 1, 7-18.
[15]
Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod., 2014, 61, 31-40.
[http://dx.doi.org/10.1016/j.indcrop.2014.06.035]
[16]
Kusuma, H.S.; Sudrajat, R.G.M.; Susanto, D.F.; Gala, S.; Mahfud, M. Response surface methodology (RSM) modeling of microwave-assisted extraction of natural dye from Swietenia mahagony: A comparation between Box-Behnken and central composite design method; AIP Conference Proceedings AIP Publishing LLC, 2015, p. 050009.
[17]
Dean, A.; Voss, D. Design and analysis of experiments; Springer: New York, 1999.
[http://dx.doi.org/10.1007/b97673]
[18]
Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; dos Santos, W.N.L. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta, 2007, 597(2), 179-186.
[http://dx.doi.org/10.1016/j.aca.2007.07.011] [PMID: 17683728]
[19]
Pavithra, K.; Vadivukkarasi, S. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Sci. Hum. Wellness, 2015, 4(1), 42-46.
[http://dx.doi.org/10.1016/j.fshw.2015.02.001]
[20]
Xie, J.H.; Shen, M.Y.; Xie, M.Y.; Nie, S.P.; Chen, Y.; Li, C.; Huang, D.F.; Wang, Y.X. Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides. Carbohydr. Polym., 2012, 89(1), 177-184.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.068] [PMID: 24750621]
[21]
Song, H.; Zhang, Q.; Zhang, Z.; Wang, J. In vitro antioxidant activity of polysaccharides extracted from Bryopsis plumosa. Carbohydr. Polym., 2010, 80(4), 1057-1061.
[http://dx.doi.org/10.1016/j.carbpol.2010.01.024]
[22]
Dong, H.; Zhang, Q.; Li, Y.; Li, L.; Lan, W.; He, J.; Li, H.; Xiong, Y.; Qin, W. Extraction, characterization and antioxidant activities of polysaccharides of Chuanminshen violaceum. Int. J. Biol. Macromol., 2016, 86, 224-232.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.002] [PMID: 26806648]
[23]
Li, W.; Cui, S.; Kakuda, Y. Extraction, fractionation, structural and physical characterization of wheat β-d-glucans. Carbohydr. Polym., 2006, 63(3), 408-416.
[http://dx.doi.org/10.1016/j.carbpol.2005.09.025]
[24]
Ranitha M; Nour, A.H.; Ziad, A.; Azhari, H. Optimization of microwave assisted hydrodistillation of lemongrass (cymbopogon citratus) using response surface methodology. Int. J. Res. Eng. Technol., 2014, 3(4), 5-14.
[http://dx.doi.org/10.15623/ijret.2014.0304002]
[25]
Jing, C.; Yuan, Y.; Tang, Q.; Zou, P.; Li, Y.; Zhang, C. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja. Int. J. Biol. Macromol., 2017, 103, 1207-1216.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.186] [PMID: 28579464]
[26]
Wang, W.; Li, X.; Bao, X.; Gao, L.; Tao, Y. Extraction of polysaccharides from black mulberry fruit and their effect on enhancing antioxidant activity. Int. J. Biol. Macromol., 2018, 120(Pt B), 1420-1429.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.132] [PMID: 30266643]
[27]
Bourtoom, T.; Chinnan, M.S.; Jantawat, P.; Sanguandeekul, R. Recovery and characterization of proteins precipitated from surimi wash-water. Lebensm. Wiss. Technol., 2009, 42(2), 599-605.
[http://dx.doi.org/10.1016/j.lwt.2008.09.001]
[28]
Buriti, F.C.A.; dos Santos, K.M.O.; Sombra, V.G.; Maciel, J.S.; Teixeira Sá, D.M.A.; Salles, H.O.; Oliveira, G.; de Paula, R.C.M.; Feitosa, J.P.A.; Monteiro Moreira, A.C.O.; Moreira, R.A.; Egito, A.S. Characterisation of partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds as a potential dietary fibre. Food Hydrocoll., 2014, 35, 512-521.
[http://dx.doi.org/10.1016/j.foodhyd.2013.07.015]
[29]
Mittal, N.; Mattu, P.; Kaur, G. Extraction and derivatization of Leucaena leucocephala (Lam.) galactomannan: Optimization and characterization. Int. J. Biol. Macromol., 2016, 92, 831-841.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.046] [PMID: 27492556]
[30]
Niknam, R.; Mousavi, M.; Kiani, H. A new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds: Extraction and comprehensive characterization. J. Food Process. Preserv., 2021, 45(10), e15774.
[http://dx.doi.org/10.1111/jfpp.15774]
[31]
Chen, C-W.; Ho, C-T. Antioxidant properties of polyphenols extracted from green and black teas. J. Food Lipids, 1995, 2(1), 35-46.
[http://dx.doi.org/10.1111/j.1745-4522.1995.tb00028.x]
[32]
Matthäus, B. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem., 2002, 50(12), 3444-3452.
[http://dx.doi.org/10.1021/jf011440s] [PMID: 12033809]
[33]
Zhao, Z.Y.; Zhang, Q.; Li, Y.F.; Dong, L.L.; Liu, S.L. Optimization of ultrasound extraction of Alisma orientalis polysaccharides by response surface methodology and their antioxidant activities. Carbohydr. Polym., 2015, 119, 101-109.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.052] [PMID: 25563949]
[34]
Osman, H.; Nasarudin, R.; Lee, S.L. Extracts of cocoa (Theobroma cacao L.) leaves and their antioxidation potential. Food Chem., 2004, 86(1), 41-46.
[http://dx.doi.org/10.1016/j.foodchem.2003.08.026]
[35]
Han, Q.H.; Liu, W.; Li, H.Y.; He, J.L.; Guo, H.; Lin, S.; Zhao, L.; Chen, H.; Liu, Y.W.; Wu, D.T.; Li, S.Q.; Qin, W. Extraction optimization, physicochemical characteristics, and antioxidant activities of polysaccharides from kiwifruit (Actinidia chinensis planch.). Molecules, 2019, 24(3), 461.
[http://dx.doi.org/10.3390/molecules24030461] [PMID: 30696067]
[36]
Hu, W.; Zhao, Y.; Yang, Y.; Zhang, H.; Ding, C.; Hu, C.; Zhou, L.; Zhang, Z.; Yuan, S.; Chen, Y.; Yuan, M. Microwave-assisted extraction, physicochemical characterization and bioactivity of polysaccharides from Camptotheca acuminata fruits. Int. J. Biol. Macromol., 2019, 133, 127-136.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.086] [PMID: 30986453]
[37]
Chen, Y.; Xue, Y. Optimization of microwave assisted extraction, chemical characterization and antitumor activities of polysaccharides from porphyra haitanensis. Carbohydr. Polym., 2019, 206, 179-186.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.093] [PMID: 30553311]
[38]
Hashemifesharaki, R.; Xanthakis, E.; Altintas, Z.; Guo, Y.; Gharibzahedi, S.M.T. Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity. Carbohydr. Polym., 2020, 240, 116301.
[http://dx.doi.org/10.1016/j.carbpol.2020.116301] [PMID: 32475574]
[39]
Ren, B.; Chen, C.; Li, C.; Fu, X.; You, L.; Liu, R.H. Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydr. Polym., 2017, 173, 192-201.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.094] [PMID: 28732858]
[40]
Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Gao, H. Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity. Int. J. Biol. Macromol., 2018, 111, 446-454.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.007] [PMID: 29309866]
[41]
Cheng, Z.; Song, H.; Yang, Y.; Liu, Y.; Liu, Z.; Hu, H.; Zhang, Y. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill. Int. J. Biol. Macromol., 2015, 76, 161-168.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.048] [PMID: 25661875]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy